R* Optimizer Validation and Performance Evaluation
for Distributed Queries

Lothar F. Mackert 1
Guy M. Lohman

IBM Almaden Research Center
K55-801, 650 Harry Road, San Jose, CA 95120-6099

Abstract

Few database query optimizer models have been validated against actual
performance. This paper extends an earlier optimizer validation and per-
formance evaluation of R* to distributed queries, i.e. single SQL statements
having tables at multiple sites. Actual R* message, 1/0, and CPU resources
consumed — and the corresponding costs estimated by the optimizer —
were written to database tables using new SQL commands, permitting
automated control from application programs for collecting, reducing, and
comparing test data. A number of tests were run over a wide variety of
dynamically-created test databases, SQL queries, and system parameters.
Both high-speed networks (comparable to a local area network) and
medium-speed long-haul networks (for linking geographically dispersed
hosts) were evaluated. The tests confirmed the accuracy of R*’s message
cost model and the significant contribution of local (CPU and 1/0) costs,
even for a medium-speed network. Although distributed queries consume
more resources overall, the response time for some execution strategies
improves disproportionately by exploiting both concurrency and reduced
contention for buffers. For distributed joins in which a copy of the inner
table must be transferred to the join site, shipping the whole inner table
dominated the strategy of fetching only those inner tuples that matched
each outer-table value, even though the former strategy may require ad-
ditional 1/0. Bloomjoins (hashed semijoins) consistently performed better
than semijoins and the best R* strategies.

1. Introduction

One of the most appealing properties of relational data bases is their

nonprocedural user interface. Users specify only what data is desired,
leaving the system optimizer to choose how to access that data. The
built-in decision capabilities of the optimizer therefore play a central role
regarding system performance. Automated selection of optimal access
plans is a rather difficult task, because even for simple queries there are
many alternatives and factors affecting the performance of each of them.

Optimizers model system performance for some subset of these alternatives,
taking into consideration a subset of the relevant factors. As with any
other mathematical mode!, these simplifications — made for modeling and
computational efficiency — introduce the potential for errors. The goal
of our study was to investigate the performance and to thoroughly validate
the optimizer against actual performance of a working experimental data-
base system, R* [LLOHM 85, which inherited and extended to a distributed
environment [SELI 80, DANI 82] the optimization algorithms of System
R [SELI 79]. This paper extends our earlier validation and performance
evaluation of local queries [MACK 86] to distributed queries over either
(1) a high-speed network having speeds comparable to a local-area network
(LLAN) or (2) over a medium-speed, long-haul network linking geograph-
ically dispersed host machines. For brevity, we assume that the reader is
familiar with System R [CHAM 81] and R* [LLOHM 85], and with the
issues, methodology, and results of that earlier study [MACK 86].

Permission to copy without fee all or part of this material is
granled provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

—149—

Few of the distributed optimizer models proposed over the last decade
[APER 83, BERN 81B, CHAN 82, CHU 82, EPST 78, HEVN 79, KERS
82, ONUE 83, PERR 84, WONG 83, YAO 79, YU 83] have been
validated by comparison with actual performance. The only known vali-
dations, for Distributed INGRES [STON 82] and the Crystal multicomputer
(LU 85], have assumed only a high-speed local-area network linking the
distributed systems. Also, the Distributed INGRES study focused primarily
on reducing response time by exploiting parallelism using table partitioning
and broadcast messages. In contrast, R* seeks to minimize total resources
c d, has not impl d table partitioning?, and does not presume
a network broadcast capability.

There are many important questions that a thorough validation should
answer:

Under what circumstances (regions of the parameter space) does the
optimizer choose a suboptimal plan, or, worse, a particularly bad plan?
To which parameters is the actual performance most sensitive?

Are these parameters being modeled accurately by the optimizer?
What is the impact of variations from the optimizer’s simplifying as-
sumptions?

