
Finding Time Period-Based Most Frequent Path
in Big Trajectory Data

Wuman Luo, Haoyu Tan, Lei Chen, Lionel M. Ni
Department of Computer Science and Engineering

Guangzhou HKUST Fok Ying Tung Research Institute
Hong Kong University of Science and Technology, Hong Kong SAR, China

{luowuman, hytan, leichen, ni}@cse.ust.hk

ABSTRACT

The rise of GPS-equipped mobile devices has led to the emergence
of big trajectory data. In this paper, we study a new path find-
ing query which finds the most frequent path (MFP) during user-
specified time periods in large-scale historical trajectory data. We
refer to this query as time period-based MFP (TPMFP). Specif-
ically, given a time period T , a source vs and a destination vd,
TPMFP searches the MFP from vs to vd during T . Though there
exist several proposals on defining MFP, they only consider a fixed
time period. Most importantly, we find that none of them can well
reflect people’s common sense notion which can be described by
three key properties, namely suffix-optimal (i.e., any suffix of an
MFP is also an MFP), length-insensitive (i.e., MFP should not fa-
vor shorter or longer paths), and bottleneck-free (i.e., MFP should
not contain infrequent edges). The TPMFP with the above prop-
erties will reveal not only common routing preferences of the past
travelers, but also take the time effectiveness into consideration.
Therefore, our first task is to give a TPMFP definition that satisfies
the above three properties. Then, given the comprehensive TPMFP
definition, our next task is to find TPMFP over huge amount of tra-
jectory data efficiently. Particularly, we propose efficient search al-
gorithms together with novel indexes to speed up the processing of
TPMFP. To demonstrate both the effectiveness and the efficiency
of our approach, we conduct extensive experiments using a real
dataset containing over 11 million trajectories.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS

Keywords

path finding, big trajectory data

1. INTRODUCTION
In recent years, due to the continuing improvements in location-

acquisition technology (e.g., GPS), large amounts of historical tra-
jectory data have become available for emerging applications in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

cluding urban planning [32], spatio-temporal data mining [17], and
various location-based services [29, 31]. Path finding, also known
as finding the most desirable path, plays a crucial role in these ap-
plications. Traditionally, the desirability of a path is usually mea-
sured by travel distance or time. In this paper, we study time period-
based most frequent path (TPMFP), a new path finding query which
aims at finding the most frequent path of a certain time period.

The objective of TPMFP is to reflect the common routing pref-
erence of the past travelers, which is very useful in many real-
world applications. In map services and vehicle navigation sys-
tems, TPMFP provides users with extra routing options other than
the shortest/fastest path. For example, when traveling in an unfa-
miliar city, people tend to follow the most common path for several
considerations such as making sure that the path is not blocked by
a recent road work, reducing the risks of getting lost, and avoid-
ing unpaved roads and dangerous shortcuts. In these situations, a
TPMFP such as ‘the MFP from my hotel to the airport during the
last week’ is a better recommendation than the shortest/fastest path.
Another application is trajectory data mining where the TPMFP
query can be used as a critical subroutine for high-level data anal-
ysis. For example, we can find out ‘whether people’s travel habits
during weekends and workdays in the last year are different’ by is-
suing two TPMFP queries (with segmented time periods). It is also
possible to detect important events by mining the changes of MFP
during different time periods (see Section 6).

Despite that the meaning of MFP is easy to understand, it is non-
trivial to give a satisfactory definition to well reflect people’s com-
mon sense notion. We will illustrate this by a concrete example.
Figure 1 shows a road network along with 44 trajectories. The road
network is represented by a graph with each vertex being a road
intersection and each edge being a road segment. The trajectories
are divided into groups according to whether they traverse the same
path. As depicted by dashed curves, there are 6 trajectory groups
(G1 through G6), containing 8, 6, 4, 5, 1, 20 trajectories, respec-
tively. For the ease of presentation, we use vi–vj path/MFP to
denote a path/MFP from vi to vj . In this example, we want to find
the v1–v12 MFP, assuming that all the trajectories are within the
given time period.

A straightforward definition of MFP is to count the number of
the trajectories going through each v1–v12 path and select the one
with the highest support. In this case, there are four v1–v12 paths
with non-zero supports, i.e., the paths traversed by G1, G2, G4,
G5 whose supports are 8, 6, 5, 1, respectively. Hence, the v1–
v12 MFP under this definition is v1 → v2 → v12. Given the
v1–v12 MFP, it is natural to infer that the v2–v12 MFP should be
v2 → v12, i.e., the suffix of the v1–v12 MFP starting from v2.
However, since the support of path v2 → v12 is 8 and the support of
path v2 → v3 → v12 is 6+4 = 10, the resulting v2–v12 MFP is the

713

|G4|=5

v12|G2|=6
v1

v5 v6 v7
v8

v9

v2

|G6|=20

|G5|=1

v3

|G3|=4

v11

v10

v4

|G1|=8

Figure 1: An illustrative example

latter. This result demonstrates that if we use the simple-counting
rule to define MFP, then the MFP from an intermediate vertex to
the destination is not necessarily a suffix-path of the original MFP.
As a consequence, users have to continuously issue queries to a
vehicle navigation system to get the MFP starting from the current
location, which implies that such a MFP definition is undesirable
for practical applications.
Another approach to defineMFP is to adopt a scalar-valued score

function to calculate path frequency. Initially, each graph edge (or
vertex) is associated with a weight or multiple weights calculated
from the involved trajectories. Next, an aggregate function is used
to calculate a scalar-valued score for each path, taking all the edge
(or vertex) weights of a path as input parameters. Then the path
with the highest score is considered as the MFP. A possible MFP
score function is the sum of all the weights of the edges along the
path where the edge weight describes edge frequency which is de-
fined as the total number of trajectories passing through the edge.
In fact, most existing works related to MFP adopt similar forms of
definitions. They only differ in the definition of edge (or vertex)
weight (e.g., transfer probability [3]) or the aggregate function for
path score calculation (e.g., product [3]).
However, this scalar-valued scoring approach for MFP defini-

tion suffers from two major drawbacks. The first drawback is that
the number of path edges (path length) can significantly affect the
overall path score. For example, it is intuitive that path v1 → v2 →
v3 → v12 is more frequent than path v1 → v4 → · · · → v9 →
v12. However, if we adopt the above sum-of-edge-frequency defi-
nition, the score of the former (14 + 10 + 10 = 34) is lower than
that of the latter (5 × 7 = 35) , which contradicts the intuition.
As another example, the definition of most popular route (MPR)
proposed in [3] tends to favor paths with fewer vertices, which is
also undesirable. The reason is that vertex weights are probability
values (i.e., ∈ [0, 1]) and the path score is the product of vertex
weights. The second drawback is that the resulting MFP may con-
tain very infrequent edges because the weights of infrequent edges
can be easily offset by the weights of frequent ones. For example,
the score of path v1 → v10 → v11 → v12 is 1 + 21 + 21 = 43,
which is the highest among all v1–v12 paths. However, we should
not consider it as the MFP because there is only 1 trajectory travers-
ing the sub-path from v1 to v10. This bottleneck suggests that most
people have tried to avoid taking it in the past. The possible reasons
may be that it is blocked by road work or too dangerous to drive on.
Thus, it is undesirable to be included in the MFP.
Aside from the difficulties of proposing a reasonable definition,

it is also challenging to process the TPMFP query efficiently in
big trajectory data. To the best of our knowledge, we are the first
to study the MFP problem with user-specified time periods. In
the absence of time periods, most computations (e.g., building the
weighted graph) can be performed in an offline manner. In our

case, however, massive online computations are inevitable as it is
infeasible to compute and store the TPMFP results for all possible
time periods. Besides, as the size of a historical trajectory dataset
is usually quite large, we do not assume that all data can be loaded
into memory. To enable efficient processing of the TPMFP query, it
is necessary to devise special index structures to reduce the number
of trajectories need to be fetched from disk.

In this paper, we study the problem of TPMFP in big trajectory
data. We assume that each trajectory in the dataset has been aligned
to the corresponding road network and represents a meaningful trip
in the past. To overcome the shortcomings of previous definitions,
we use a sequence instead of a single scalar to describe the fre-
quency of a path. We then define a total-order relation to compare
path frequencies. To answer TPMFP in a very large dataset ef-
ficiently, we design efficient algorithms as well as special index
structures. The main contributions of this paper are as follows:

• We propose a time period-based definition ofMFP and demon-
strate that it is suffix-optimal, length-insensitive, and bottleneck-
free (Section 2).