Is it possible to simplify the optimizer’s model (by using heuristics, for
example) to speed up optimization?

What are the best database statistics to support optimization?

Performance questions related to optimization include:

« Are there possible impro in the impl ation of distributed
join techniques?
« Are there alternative distributed join techniques that are not implemented

but look promising?

The next section gives an overview of distributed compilation and optimi-
zation in R*. Section 3 discusses how R* was instrumented to collect
optimizer estimates and actual performance data at multiple sites in an
automated way. Section 4 presents some prerequisite measurements of
the cost component weights and the measurement overhead. The results
for distributed joins are given in Section 5, and suggestions for improving
their performance are discussed in Section 6. Section 7 contains our
conclusions.

2. Distributed Compilation and Optimization

The unit of distribution in R* is a table and each table is stored at one
and only one site. A distributed query is any SQL data manipulation
statement that references tables at sites other than the guery site, the site
to which an application program is submitted for compilation. This site
serves as the master site which coordinates the optimization of ail SQL
statements embedded in that program. For each query, sites other than
the master site that store a table referenced in the query are called
apprentice sites.

In addition to the parameters chosen for the local case:

1 Current address: University of Erlangen-Niirnberg, IMMD-IV, Martensstrasse
3, D-8520 Erlangen, West Germany

2 Published ideas for horizontal and vertical pactitioning of tables have not been
implemented in R*.

Kyoto, August, 1986

(1) the order in which tables must be joined
(2) the join method (nested-loop or merge-scan), and
(3) the access path for each table (e.g., whether to use an index or not)

optimization of a distributed query must also choose for each join®:

(4) the join site, i.e. the site at which each join takes place, and,
(5) if the inner table is not stored at the join site chosen in (4), the
method for transferring a copy of the inner table to the join site:
(5a) ship whole: ship a copy of the entire table once to the join site,
and store it there in a temporary table; or
(5b) fetch matches (see Figure 1): scan the outer table and sequentially
execute the following procedure for each outer tuple:
1. Project the outer table tuple to the join column(s) and ship this
value to the site of the inner table.
2. Find those tuples in the inner table that match the value sent
and project them to the columns needed.
3. Ship a copy of the projected matching inner tuples back to the
join site.
4. Join the matches to the outer table tuple.
Note that this strategy could be characterized as a semijoin for each
outer tuple. We will compare it to semijoins in Section 6.

If a copy of an outer (possibly composite) table of a join has to be moved
to another site, it is always shipped in its entirety as a blocked pipeline
of tuples [LOHM 85].

Compilation, and hence optimization, is truly distributed in R*. The
master’s optimizer makes all infer-site decisions, such as the site at which
inter-site joins take place, the method and order for transferring tuples
between sites, etc. Intra-site decisions (e.g. order and method of join for
tables contiguously within a single site) are only suggested by the master
planner; it delegates to each apprentice the final decision on these choices
as well as the generation of an access module to encode the work to be
done at that site {DANT 82].

Optimization in R* seeks to minimize a cost function that is a linear
combination of four components: CPU, [/0, and two message costs: the
number of messages and the total number of bytes transmitted in all
messages. /0O cost is measured in number of transfers to or from disk,
and CPU cost is measured in terms of number of instructions:

R‘_tolal_cosl = WCPU * (#_insu—s) + u’l/O * (#_I/Os)
+Wusg * #_msgs) + Wyyr * (#__bytes)

Unlike System R, R* maintains the four cost components separately, as
well as the total cost as a weighted sum of the components [LOHM 85],
enabling validation of each of the cost components independently. By
assigning (at database generation time) appropriate weights for a given
hardware configuration, different optimization criteria can be met. Two
of the most common are time (delay) and money cost [SELI 80]). For
our study we set these weights so that the R* total cost estimates the

DEPARTMENTS
SAN [oo [toc Juer DNO [NANE
Jose ¢ . | 47 | ek
gz @Jnlnntdﬂs 47 [Sm \
@ Ship 1 join-tolum valve @Shlp bark projected matches
EMPLOYEES
N DNO | NAME |ADDRESS | PHONE
N P e
seml-join
Yorx a7 =
7 IAK
47 | 5AM
4

Figure 1: "Fetch-matches transfer strategy for joining at site San Jose outer
table DEPARTMENTS to inner table EMPLOYEES.

—150—

total time consumed by all resources, in milliseconds. Since all the sites
in our tests had equivalent hardware and software configurations, identical
weights were used for each site.

3. Instrumentation

An earlier performance study for System R [ASTR 80] demonstrated that
extracting performance data using the standard database trace and debug-
ging facilities required substantial manual interaction, severely limiting the
number of test cases that could be run. Since we wanted to measure
performance under a wide variety of circumstances, we added instrumen-
tation that would automate measurements to a very high degree. The
general design of this instrumentation and its application for the evaluation
of local queries is described in [MACK 86], so that in this paper we
recall only the main ideas and confine our discussion to its distributed
aspects. Principals of our design were:

1. Add to the SQL language three statements for test control and per-
formance monitoring ‘which can be executed from an application pro-
gram as well as interactively.

2. Develop pre-compiled application programs for automatically (a) test-
ing queries using the SQL statements of (1) above, and (b) analyzing
the data collected by step (a).

3. Store the output of the SQL statements of (1) and the application
programs of (2) in database tables in order to establish a flexible,
powerful interface between (1), (2a), and (2b).

We concentrate here on the first item — the SQL-level measurement tools
— whose implementation was most complicated by the distribution of
tables at different sites.

3.1. Distributed EXPLAIN

The EXPLAIN command writes to user-owned PLAN__TABLEs infor-
mation describing the access plan chosen by the optimizer for a given
SQL statement, and its estimated cost [RDT 84]. For a given distributed
query, no single site has the complete access plan: the master site has the
inter-site decisions and each apprentice has its local intra-site decisions.
Hence the R* EXPLAIN command was augmented to store each apprentice
site’s plan in a local PLAN__TABLE, and the test application program
was altered to retrieve that information from each apprentice’s
PLAN__TABLE.

3.2. Distributed COLLECT COUNTERS

This new SQL statement collects and stores in a user-owned table the
current values of some 40 internal counters in the RSS* component (e.g.,
counts of disk reads and writes, lookups in the buffer, etc.), which R*
inherited from System R, and some newly implemented counters of the
communications component DC*. COLLECT COUNTERS automatically
collects a (pre-defined) subset of these counters at all sites with which
the user currently has open communication sessions, returns those counters
to the master site, and inserts into a special user-owned table
(COUNTER__TABLE) one tuple for each distinct counter at each site.
Each counter value is tagged with its name, the component (RSS* or
DC*) and site that maintains the counter, a timestamp, the invoking
application program name, and an optional user-supplied sequence number.

The implementation of the COLLECT COUNTERS statement is dependent
upon the mechanism for distributed query execution in R* [LIND 831].
The master site establishes communication sessions with all sites with
which it has to have direct communication, and spawns children processes
at these sites. The children may in turn establish additional sessions and
spawn other children processes, creating a tree of processes that may
endure through multiple transactions in an application program. Since
descendant processes may spawn processes at any site, the tree may contain
multiple descendant processes at a single site on behalf of the same master
process (loopback). For collecting the counters from all sites that are
involved in the current computation, we traverse the user's process tree.
For each process, counters are collected at that process’ site and are

3 The site at which any nested query (subguery) is applied must also be determined
{LOHM 841, but consideration of subqueries is omitted from this paper to
simplify the presentation.

returned to the master site. At the master site, each counter value is
handled in the following way:

If we have not yet inserted a tuple into the COUNTER_ TABLE for
the given counter from the given site (while executing the COLLECT
COUNTERS statement of interest), the counter is inserted into the
COUNTER__TABLE.