• We propose a two-step framework to solve the TPMFP prob-
lem in the context of very large trajectory datasets (Section 3).

• We propose efficient footmark graph construction algorithms
along with two novel indexes to significantly reduce the num-
ber of disk I/O operations (Section 4).

• We propose efficient algorithms for searching TPMFP on
a footmark graph based on the more-frequent-than relation
(Section 5).

• We conduct extensive experiments using a real dataset con-
taining over 11 million trajectories to evaluate the perfor-
mance of our algorithms and indexes. The results show that
our approaches are both effective and efficient (Section 6).

We present the related works in Section 7 and conclude the paper
in Section 8.

2. THE TPMFP PROBLEM
The problems of the existing definitions and the necessity of al-

lowing user-specified time periods motivate us to seek a novel way
to define TPMFP. In particular, we require the definition to sat-
isfy the following three key properties to avoid the aforementioned
drawbacks.

PROPERTY 1 (SUFFIX-OPTIMAL). Let P ∗ denote the vs–vd
MFP. For any vertex u ∈ P ∗, the sub-path (suffix) of P ∗ from u to

vd should be the u–vd MFP.

PROPERTY 2 (LENGTH-INSENSITIVE). The length of any path

should not be a deciding factor of whether it is the vs–vd MFP.

PROPERTY 3 (BOTTLENECK-FREE). TheMFPP ∗ should not

contain infrequent edges (i.e., bottlenecks).

In the rest of this section, we present formal definitions for the
TPMFP problem and explain why our TPMFP definition satisfies
the above properties.

2.1 Sketch of the Problem Definition
Our basic idea is to use a sequence instead of a scalar to describe

path frequency. We first construct a weighted sub-graph of the road
network called footmark graph for a given destination vd and a
given time period T . In a footmark graph, the weight of an edge
(u, v) is defined as the number of trajectories going through (u, v)

714

Table 1: Summary of Notations

Notation Description

G, P , Y road network, path, trajectory

V (∗)/E(∗) vertex/edge set of ∗

X path or trajectory

X.s/X.d starting/ending vertex of X

Xu–v sub-path/sub-trajectory of X from u to v

X∗–v sub-path/sub-trajectory of X from X.s to v

Xu–∗ sub-path/sub-trajectory of X from u to X.d

X[i] the ith element of X

Y.P the corresponding path traversed by Y

Y.ts/Y.te the starting/ending time of Y

Υ trajectory set

vs/vd source/destination vertex

T time period

Ω the input of TPMFP

Ỹ(vd,T) the footmark of Y w.r.t. vd and T

Gf footmark graph

Υ̃(vd,T) footmark set of Υ w.r.t. vd and T

F (u, v) frequency of edge (u, v)

F (P) frequency of path P

wuv weight of edge (u, v)

Υ(vd,T) trajectories in Υ arriving at vd within T

and reaching vd during T , i.e., edge frequency w.r.t. vd and T . We
then define path frequency based on the footmark graph. It is worth
emphasizing that since footmark graph is specific to vd and T , path
frequency is also specific to vd and T . Given a footmark graph Gf

and a path P ⊆ Gf (whose ending vertex is vd), path frequency
F (P) = (f1, . . . , fk) is a sequence obtained by sorting all the edge
weights of P in non-decreasing order. In other words, fi is the edge
frequency of the ith least frequent edge in P . Consider the example
shown in Figure 1. The path frequencies of paths v1 → v2 →
v12, v1 → v2 → v3 → v12, and v1 → v10 → v11 → v12 are
(8, 14), (10, 10, 14), and (1, 21, 21), respectively. The final step is
to define the MFP based on sequence-valued path frequencies. To
this end, we define a ‘more-frequent-than’ relation (�) to compare
path frequencies. Given two path frequencies F = (f1, . . . , fm)
and F ′ = (f ′

1, . . . , f
′

n), F � F ′ if F is a prefix of F ′ or the first
fj , which is different from f ′

j , is greater than f
′

j . According to this
relation, we have (10, 10, 14) � (8, 14) and (8, 14) � (1, 21, 21).
Consequently, path v1 → v2 → v3 → v12 is considered as the
MFP according to our definitions. Note that the non-decreasing
ordering of components in path frequency ensures that relation �
is a total order, which guarantees the existence of the highest ranked
path frequency. It is also the key to making the TPMFP definition
satisfy the bottleneck-free property. This is because less frequent
edges have higher priorities in the comparison of path frequencies.

2.2 Formal Definition
Below we give the formal definitions related to TPMFP. For clar-

ity, the main notations used in the rest of this paper are summerized
in Table 1.

DEFINITION 1 (ROAD NETWORK). A road network is a di-

rected graph G = (V,E) where V is a set of vertices representing

road intersections and E is a set of edges representing road seg-

ments.

DEFINITION 2 (PATH). Given G, an x1–xk path is a non-

empty graph P = (Vp, Ep) of the form Vp = {x1, x2, . . . , xk}
and Ep = {(x1, x2), . . . , (xk−1, xk)} such that P is a sub-graph

of G and the xi are all distinct.

We use P.s, P.d, and P [i] to denote the source vertex x1, the
ending vertex xk, and the ith vertex xi, respectively. In addition,
P is often represented in the form of x1 → x2, . . . ,→ xk.

DEFINITION 3 (TRAJECTORY). Given G, a trajectory Y is a

sequence ((x1, t1), (x2, t2), . . . , (xk, tk)) such that there exists a

path x1 → x2,→, . . . ,→ xk on G and ti is a timestamp indicat-

ing the time when Y passes xi.

Similar to path, we use Y.s, Y.d, Y [i].v and Y [i].t to denote the
starting vertex x1, the ending vertex xk, the ith vertex xi and the
ith timestamp ti, respectively. Besides, we use Y.ts, Y.te, Y.P to
denote the starting time t1, the ending time tk, and the correspond-
ing path, respectively.

LetΩ = (G,Υ, vs, vd, T) denote the input for the TPMFP prob-
lem, whereG is a road network,Υ is a set of historical trajectories,
vs, vd ∈ V (G) are two vertices indicating the source and destina-
tion, respectively, and T is a time period. Without loss of general-
ity, we assume that T is a continuous time period [ts, te], where ts
is the starting time and te is the ending time.

In the presence of vs, vd, and T , it is obvious that we should only
consider the trajectories that can potentially contribute to calculat-
ing TPMFP. In specific, we focus on the trajectories that have gone
through vd during T . Note that we do not factor out the trajectories
that have not gone through vs because they can help calculating the
parts of the TPMFP starting from intermediate vertices. For exam-
ple, the trajectory groupG3 (Figure 1) contributes to the frequency
of the sub-path from v2 to v12 in searching the v1–v12 TPMFP. Be-
sides, for any trajectory reaching vd, the sub-trajectory Yvd–∗ can
be safely discarded because after that point it does not go towards
the destination vd any more (assuming that each trajectory does not
traverse a vertex more than once). We summarize the above discus-
sion by presenting the formal definition of footmark.

DEFINITION 4 (FOOTMARK). Given Ω = (G,Υ, vs, vd, T)
and a trajectory Y = ((x1, t1), . . . , (xk, tk)) ∈ Υ, if there exists

a non-empty sub-trajectory Y ′ of Y from Y [i] to Y [j] such that:

• Y ′.d = vd, i.e., Y [j].v = vd,

• [Y ′.ts, Y
′.te] ⊆ T , i.e., [Y [i].t, Y [j].t] ⊆ T ,

• Y [i− 1].t /∈ T , if i > 1,

then path Y ′.P is the footmark of Y w.r.t. vd and T , denoted as

Ỹ(vd,T).

In the following, we abbreviate Ỹ(vd,T) as Ỹ if it is clear from

the context. Note that Ỹ does not exist if Y has not gone through vd
during T . To better understand the definition, a concrete example is
given in Figure 2. The input is Ω = (G,Υ, v1, v8, [ts, te]), where
G is shown in Figure 2(a) andΥ contains 6 trajectories. Figure 2(b)
illustrates how to derive the footmarks from the trajectories in Υ.

In general, when Ỹ exists, it is obtained by removing from Y all
the prefix elements whose timestamps are not within T and all the
suffix elements after vd. Here, the resulting footmarks are:

• Ỹ1: v2 → v7 → v8,

• Ỹ2: v1 → v2 → v7 → v8,

• Ỹ3: v1 → v2 → v6 → v8,

• Ỹ4 = Ỹ5: v2 → v6 → v8.

Note that Ỹ6 does not exist since it does not traverse v8. In the
following, we use Υ̃(vd,T) (or Υ̃ for short) to denote a footmark set
of Υ.

715

v2 v7

v8

v5

v3

v4

v1

v6

(a) Road network G

ts te

Y1

v2 v7 v8v1 v5

Y2

v2 v7 v8v1

Y3

v2 v6 v8v1

Y4

v2 v6 v8

Y5
v6 v8v1 v2

Y6
v7 v6 v5

(b) Footmarks in Υ̃

2

2

3

3

2

v2 v7

v8v1

v6

(c) Footmark graph Gf

Figure 2: An example of footmark graph for inputΩ = (G,Υ, vs, vd, T), whereΥ = {Y1, . . . , Y6}, vs = v1, vd = v8, and T = [ts, te]

DEFINITION 5 (EDGE FREQUENCY). GivenG, Υ̃(vd,T), and

an edge (u, v) ∈ G, the edge frequency F (u, v) is the number of

the footmarks in Υ̃(vd,T) containing (u, v).

In Figure 2(a), for example, F (v1, v2) = 2 because it is con-

tained by two footmarks, i.e., Ỹ2 and Ỹ3.

DEFINITION 6 (FOOTMARK GRAPH). GivenG and Υ̃(vd,T),

a footmark graph Gf is a weighted sub-graph of G such that:

• for any edge (u, v) ∈ G, wuv = F (u, v);

• edge (u, v) ∈ Gf , if and only if (u, v) ∈ G and wuv > 0.

Figure 2(c) shows the footmark graph for the previous example.
Figure 3 illustrates a footmark graph derived from the real dataset
used in our experiments. The destination is located at the center
of the plot region and the edge frequency is described by the line
width where LineWidth(u, v) ∼ O(log F(u, v)).

(a) Distant view (b) Close view

Figure 3: A footmark graph derived from a real dataset

Now we define path frequency in terms of edge frequency. The
traditional approach is to use an aggregate function such as sum
and product to compute a scalar-valued score for each path from
the weights of the related edges. The problem is that these func-
tions are not robust such that the resulting MFP tends to be length-
sensitive and may contain infrequent edges. To address this issue,
we propose a new approach to define path frequency.

DEFINITION 7 (PATH FREQUENCY). GivenGf , the frequency

of path P (to vd) is a sequence F (P) = (f1, . . . , fk) where:

• {fi|i ∈ {1, . . . , k}} = {wuv|(u, v) ∈ E(P)},

• f1 ≤ f2 ≤ · · · ≤ fk.

In other words, F (P) is a non-decreasing sequence of the weights
of all the edges in P . For example, the frequency of path v1 →
v2 → v6 → v8 in Figure 2(c) is (2, 3, 3) and the frequency of the
other v1–v8 path is (2, 2, 2).

To defineMFP, we further establish a ranking system for sequence-
valued path frequencies by defining the more-frequent-than rela-
tion.

DEFINITION 8 (MORE-FREQUENT-THAN RELATION). Given

two path frequenciesF (P) = (f1, . . . , fm) andF (P ′) = (f ′

1, . . . , f
′

n)
w.r.t. the sameGf , F (P) is more-frequent-than F (P ′), denoted as
F (P) � F (P ′), if one of the following statements holds:

• F (P) is a prefix of F (P ′);

• there exists a q ∈ {1, . . . ,min(m,n)} such that 1) fi = f ′

i

for all i ∈ {1, . . . , q − 1}, if q > 1, and 2) fq > f ′

q .

Particularly, F (P) is strictly-more-frequent-than F (P ′), denoted
as F (P) ≻ F (P ′), if F (P) � F (P ′) and F (P) 6= F (P ′).

According to the definition, we have (10, 10, 10) � (1, 100),
(1, 2) � (1, 2, 3), and (5, 6, 9) � (5, 6, 7, 12), to name a few in-
stances. Essentially, the more-frequent-than relation is a special
form of the lexicographic order, which directly leads to the follow-
ing theorem.

THEOREM 1. The more-frequent-than relation is a total order.

The above theorem implies that we can safely define the MFP as
the path with the highest ranked frequency.

DEFINITION 9 (MFP). Given Gf and a vs–vd path P ∗ ⊆
Gf , if F (P ∗) � F (P) holds for every vs–vd path P ⊆ Gf , then

P ∗ is the vs–vd MFP w.r.t. Gf .

Finally, we can define the TPMFP problem based on the above
definitions.

Problem Statement: Given Ω = (G,Υ, vs, vd, T) where Υ is a
very large set of historical trajectories, we need to find the TPMFP
which is the MFP w.r.t. Gf . Note that Gf is the footmark graph
derived from Ω.

2.3 Properties
Nowwe explain why the TPMFP definition satisfies the three key

properties. We begin with a theorem which demonstrates its suffix-
optimal property (due to the page limitation, we omit the lengthy
proof).

716

Algorithm 1: Two major steps for the TPMFP query

Input: Ω = (G,Υ, vs, vd, T)
Output: the TPMFP w.r.t. Ω
begin

1 step 1: build the footmark graph Gf w.r.t. Ω ;
2 step 2: find the MFP P ∗ from vs to vd on Gf ;
3 return P ∗ ;

THEOREM 2. Given Ω = (G,Υ, vs, vd, T), let P
∗ be the vs–

vd TPMFP w.r.t. Ω. Then, for every vertex u ∈ V (P), the sub-path
of P ∗ from u to vd is the u–vd TPMFP.

The implications of the above theorem are two-fold. First, it en-
sures the stability of the TPMFP in the sense that the query result
from any intermediate location to the destination will not deviate
from the initial route, which is desirable for practical applications.
Second, it guarantees the existence of efficient (polynomial-time)
algorithms to compute the exact result of TPMFP, which is impor-
tant for time-critical services.
In addition, the TPMFP is length-insensitive and bottleneck-free

as well. This is a direct result of the definition of path frequency and
the comparison rule. Specifically, given two paths P and P ′, P is
more frequent than P ′ as long as F (P) wins F (P ′) in the compar-
ison between their first different components. In other words, the
path length is not a deciding factor in such comparisons, which is
in line with the common sense that the road segments in a frequent
path can be either few or many. For the bottleneck-free property,
it is straightforward to prove that if P is the TPMFP, then for any
edge (u, v) ∈ P , there does not exist any other path P ′ such that
all edge frequencies of P ′ are greater than the frequency of (u, v).
It implies that the TPMFP does not contain any (infrequent) edge
that can be avoided by introducing more frequent ones only.

3. SOLUTION OVERVIEW
Given input Ω = (G,Υ, vs, vd, T), we perform the TPMFP

query in two major steps, as illustrated in Algorithm 1.
For the first step, since the edge weights on a footmark graph

depend on the input time period T , we cannot calculate them in
an offline manner. This fact poses great challenges on building the
footmark graph, especially in the presence of huge amounts of tra-
jectories. Assume that the data are stored in a disk-based key-value
storage system and a trajectory can be fetched based on its id. A
straightforward approach to build a footmark graph is to scan all the
trajectories inΥ and update the footmark graphGf during the pro-
cess. Initially, Gf is an empty graph. For each trajectory Y being

scanned, we first check whether it generates a footmark Ỹ . If so,
we update the footmark graph by incrementing the weight of each

edge inE(Ỹ) by 1 (if the edge does not exist inGf , we simply add
it to Gf and set its weight to 1). The construction of Gf is com-
pleted once all trajectories are processed. However, this approach
is inefficient from the perspectives of both I/O and computation:
the number of trajectories need to be fetched is |Υ| and the com-

putation complexity for edge weight update is O(|Υ̃| × l), where
l is the average length of footmarks. To speed up I/O, we propose
Footmark Index (FMI) to effectively filter out the trajectories hav-
ing no footmarks. We further devise Containment-Based Footmark
Index (CFMI), an improved version of FMI, to further reduce the
random page accesses by only fetching the ‘dominant’ trajectories.
To speed up computation, we develop efficient algorithms based on
the proposed indexes which dramatically reduces the cost of updat-

tYi-vj: the time Yi reaching vj

tY1-v2<tY2-v2<tY4-v1<tY2-v1<tY3-v1 Y1,tY1-v2

v1

v2
Y1

Y3

Y 2

Y4

v2

v1

v4

v3 v5

v6

BTv1

BTV2

Y2,tY2-v2

Y4,tY4-v1 Y2,tY2-v1 Y3,tY3-v1

Table

v8

v7

Figure 4: An example of FMI

ing Gf . We will discuss the footmark graph construction in detail
in Section 4.