RSS* counters from the given site that have already been inserted into
the user's COUNTER__TABLE are discarded (loopbacks will cause
redundant delivery of certain counters), because RSS* counters are
database-site-specific.

« DC* counters are process-specific. If there is already a row in the
COUNTER_TABLE for the given DC* counter at the given site, the
counter value is added to the counter value in that row.

To be sure that sessions had been established with all sites relevant to a
particular test, the test application program was aitered to run the test
sequence once before the first COLLECT COUNTERS statement.

3.3. FORCE OPTIMIZER

As in the local validation study, we had to be able to overrule the
optimizer’s choice of plan, to measure the performance of plans that the
optimizer thought were suboptimal. This was done with the FORCE
OPTIMIZER statement, which was implemented in a special test version
of R* only. The FORCE OPTIMIZER statement chooses the plan for
the next SQL data manipulation (optimizable) statement only. The user
specifies the desired plan number, a unique positive integer assigned by
the master site’'s optimizer to each candidate plan, by first using the
EXPLAIN statement (discussed above) to discover the number of the
desired plan. Apprentice optimization can be forced by simply telling each
apprentice to utilize the optimization decisions recommended by the mas-
ter’s optimizer in its global plan.

3.4. Conduct of Experiments

Our distributed query tests were conducted in the same way and in the
same environment as the local query tests [MACK 86], only with multiple
database sites. All measurements were run at night on two totally unloaded
IBM 4381’s connected via a high-speed channel. Each site was initialized
to provide 40 buffer pages of 4K bytes each, which were available exclu-
sively to our test applications. This is approximately equivalent, for ex-
ample, to a system with each site running 5 simultaneous transactions that
are competing for 800K bytes of buffer space. The same effects of buffer
size limitations that were investigated in [MACK 86] also apply to dis-
tributed queries, and thus are not.discussed further in this paper. In order
to vary database parameters systematically, synthetic test tables were gen-
erated dynamically, inserting tuples whose column values were drawn
randomly from separate uniform distributions. For example, the join-
columns’ values were drawn randomly from a domain of 3000 integer
values when generating the tables. All tables had the same schema: four
integer and five (fixed) character fields. The tuples were 66 bytes long,
and the system stored S0 of them on one page.

Each test was run scveral times to ensure reproduceability of the results,
and to reduce the variance of the average response times. However, the
reader is cautioned that these measurements are highly dependent upon
numerous factors peculiar to our test environment, including hardware and
software configuration, database design, etc. We made no attempt to
"tune" these factors to advantage. For example, each test table was
assigned to a separate DBSPACE, which tends to favor DBSPACE scans.

What follows is a sample of our results illustrating major trends for
distributed queries; space considerations preclude showing all combinations
of all parameters that we examined. For example, for joins we tested a
matrix of table sizes for the inner and outer tables ranging from 100 to
6000 tuples (3 times the bulfer size), varying the projection factor on the
joined tables (50% or 100% of both tables) and the availability of totally
unclustered indexes on the join columns of the outer and/or inner tables.
Since unclustered index scans become very expensive when the buffer is
not big enough to hold all the data and index pages of a table, the ratio
between the total number of data and index pages of a table to the number
of pages in the buffer is more important for the local processing cost than

—151—

the absolute table size [MACK 85]. Although these tests confirmed the
accuracy of the overwhelming majority of the optimizer’s predictions, we
will concentrate here on those aspects of the R* optimizer that were
changed or exhibited anomalous behavior.

4, General Measurements

Several measurements pertaining to the optimizer as a whole were prereq-
uisite to more specific studies. These are discussed briefly below.

4.1. Cost of Measurements

The COLLECT COUNTERS statement, the means by which we measured
performance, itself consumes system resources that are tabulated by the
R* internal counters. For example, collecting the counters from remote
sites itself uses messages whose cost would be reflected in the counters
for number of messages and number of bytes transmitted. The resources
consumed by the COLLECT COUNTERS instrumentation was determined
by running two COLLECT COUNTERS statements with no SQL state-
ments in between, and reducing all other observations by those resources.