The second step is described in Section 5. We first prove that
searching MFP on a given footmark graph can be solved by the
dynamic programming approach. Then we propose a new variant
of the classic Bellman–Ford algorithm to deal with the sequence-
valued path frequencies. We also demonstrate the correctness of
the algorithm and analyze its time and space complexities.

4. FOOTMARK GRAPH CONSTRUCTION
The main task of footmark graph construction is to calculate the

footmark set Υ̃ w.r.t. G, Υ, vd, and T . As mentioned before, it
is inefficient to examine all the trajectories because only a small
portion of them have footmarks for the specific vd and T . In ad-
dition, the large number of weight updating operations can lead to
high computation cost. As such, we propose two special indexes
to reduce disk reads together with efficient algorithms to construct
Gf . Note that we assume that all the trajectories are stored on disk
and each trajectory can be fetched using one random page read.

4.1 Footmark Index
To calculate Υ̃, we need to find the trajectories in Υ that have

footmarks for the given vd and T in the first place. To filter tra-
jectories by vd and T , we design an index called Footmark Index
(FMI).

In FMI, we build a B+-tree BTvi for each vertex vi ∈ V (G).
BTvi indexes the time of the trajectories reaching vi and stores
the corresponding trajectory id’s. Each leaf entry of BTvi is of
the form 〈tid, ta〉, where tid is the unique id of a trajectory, and
ta is the time trajectory tid reaching vi. Besides, we keep a table
in FMI to map each vertex to its corresponding B+-tree. Figure 4
illustrates an example of FMI. Since Y2 traversed both v1 and v2,
〈Y2, tY2-v1〉 and 〈Y2, tY2-v2〉 are the leaf entries inBTv1 andBTv2 ,
respectively.

Let |Υ| and |Y |max denote the number and the maximum length
of the trajectories in Υ, respectively. We can easily derive that the
storage space consumed by FMI is O(|Υ| × |Y |max).

Algorithm 2 illustrates the process of footmark graph construc-
tion using FMI. FMI-Search(vd, T) (line 2) is the searching process
in FMI. Let Υ(vd,T) denote the set of all the trajectories arriving at
vd during T . Given vd and T , FMI-Search(vd, T) returns the id’s
of all the trajectories in Υ(vd,T) via searching BTvd . To calcu-
late the footmarks, we further examine the elements of each Y ∈
Υ(vd,T) (line 3–11). Besides, we build a |V (G)| × |V (G)| matrix
FG whose entries are initialized to zeros. For each newly acquired

edge (vid, vid′) ∈ Ỹ , the corresponding entry FG[vid][vid′] is
incremented by 1 (line 10). In this way, we calculate and record the
edge weights of the target footmark graph in FG which is finally
returned as the output.

717

Algorithm 2: FMI-FG(vd, T)

begin

1 FG← |V (G)| × |V (G)| matrix with all entries zeros ;
2 TRID ← FMI-Search(vd, T) ;
3 for each tid ∈ TRID do

4 Y ← GetTraj(tid) ;
5 (vid, t)← the first element of Y ;
6 while t /∈ T do

7 (vid, t)← the next element of Y ;

8 while vid 6= vd do

9 (vid′, t′)← the next element of Y ;
10 FG[vid][vid′]← FG[vid][vid′] + 1 ;
11 (vid, t)← (vid′, t′) ;

12 return FG ;

Let Υvd denote the set of all the trajectories traversing vd. Then
the cost of FMI-Search(vd, T) is O(log(|Υvd |) + |Υ(vd,T)|). Af-
ter fetching the trajectories from disk, the algorithm calculates the
footmark graph in O(|Υ(vd,T)| × |Y |max) time. Note that the
performance bottleneck of Algorithm 2 is the I/O cost caused by
trajectory fetching in GetTraj(tid) (line 4). Specifically, for each
returned tid, the corresponding trajectory needs to be transferred
from the disk, incurring |Υ(vd,T)| random page reads in total.

4.2 Containment-Based Footmark Index
Although FMI can prune all the trajectories not in Υ(vd,T), it

incurs |Υ(vd,T)| page accesses. To further reduce the number of
random reads, we improve FMI by organizing the involved trajec-
tories into different groups. In each group, the front part of each
trajectory Y before reaching vd (including vd), denoted as Y∗–vd ,
is ‘contained’ by a unique ‘dominant’ trajectory. As a result, we
only need to fetch the ‘dominant’ trajectory and calculate the foot-
marks of the contained ones by simply recording their starting lo-
cations w.r.t. the ‘dominant’ trajectory. We refer to this new index
as Containment-Based Footmark Index (CFMI).

DEFINITION 10 (vd-CONTAINMENT). For two trajectories Y
and Y ′ in Υvd , if Y∗–vd .P is a sub-path of Y ′

∗–vd
.P , then Y is vd-

contained by Y ′. In particular, if Y∗–vd .P 6= Y ′

∗–vd
.P , then Y is

strictly vd-contained by Y ′.

DEFINITION 11 (vd-DOMINANT). A trajectory Y ∈ Υvd is

vd-dominant if there exists no Y ′ ∈ Υvd such that Y is strictly

vd-contained by Y ′.

If there are multiple vd-dominant trajectories inΥ which are vd-
contained by each other, we pick one of them as vd-dominant and
treat the rest as normal trajectories. As such, each Y ∈ Υd is vd-
contained by exactly one vd-dominant trajectory. Consider the ex-
ample in Figure 4. We have Υv2 = {Y1, Y2}, Y1 ∗–v2 .P = v6 →
v7 → v3 → v4 → v2, and Y2 ∗–v2 .P = v3 → v4 → v2. Ob-
viously, Y2 is v2-contained by Y1 and Y1 is v2-dominant in Υv2 .
This means that Y2 follows the sub-path of Y1 when traveling to

v2. Hence, we only need to fetch Y1 to calculate both Ỹ1 and Ỹ2

by simply recording the starting location of Y2 in Y1. Similarly, Y2

and Y4 are both v1-dominant in Υv1 .
The basic idea of CFMI is to try to adopt the vd-dominant trajec-

tories to calculate Υ̃. This is motivated by the following two obser-
vations. First, the number of the vd-dominant trajectories in Υvd

tends to be much smaller than |Υvd |. In other words, the path to

v1

v2

BTv1

BTv2

Table

Y4,tY4-v8,tY4-v1,Y4,1 Y2,tY2-v3,tY2-v1,Y2,1 Y3,tY3-v5,tY3-v1,Y2,4

Y1,tY1-v6,tY1-v2,Y1,1 Y2,tY2-v3,tY2-v2,Y1,3

Y2

Y4

v1-Dom

5

2

Y1

v2-Dom

5

Figure 5: An example of CFMI

vd taken by a vd-dominant trajectory is usually (partially) followed
by many other trajectories. As we will show in Section 6, this is
indeed the case in many real-world scenarios. Second, the range of
T is often much larger than the time spans of the trajectories. This
means that the starting time of most of the trajectories in Υ(vd,T)

are within T . Thus, we only need to fetch their vd-dominant trajec-
tories to calculate the corresponding footmarks.

CFMI improves the structure of each B+-tree in FMI. Specifi-
cally, each leaf entry of BTvi is in the following new form:

〈tid, ts, ta, did, sloc〉 ,

where ts is the starting time of trajectory tid, did is the id of the
vi-dominant trajectory of trajectory tid, and sloc is the starting
location of trajectory tid in trajectory did. Besides, we keep a table
vi-Dom for each BTvi , in which we record the length of Y∗–vi .P
for each vi-dominant trajectory Y .

Figure 5 illustrates the CFMI for the example in Figure 4. Con-
sider BTv2 . Since Y1 is the v2-dominant trajectory, its did equals
to its tid. Besides, the sloc of Y2 is 3 since the starting location of
Y2, i.e., v3, is the third location traversed by its v2-dominant tra-
jectory Y1. In v2-Dom, the length of Y1 ∗–v2 .P is recorded, which
equals to the number of the vertices in Y1 ∗–v2 .P .

Now, we use this example to illustrate the process of the foot-
mark graph construction (Algorithm 3). Suppose the destination is
v1 and only Y2 and Y3 arrive at v1 during T . Then CFMI returns
two sets via searching BTv1 and v1-Dom (line 2): 1) TRREC =
{(tid, ts, did, sloc)}, which records the information of trajecto-
ries in Υ(vd,T), and 2) DOM = {(did, len)}, which records the
did’s appeared in TRREC and their corresponding values in v1-
Dom. In this example, TRREC contains two elements, namely
(Y2, tY2-v3 , Y2, 1) and (Y3, tY3-v5 , Y2, 4). AndDOM contains one
element, namely (Y2, 5). Note that Y4 is not in DOM because it
is not returned as a did in any elements of TRREC. To calculate
the footmarks, we create an array with length len for each entry
(did, len) in DOM and organize them in a structure DA (line 3–
6). Initially, the elements in each array are set to zeroes. In this
example, DA contains only one array DA.Y2 with length 5. Next,
for each (tid, ts, did, sloc) in TRREC, we examine whether ts
is in T . Assume that this is true for both Y2 and Y3. Then we get
Y2.did and Y3.did, both of which point to Y2. Further, we find
the array DA.Y2 and increment the values of DA.Y2[Y2.sloc] and
DA.Y2[Y4.sloc] by one (line 10), respectively. Note thatDA.Y2[i] =
k means that the sub-path of Y2.P from the ith vertex to v1 has
been traversed by k trajectories during T . In this way, we record
the footmarks of the trajectories in the arrays ofDA.

Then, we adoptDA.Y2 = [1, 0, 0, 1, 0] to calculate the footmark
graph. Specifically, we fetch Y2 from disk and do the following cal-
culation (line 11-21). Since DA.Y2[1] = 1, the first edge (v3, v4)
of Y2.P has been traversed once. Thus, FG[v3][v4] = 1. Since

718

Algorithm 3: CFMI-FG(vd, T)

begin

1 FG← |V | × |V | matrix with all entries zeros ;
2 (TRREC,DOM)← CFMI-Search(vd, T) ;
3 DA← ∅ ;
4 for each (did, len) ∈ DOM do

5 create arrayDA.did[len] with all entries zeros ;
6 DA← DA ∪DA.did[len] ;

7 for each (tid, ts, did, sloc) ∈ TRREC do

8 if ts /∈ T then

9 Modify-FG(tid) ;
else

10 DA.did[sloc]← DA.did[sloc] + 1 ;

11 for each (did, len) ∈ DOM do

12 Y ← GetTraj(did) ;
13 vid← the first location of Y.P ;
14 k ← 1, w ← 0 ;
15 while vid 6= vd do

16 vid′ ← the next location of Y.P ;
17 if DA.did[k] 6= 0 or w 6= 0 then

18 w ← w +DA.did[k] ;
19 FG[vid][vid′]← FG[vid][vid′] + w ;

20 k ← k + 1 ;
21 vid← vid′ ;

22 return FG ;

DA.Y2[2] = 0 and DA.Y2[3] = 0, no more trajectories have tra-
versed the next two edges. We have FG[v4][v2] = FG[v2][v5] =
1. Besides, DA.Y2[4] = 1 means that one more trajectory has tra-
versed the 4th edge. It follows that FG[v5][v1] = 2. Since v1 is
reached, the calculation is over. Note that there are a small portion
of trajectories whose starting time is not in T . To record their foot-
marks in FG, we read each of them from the disk and follow the
lines 4–11 in Algorithm 2 (i.e., Modify-FG(tid) in line 9).
Compared with FMI, CFMI calculates DOM in an extra cost

of O(|Υ(vd,T)|log|Υ(vd,T)|). However, CFMI is more preferable
due to two performance gains. First, instead of fetching each in-
volved trajectories from the disk, CFMI only fetches their domi-
nant ones. Random page reads are therefore largely reduced. Sec-
ond, instead of checking the elements for each involved trajectory,
CFMI records their sloc’s in the arrays and examines the dominant
ones instead. Thus, the performance of computation is improved.

5. SEARCHING THE TPMFP
So far, we have constructed the footmark graph Gf w.r.t. Ω =

(G,Υ, vs, vd, T), where each edge (vi, vj) in Gf is associated
with a positive weight wij . The value of wij stands for the num-
ber of the trajectories in Υ that have reached vd via edge (vi, vj)
during T . Given Gf , we now proceed to the problem of searching
the MFP from vs to vd on Gf , namely the TPMFP w.r.t. Ω. In this
section, we first prove that the MFP is a simple (acyclic) path on
Gf (Lemma 1 and Lemma 2). Base on this result, we then demon-
strate that the problem has a recurrence structure that can be solved
by dynamic programming (Lemma 3). Finally, we propose an effi-
cient MFP searching algorithm to deal with sequence-valued path
frequencies. Note that our algorithm has a similar structure to the
Bellman-Ford algorithm.

LEMMA 1. Let u v denote a path from u to v. Suppose

P c = vs vk vk vd is a path with cycles on Gf . We have

F (P) ≻ F (P c), where P is the resulting path after removing the

portion of P c between consecutive visits to vk.

PROOF. Let P c
vk

be the cycle vk vk on P c and w∗ the first
component of F (P c

vk
). Let F (P) = (w1, . . . , wn). Thus, w1 ≤

· · · ≤ wn. Consider the following three cases:

• w∗ < w1: in this case, w∗ is the first component of F (P c)
as well. Since w1 is the first component of F (P), we have
F (P) ≻ F (P c).

• w1 ≤ w∗ < wn: let wi ∈ F (P), 1 < i ≤ n, such that
wi−1 ≤ w∗ < wi. Thus, the first i − 1 components of
F (P c) are the same as those of F (P). Note that w∗ and
wi are the ith elements of F (P c) and F (P), respectively.
Hence F (P) ≻ F (P c).

• wn ≤ w∗: in this case, F (P) is the prefix of F (P c). Hence
F (P) ≻ F (P c).

In summary, we have F (P) ≻ F (P c).

LEMMA 2. Given Gf w.r.t. Ω, there exists an MFP from vs to

vd that is simple, i.e., has at most |Vf | − 1 edges.

PROOF. Since adding a cycle does not make a path more fre-
quent, the vs–vd MFP P ∗ with the fewest number of edges does
not repeat any vertex. If P ∗ did repeat v, we could remove the
cycle v v, resulting in a more frequent path with less edges.

Let F ∗(vs, i) be the frequency of the vs–vd MFP using at most i
edges. By Lemma 2, the frequency of the vs–vd MFP isF ∗(vs, |Vf |−
1). Let P ∗ be the vs-vd MFP. If P ∗ uses at most i− 1 edges, then

F ∗(vs, i) = F ∗(vs, i− 1) .

Besides, by Theorem 2, if P ∗ uses i edges and the first edge is
(vs, v), we have

F ∗(vs, i) = (wvsv) + F ∗(v, i− 1) ,

where the operator ‘+’ is defined as follows:

• If the two inputs are non-decreasing sequences of positive
integers, “+” merges them into a non-decreasing sequence.
For example: (20) + (5, 20) = (5, 20, 20);

• If one input is ∅, then the other input is returned. If both
inputs are ∅’s, then ∅ is returned. For example: ∅+(5, 20) =
(5, 20);

• If one input is #, then # is returned. For example: # +
(5, 20) = #.

We use ∅ and# to represent the frequencies of empty path (vs =
vd) and null path, respectively. For completeness, we define ∅ and
as the highest and the lowest ranked path frequencies, respec-
tively.

Let Z = (F1, F2, . . . , Fn) be an ordered sequence of path fre-
quencies under the � relation, namely F1 � F2 � · · · � Fn.
Moreover, we define the maximum function over Z as max(Z) =
F1. Thus, we can recursively express F ∗(vs, |Vf | − 1) in smaller
sub-problems.

LEMMA 3. Given Gf = (Vf , Ef), if i > 0, then we have

F ∗(vs, i) = max(F ∗(vs, i−1), max
(vs,v)∈Ef

((wvsv)+F ∗(v, i−1))) .