4.2. Component Weights

The R* cost component weights for any given cost objective and hardware
configuration can be estimated using "back of the envelope” calculations.
For example, for converting all components to milliseconds, the weight for
CPU is the number of milliseconds per CPU instruction, which can be
estimated as just the inverse of the MIP rate, divided by 1000 MIPS/msec.
The I/O weight can be estimated as the sum of the average seek, latency,
and transfer times for one 4K-byte page of data. The per-message weight
can be estimated by dividing the approximate number of instructions to
initiate and receive a message by the MIP rate. And the per-byte weight
estimate is simply the time to send 8 bits at the effective transmission
speed of the network, which had been measured as 4M bits/sec for our
nominally 24M bit/sec (3M Byte/sec) channel-to-channel connection.
These estimates, and the corresponding actual weights for our test config-
uration, are shown in Figure 2.

R* total cost = Wepy * (#_insts) + Wy, * (#_1/0)
+ Wysg ¥ (#_msgs) + Wgyy * (#_bytes)

WEIGHT UNITS HARDWARE /SOF TWARE ESTIMATE ACTUAL

Wepy msec/inst. IBM 4381 CPU 0.0004 0.0004

W10 msec/1/0 IBM 3380 disk 23.48 17.00%

Wuse msec/msg. CICS/VTAM 11.54 16.5

WgyTE msec/byte 24Mbit/sec (nom.), 0.002 0.002
aMbit/sec (eff.)

Figure 2: Estimated and actual cost component weights.

The actual per-message and per-byte weights were measured by moving
to a remote site one table of a two-table query for which the executed
plan and the locai (I/O and CPU) costs were well-known. We chose a
query that nested-loop joined a 500-tuple outer table, A, and a 100-tuple
inner table, B, having an index on the join column. The plan for the
distributed execution of this query had to be one that was executed
sequentially (i.e., with no parallelism between sites), so that the response
time (which we could measure) equalled the total resource time. By
SELECTing all the columns of B, we could require that the large
(3500-byte) tuples of B had to be shipped without projection, thereby
ensuring that both the number (1000) and size of messages sent was high
and that the local processing time was a small part (less than 30%) of
the total resource time. We could control the message traffic by varying
the number of tuples in B matching values in A: when none matched,
only very small messages were transferred (carrying fixed-size R* control
information); when each tuple in A matched exactly one tuple in B, 500
small and 500 very large messages were transferred. For a given number

4 The observed per-I/O rate is better than the estimate because the seek time
was almost always less than the nominal average seek time, since R* databases
are stored by VSAM in clumps of contiguous cylinders called extents.

of matching inner tuples, the query was run 10 times to get the average
response (= total resource) time. The message cost was derived by
subtracting from the total time the local cost, which was measured by
averaging the cost of 10 executions of the same query when both A and
B were at the same site. Knowing the number and size of the messages
(using COLLECT COUNTERS) for that number of matching inner tuples
allowed us to compute the per-message and per-byte weights for our test
environment: 16.5 msecs. minimal transfer time, and an effective transfer
rate of 4M bit/sec. Note that these figures include the instruction and
envelope overheads, respectively, of R*, CICS, and VTAM [LIND 83,
VTAM 851.

By varying the above per-message and per-byte weights, we could also
use the observed number of messages and bytes transmitted on the high-
speed channel-to-channel connection to simulate the performance for a
medium-speed long-haul network linking geographically dispersed hosts:
50 msecs. minimum transfer time and effective transfer rate of 40K bit/sec
(nominal rate of 56K bit/sec, less 30% overhead). The per-message
weight differs because of the increased delay due to the speed of light for
fonger transmissions, routing through relays, etc. Unavailability of resources
at remote sites unfortunately precluded validating on a real long-haul
network these estimated weights.