719

Algorithm 4:MFP(vs, Gf = (Vf , Ef))

begin

1 for each u ∈ Vf do

2 if u = vd then

3 u.ξ ← ∅ ;

4 else

5 u.ξ ← #, u.suc← null ;

6 P ∗ ← null ;
7 if vs ∈ Vf then

8 for i← 1 to |Vf | − 1 do

9 for each edge (u, v) ∈ Ef do

10 if (wuv) + v.ξ � u.ξ then
11 u.ξ ← (wuv) + v.ξ ;
12 u.suc← v ;

13 create P ∗ by following the successors from vs to vd ;

14 return P ∗ ;

Based on this recursive formula, we design a dynamic program-
ming algorithm to calculate MFP (Algorithm 4). In particular, for
each u ∈ Vf , we use u.ξ to record F ∗(u, i) found so far. Initially,
we set u.ξ = #, if u 6= vd, and u.ξ = ∅, otherwise (line 1–5).
This means that the u–vd MFP using zero edge does not exist un-
less u = vd. To help with recovering theMFP, we maintain the next
vertex of u in the u–vd MFP (found in every step) in u.suc. At the
beginning, we set u.suc = null (line 5). Then, for i iterates from
1 to |Vf | − 1 (from line 7), we calculate the u–vd MFP using the
recurrence formula in Lemma 3. The inner for loop (from line 8) is
used to calculate the value ofmax(vs,v)∈Ef

((wvsv)+F ∗(v, i−1))
and update u.ξ as well as u.suc if the u–vd MFP is changed. Fi-
nally, we return the vs–vd MFP by sequentially retrieve the vertices
along the successor links from vs to vd.
The correctness of Algorithm 4 follows directly by induction

from the recursive formula in Lemma 4. Assume that the aver-
age number of vertices of all the MFP to vd is α. Then Algo-
rithm 4 calculates the vs–vd MFP in time O(α|Vf ||Ef |) and re-
quires O(α|Vf |) working memory (note that α≪ |Vf |).
In real scenarios, one may start from a position along an edge

instead of a vertex, or some vertex via which no trajectories has
traversed to the specified destination. One possible solution is to
retrieve this position’s k-nearest neighbors that are inGf , calculate
the MFP to vd from these k vertices, and return the most frequent
one. Note that k is a user-specified parameter. This augmented
algorithm has the same computational complexity as the original
one.

6. EVALUATION
We use a real dataset to conduct the experiments. In this section,

we first describe the dataset, the experiment environment and some
implementation details. Then we analyze the effectiveness of the
TPMFP query and the differences between TPMFP and MPR [3]
by concrete examples. Finally, we present the evaluation results of
the efficiency of our proposed indexes and algorithms.

6.1 Experiment Settings

6.1.1 Dataset

We conduct our experiments on a real dataset containing over 0.5
billion GPS records. These GPS records are collected from around

6,000 taxies in Shanghai in 2007. Along with time and location,
each record has an attribute indicating whether the taxi is empty
or occupied at that time. We use this attribute to extract mean-
ingful trips of passengers and treat each trip as a single trajectory.
This preprocessing technique is also used in [32]. Then we per-
form a specially tuned map-matching algorithm derived from [18]
to align all trajectories to Shanghai’s digital map which contains
22,180 vertices and 65,510 edges. After map-matching, each tra-
jectory is represented in the form defined in Section 2.

The preprocessed dataset consists of 11,547,611 trajectories. The
total number of vertices is 245,276,717 and the average trajectory
length (in terms of the number of vertices) is 21. For each trajec-
tory, the storage size of the trajectory id, the time and the vertex
id is 18 bytes, 8 bytes and 4 bytes, respectively. We can see that
the dataset is very large and that the all-in-memory techniques are
no longer applicable. Since some algorithms may use too much
memory or take too long to finish, we also create two subsets of
the original data containing the trajectories of a month and a day,
respectively. For clarity, we name these datasets as Year Dataset,
Month Dataset and Day Dataset. A summary of the datasets is
given in Table 2.

Table 2: Summary of Datasets

Dataset Name No. of Trajectories Total Length Size (MB)

Year Dataset 11,547,611 245,276,717 3,335

Month Dataset 1,650,134 35,619,454 484

Day Dataset 54,579 1,217,890 17

6.1.2 Implementation

We implement all our algorithms in Java. The FMI and CFMI
indexes are stored as regular files. To handle big datasets, we de-
velop a compact file format optimized for both sequential full scan
and single trajectory retrieval.

To compare with MPR, we also implement the related algorithms
in [3]. As we have a digital map on hand, we skip the steps of
generating a road network from raw trajectories. We believe this
change is acceptable as it makes the results more realistic. For our
implementation of MPR, most algorithms are written in Java except
that matrix operations are written in R. We do so because R is much
more efficient than Java in manipulating matrices.

6.1.3 Experiment Environment

We perform all evaluations using a single server. It has a quad-
core Intel(R) Xeon(R) E5506 CPU (2.13GHz), 12GB memory and
10,000RPM sever-level hard disks. The operating system is Linux
2.6.32 x86_64 and the Java VM version is 1.7.0_4 64-Bit.

6.2 Effectiveness
To evaluate the effectiveness, we compare the results of four path

finding queries, namely TPMFP (or MFP when T is fixed), MPR
(Most Popular Route), STP (shortest path) and LRS (path with the
least number of road segments). LRS represents the paths with
minimum number of hops and it can be easily calculated using any
shortest path algorithm by setting all edge weights to 1. Note that
the calculations of STP and LRS do not need any trajectories. For
TPMFP and MPR, if not otherwise specified, we use Year Dataset
and the time period is fixed to the whole year of 2007 (as if T is
[0,+∞)).

6.2.1 General Comparison

The very first question we are curious about is whether these
queries always find the same paths. To examine this, we fix the des-

720

MPR
MFP

S1

D1

(a) Case 1

MPR

MFP

S2

D2

M1

M4

M3

M2

(b) Case 2

MPR

MFP

D3

S3

M6

M5

(c) Case 3

MFP
Before Sep.

2007

S4

D4M7

M8

MFP
After Sep.

2007

(d) Case 4

Figure 6: Examples illustrating the effectiveness of TPMFP

tination and perform the above path finding algorithms over Month
Dataset with all possible source vertices. The relations between
MFP, MPR and STP are shown in Figure 7(a). We can see that over
80% of the results are pairwise different, which implies that each
of them has unique significance and cannot be effectively replaced
by others. Another notable fact is that the number of MFPs match-
ing the STP is approximately twice the number of MPRs matching
the STP. We do not include LRS in this comparison because LRS
always has multiple resulting paths.
As we have mentioned before, the MPR algorithm is prone to

select paths with fewer vertices. The reason is that the popularity
score of a path is the product of the weights (∈ [0, 1]) of all vertices
along the path. The experiment result also confirms this inference,
as is shown in Figure 7(b). There are over 90% of MPRs are also
LRSs. In other words, even if a path is taken by most travelers, it
has little chance to be chosen by the MPR algorithm if it contains
many more vertices than other less frequently used paths. In con-
trast, there are less than 10% of the MFPs overlapped with LRSs.
Therefore, we can safely conclude that MFP is much more length-

insensitive than MPR.

6.2.2 Case Study

Below we conduct several case studies to exhibit the effective-
ness of the TPMFP query. One thing worth noting is that there is
neither any ground truth of truly frequent paths nor any widely-
accepted definitions of it, the analysis below might be more or less
subjective. Despite that, we believe they do give some strong argu-
ments of why the TPMFP query are useful.
In Figure 6, the first three examples use Month Dataset and the

last example uses Year Dataset.
In Figure 6(a), the MPR consists only a few number of road seg-

ments, most of which are viaducts or high-speed roads; while the
MFP consists of many road segments of regular roads. Though in
this case the MPR may be faster than MFP, we notice that the MFP
is more direct and its travel distance is much smaller than that of

Total

All are pairwise different

MPR == STP

MFP == STP

MFP == MPR

MFP == MPR == STP

N
u
m

b
e
r

o
f
q
u
e
ry

 r
e
s
u
lt
s

0
5
0
0

1
5
0
0

2
5
0
0

2808

2296

181
396

183 124

(a) vs. shortest path

Total

MPR.length == LRS.length

MFP.length == LRS.length

STP.length == LRS.length

N
u
m

b
e
r

o
f
q
u
e
ry

 r
e
s
u
lt
s

0
5
0
0

1
5
0
0

2
5
0
0

2808
2546

217 214

(b) vs. least road segments

Figure 7: Statistics of query results w.r.t a fixed destination

Day Dataset Month Dataset Year Dataset

Trajectory Data

FMI

CFMI with trajectory id

CFMI without trajectory id

Dominant trajectory table (in CFMI)

N
o

rm
a

liz
e

d
 S

iz
e

0
1

2
3

4
5

16
MB

29
MB

58
MB

38
MB

11
MB

0.47
GB

0.83
GB

1.49
GB

0.92
GB

0.15
GB

3.26
GB

5.69
GB

9.86
GB

5.94
GB

0.68
GB

Figure 8: Index size

the MPR. Moreover, we find that there does exist several trajecto-
ries traveling along the MFP; whereas there is no trajectory travel-
ing along the MPR in Month Dataset. Based on these observations,
we believe most drivers would choose the more direct path as our
approach suggests.

In Figure 6(b), the MFP and the MPR have almost the same
travel distance. However, the MPR is much more winding than
the MFP and it contains many small roads. We cannot find any
good reason for a driver to enter the main road, leave at exit M1 a
very short time later, and then spend most of his/her trip on twisted
small roads. Indeed, we find that the MPR has one less vertex than
the MFP. In fact, this little difference plays a decisive role in the
MPR algorithm. If we increase the weight of an arbitrary vertex
along the MFP to 1, then the MPR algorithm will result in the same
path as the MFP. Another interesting observation is that the MFP is
the one through M3 instead of the one through M4 (which would
be a more direct path). By checking the data, we find out that there
is no significant difference between these two paths as the path fre-
quencies are close to each other. To demonstrate this, we perform
the TPMFP query with different time periods (e.g., different days
or weeks in the same Month Dataset) and find that they have fairly
equal chances of being returned as the MFP.

In Figure 6(c), the MPR contains too many twists and turns while
the shape of the MFP is much nicer. There is no clear reason mak-
ing us believe that many past travelers would take the former in-
stead of the latter. The interesting thing here is why the MFP turns

721

left at M5 instead of M6. We discover that the sub-path of the
MFP from S3 to M5 is a high-speed road and there is no exit at
M6. Therefore, most drivers would exit the high-speed road atM5

when traveling toD3.
We perform many TPMFP queries with various time periods and

try to discover the changes of the MFP. Figure 6(d) is a represen-
tative result, in which the MFP from S4 to D4 changes around
September 2007. By searching the web we discover that the road
betweenM7 andM8 is under construction before then. This exam-
ple demonstrates that time period-based MFP can be more useful
than MFP with a fixed time period.

6.3 Efficiency
In this section, we evaluate the performance of the indexes, the

footmark construction algorithms and searching the MFP on a foot-
mark graph.

6.3.1 Index Creation

The creation of FMI and CFMI consists of two steps. First, we
create a file for each vertex recording all the trajectories traversing
it. This step can be performed efficiently with a single pass of scan-
ning all trajectories. Second, we process each of the resulting files
to build FMI or CFMI. For FMI, it is sufficient to sort the records by
the arrival time and then pack a B+tree on disk. For CFMI, we use a
nested-loop algorithm to calculate the dominant trajectories before
building the index. Specifically, we first sort all the trajectories in
the same file by length in descending order. Then we iterate over
all these trajectories in the sorted order and mark a trajectory as a
dominant one if it is not dominated by any of the dominant trajecto-
ries found so far. For Year Dataset, the index creation time of FMI
and CFMI is 72 minutes and 127 minutes, respectively. Since we
only need to create the index once, the speed of the index building
algorithms is acceptable.

6.3.2 Index Size

Figure 8 shows the total storage size of different indexes. The
size of FMI is slightly smaller than twice of the data size. The
size of CFMI is about three times of the data size. Note that we
can further improve the space efficiency of CFMI by removing the
trajectory id’s in the tree structure because they are not used when
constructing footmark graphs using CFMI. As a result, the size of
CFMI is reduced by 40%. Moreover, we discover that the ratio of
the size of the dominant trajectory table in CFMI to the total size
of CFMI decreases as the data size grows.
Figure 9 illustrates the decreasing trend of the percentage of

dominant trajectories of a representative vertex as more trajectories
are added. The result shows that when there are 150,000 trajecto-
ries passing through the vertex, we only need to fetch 10% of the
trajectories from disk. Figure 10 shows the percentages of domi-
nant trajectories of all vertices. We observe that this ratio is below
0.2 for most vertices, especially when the vertex is traversed by a
relatively large number of trajectories (e.g., greater than 10,000).
For TPMFP queries over Year Dataset, the above results demon-
strate that CFMI can reduce the number of random disk accesses
by a factor of 5 compared with FMI.

6.3.3 Query Performance of TPMFP

The response time of an TPMFP query consists of two parts,
namely the time of constructing the footmark graph and the time of
searching the MFP in the footmark graph.
To evaluate the time of footmark graph construction, we com-

pare three algorithms including Algorithm 2, Algorithm 3 and an
algorithm that performs full scan on all trajectories. Moreover, we

10000 14000 18000

0
5
0
0

1
0
0
0

1
5
0
0

Graph size (number of edges)

R
e
s
p
o
n
s
e
 t
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Most Frequent Path
Bellman−Ford Shortest Path
Dijkstra Shortest Path

Figure 12: Performance of searchingMFP on a footmark graph

consider three memory modes. The Tiny-Dataset mode loads all
trajectories and indexes into memory to avoid any disk access. The
Small-Dataset mode loads all trajectories and part of the indexes
including all dominant trajectory tables (CFMI only) and all non-
leaf B+-tree nodes into memory. The Big-Dataset mode differs
from the Small-Dataset mode in that it does not load trajectories
into memory. In this experiment, we fix the destination and use
different time periods to vary the number of trajectories involved.
The performance of footmark graph construction on Month Dataset
is shown in Figure 13. We can see that the algorithm using CFMI
outperforms the other two in all cases. For both FMI and CFMI, the
footmark construction time is increasing linearly with the number
of trajectories.

The footmark construction time using CFMI on Year Dataset is
depicted in Figure 11. The destination is set to the busiest road in-
tersection, i.e., the vertex with the greatest number of trajectories
passed through. Therefore, the result can reflect the worst cases
among all possible queries. We can see that our algorithm takes
less than 40 seconds to construct the largest footmark graph, which
is fairly efficient for a dataset containing over 11.5 million trajec-
tories.

Once the footmark graph is created, the MFP searching algo-
rithm will be executed in memory. The performance of Algorithm 4
is only affected by the size of the graph, which is depicted in Fig-
ure 12. The result shows that searching MFP is slower than search-
ing the shortest path. The reason is that the computation complexity
of updating vertex status in the MFP algorithm is O(α), which is
higher than that in the other two algorithms (O(1)). However, for
big datasets, the performance of MFP searching algorithm is not
critical as the execution time of the whole TPMFP query is domi-
nated by the footmark construction.

6.3.4 TPMFP vs. Time Period-Based MPR

Since the original MPR algorithm does not deal with user-specified
time periods, it performs a lot of time-consuming pre-computations
and saves the results for future MPR queries. When dealing with
dynamic time periods, these pre-computations must be performed
in an online manner, which leads to extremely slow response time.
For example, we conduct a rough comparison using Month Dataset
with T set to the whole month. The response time of ‘time period-
based MPR’ is around 200 seconds, while the TPMFP algorithm
takes less than 1 second.

722

0 50000 100000 150000

0
.2

0
.4

0
.6

0
.8

1
.0

Number of trajectories added

P
e

rc
e

n
ta

g
e

 o
f

d
o

m
in

a
n

t
tr

a
je

c
to

ri
e

s

Figure 9: The decreasing trend of per-

centages of dominant trajectories

0e+00 2e+05 4e+05

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of trajectories

P
e

rc
e

n
ta

g
e

 o
f

d
o

m
in

a
n

t
tr

a
je

c
to

ri
e

s

Figure 10: Percentages of dominant

trajectories of all vertices

0e+00 2e+05 4e+05

0
1

0
0

0
0

3
0

0
0

0

Number of footmarks within T

R
e

s
p

o
n

s
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Figure 11: Footmark graph construc-

tion time using CFMI (Year Dataset)

0 10000 30000 50000

0
2

0
0

6
0

0
1

0
0

0

Number of footmarks within T

R
e

s
p

o
n

s
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
) Using CFMI

Using FMI

Full scan

(a) Tiny-Dataset Mode

0 10000 30000 50000

0
5

0
0

1
0

0
0

1
5

0
0

Number of footmarks within T

R
e

s
p

o
n

s
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
) Using CFMI

Using FMI

Full scan

(b) Small-Dataset Mode

0 10000 30000 50000

Number of footmarks within T

R
e

s
p

o
n

s
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

0
4

0
0

0
0

8
0

0
0

0
1

2
0

0
0

0 Using CFMI

Using FMI

Full scan

(c) Big-Dataset Mode

Figure 13: Footmark graph construction time using different approaches (Month Dataset)

7. RELATEDWORK
Finding the most desirable path has received tremendous research

interests for decades. The most popular topic in this area is short-
est path finding [6, 1, 22], which has been extensively studied for
over fifty years. If the weight on each edge represents travel time,
shortest path finding becomes fastest path finding. Time-dependent
shortest path problem [7, 13, 21] regards the travel time of an edge
as a single-valued function on time of day. To improve routing
services, new approaches [11, 29, 30] for fastest path finding are
proposed aiming at using user-generated GPS trajectories to esti-
mate the distribution of travel time on a given road network. Unlike
shortest/fastest path finding, our work studies the desirability of a
path from a different perspective, i.e., how frequently the path has
been taken during a certain time period.
Popular route searching [3, 27] is the most closely related work

to the TPMFP problem. Zaiben et al [3] are the first to study the
common routing preferences of the past travelers. Utilizing histor-
ical trajectory datasets, it proposes a novel popularity function for
path desirability evaluation. However, this method tends to favor
the paths with fewer vertices. Moreover, the most popular route
(MPR) may contain least frequent edges. The work in [27] aims at
finding top-k popular routes from uncertain trajectories. Assuming
that there is no map at hand, they focus on deriving routes from un-
certain trajectory data. They calculate the popularity of each edge
by simply counting the number of trajectories traversed it, without
considering whether they have passed through the specified desti-
nation. It is therefore not suitable for the application scenarios of
the TPMFP problem. Note that both of these works only consider
the fixed time range, while the TPMFP problem can be carried out
in arbitrary time periods specified by the users.

Hot route and trajectory pattern detection also try to reflect the
common routing behaviors of the past travelers. Informally, a hot
route is a path with heavy traffic. Various trajectory clustering
approaches [16, 15, 9, 14] can be utilized to discover hot routes.
In [24], an online algorithm is developed to detect the hot motion
paths that have been frequently traversed by the past travelers. Sim-
ilar to hot routes, trajectory patterns represent the frequent travel
behaviors in terms of both time and locations. Typical approaches
for trajectory pattern mining include T-pattern mining [10], peri-
odic pattern mining [19], interesting locations and travel sequences
mining [33], etc. Unlike the problem of TPMFP, these approaches
find the desired hot routes/trajectory patterns in a global manner
and no specific source and destination are considered. They are
therefore not suitable for finding the MFP from a specified location
to another.

Another relevant problem to our work is the management of
trajectory data. So far, a number of data access methods, which
are variants of R-tree [12], have been proposed for moving ob-
ject trajectories. Typical examples include 3D R-trees [26], MR-
trees [28], HR-trees [20], MV3R-trees [25], TB-trees [23], SETI [2],
TrajStore [4], FNR-trees [8] and MON-trees [5]. In particular,
FNR-trees and MON-trees are designed for indexing trajectories
that have already been matched to a road network. However, these
structures are not suitable for efficient footmark retrieving due to
two reasons. First, the query of footmarks is much more complex
than the ones (e.g., window/range queries and timestamp/interval
queries) that these structures are primarily designed for. Second,
they become inefficient when the results are very large. In our
work, we proposed special techniques (e.g., CFMI) to calculate
most of the results instead of fetching them all from disk.

723

8. CONCLUSION
In this paper, we study the problem of TPMFP, i.e, finding the

time period-based most frequent path. We propose a novel defini-
tion of TPMFP which satisfies three key properties, namely suffix-
optimal, length-insensitive and bottleneck-free. This is a new query
and the definition of TPMFP well reflects the people’s common
sense notion. Moreover, we devise a two-step framework to effi-
ciently perform TPMFP queries on very large trajectory datasets.
The first step is to construct a footmark graph which can be used
to calculate the frequencies of the candidate paths. To this end,
we propose two novel indexing schemes to reduce the number of
random disk accesses. The second step is to search the most fre-
quent path in the footmark graph and an efficient algorithm is pro-
posed. In addition, we conduct extensive experiments using a real
big trajectory dataset containing 11.5 million trajectories. The re-
sults demonstrate the effectiveness and the efficiency of our index
schemes and algorithms.

Acknowledgement

This research was supported in part by Hong Kong, Macao and Tai-
wan Science & Technology Cooperation Program of China under
Grant 2012DFH10010, Science and Technology Planning Project
of Guangzhou China under Grant 2012Y2-00030, Huawei Corp.
Contract YBCB2009041-27, Huawei Corp. Contract HWLB06-
15C03212/13PN, Hong Kong RGC GRF Project No.611411, Na-
tional Grand Fundamental Research 973 Program of China under
Grant 2012-CB316200, HP IRP Project, and Microsoft Research
Asia Grant.

9. REFERENCES

[1] R. Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16:87–90, 1958.

[2] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large
trajectory data sets with seti. In CIDR, 2003.

[3] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular
routes from trajectories. In ICDE, pages 900–911, 2011.

[4] P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore: An
adaptive storage system for very large trajectory data sets. In
ICDE, pages 109–120, 2010.

[5] V. T. De Almeida and R. H. Güting. Indexing the trajectories
of moving objects in networks*. Geoinformatica,
9(1):33–60, 2005.

[6] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959.

[7] B. Ding, J. X. Yu, and L. Qin. Finding time-dependent
shortest paths over large graphs. In EDBT, pages 205–216,
2008.

[8] E. Frentzos. Indexing objects moving on fixed networks. In
SSTD, pages 289–305, 2003.

[9] S. Gaffney and P. Smyth. Trajectory clustering with mixtures
of regression models. In SIGKDD, pages 63–72, 1999.

[10] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi.
Trajectory pattern mining. In SIGKDD, pages 330–339,
2007.

[11] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag.
Adaptive fastest path computation on a road network: a
traffic mining approach. In VLDB, pages 794–805, 2007.

[12] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[13] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest
paths on a road network with speed patterns. In ICDE, pages
10–, 2006.

[14] J.-G. Lee, J. Han, X. Li, and H. Gonzalez. Traclass:
trajectory classification using hierarchical region-based and
trajectory-based clustering. PVLDB, 1(1):1081–1094, 2008.

[15] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a
partition-and-group framework. In SIGMOD, pages
593–604, 2007.

[16] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic
density-based discovery of hot routes in road networks. In
SSTD, pages 441–459, 2007.

[17] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: mining relaxed
temporal moving object clusters. Proc. VLDB Endow.,
3(1-2):723–734, 2010.

[18] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang.
Map-matching for low-sampling-rate gps trajectories. In
ACM SIGSPATIAL GIS, pages 352–361, 2009.

[19] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. W. Cheung. Mining, indexing, and querying
historical spatiotemporal data. In SIGKDD, pages 236–245,
2004.

[20] M. A. Nascimento and J. R. O. Silva. Towards historical
r-trees. In SAC, pages 235–240, 1998.

[21] A. Orda and R. Rom. Shortest-path and minimum-delay
algorithms in networks with time-dependent edge-length. J.
ACM, 37(3):607–625, 1990.

[22] S. Pallottino and M. G. Scutella. Shortest path algorithms in
transportation models: classical and innovative aspects.
Equilibrium and advanced transportation modelling,
245:281, 1998.

[23] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel
approaches in query processing for moving object
trajectories. In VLDB, pages 395–406, 2000.

[24] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere,
M. Potamias, K. Mouratidis, and T. Sellis. On-line discovery
of hot motion paths. In EDBT, pages 392–403, 2008.

[25] Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access
method for timestamp and interval queries. In VLDB, pages
431–440, 2001.

[26] Y. Theodoridis, M. Vazirgiannis, and T. Sellis.
Spatio-temporal indexing for large multimedia applications.
In ICMCS, pages 441–448, 1996.

[27] L.-Y. Wei, Y. Zheng, and W.-C. Peng. Constructing popular
routes from uncertain trajectories. In ACM SIGKDD, pages
195–203, 2012.

[28] X. Xu, J. Han, and W. Lu. Rt-tree: An improved r-tree index
structure for spatiotemporal. SDH, pages 1040–1049, 1990.

[29] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with
knowledge from the physical world. In SIGKDD, pages
316–324, 2011.

[30] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and
Y. Huang. T-drive: driving directions based on taxi
trajectories. In SIGSPATIAL GIS, pages 99–108, 2010.

[31] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun. Where to
find my next passenger. In UbiComp, pages 109–118, 2011.

[32] Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban computing with
taxicabs. In UbiComp, pages 89–98, 2011.

[33] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining
interesting locations and travel sequences from gps
trajectories. InWWW, pages 791–800, 2009.

724