5. Distributed Join Results

Having validated the weights used in the R* cost function, and having
removed the cost of measuring performance, we were ready to validate
the R* optimizer's decisions for distributed queries.

The simplest distributed query accesses a single table at a remote site.
However, since partitioning and replication of tables is not supported in
R*, accessing a remote table is relatively simple: a process at the remote
site accesses the table locally and ships the query result back to the query
site as if it were an outer table to a join (i.e., as a blocked pipeline of
tuples). Since all of the distributed optimization decisions discussed earlier
pertain to joins of tables at different sites, picking the optimal global plan
is solely a Jocal matter: only the access path to the table need be chosen.
For this reason, we will not consider single-table distributed queries further,
but focus instead entirely upon distributed join methods.

In R*, n-table joins are executed as a sequence of n-1 two-table joins.
Hence thorough understanding and correct modeling of distributed two-table
joins is a prerequisite to validating n-table distributed joins. Intermediate
results of joins are called compesife tables, and may either be returned as
a pipeline of tuples or else materialized completely before the succeeding
two-table join (e.g., if sorting is required for a merge-scan join). We will
therefore limit our discussion in this section to that fundamental operation,
the two-table join.

Our discussion will use a simple notation for expressing distributed access
plans for joins. There are two different join methods: merge scan joins,
denoted by the infix operator "-M-", and nested loop joins, denoted by
"-N-". The operand to the left of the join operator specifies the outer
table access, the right operand the inner table access. A table access
consists of the table name, optionally suffixed with an "I' if we use the
index on the join column of this table and/or a "W" or"F" if we ship
the table whole or fetch only matching tuples, respectively. For example,
AIW-M-B denotes a plan that merge-scan joins tables A and B at B’s
site, shipping A whole after scanning it with the index on the join column.
Since the merge-scan join requires both tables to be in join-column order,
this plan implies B has to be sorted to accomplish the join.

5.1. Inner Table Transfer Strategy

The choice of transfer strategy for the inner table involves some interesting
trade-offs. Shipping (a copy of) the table whole ("W") transfers the most
inner tuples for the least message overhead, but needlessly sends inner
tuples that have no matching outer tuples and necessitates additional 1/0Q
and CPU for reading the inner at its home site and then storing it in a
temporary table at the join site. Any indexes on the inner that might aid
a join cannot be shipped with the table, since indexes contain physical
addresses that change when tuples are inserted in the temporary table, and
R* does not permit dynamic creation of temporary indexes (we will re-visit
that design decision in Section 6). However, since the inner is projected

and any single-table predicates are applied before it is shipped, the tem-
porary table is potentially much smaller than its permanent version, which
might make multiple accesses to it (particularly in a nested-loop join) more
cost-effective.

The high-speed channel we were using for communication in our tests
imposed a relatively high per-message overhead, thereby emphatically fa-
voring the "W" strategy. Figure 3 compares the actual performance of
the best plan for each transfer strategy for both the high-speed channel
and the long-haul medium-speed network, when merge-scan joining® two
indexed 500-tuple tables, C and D, shipping the inner table D and returning
the result to C’s site. Both tables are projected to 50% of their tuple
length, the join column domain has 100 different values, and the join
cardinality — the cardinality of the result of the join — was 2477. If we
ship the inner table D as a whole, the best plan is CI-M-DIW, and if we
fetch the matching inner tuples ("F"), CI-M-DIF is best.

For the W strategy, the message costs are only 2.9% of the total resource
cost, partly due to the relatively high local cost because of the large join
cardinality. For the F strategy, we spend 80.9% of the costs for commu-
nications, since for each outer tuple we have to send one message containing
the outer tuple’s value and at least one message containing the matching
inner tuples, if any. The total of 1000 messages cannot be reduced, even
if there are no. matching tuples, since the join site waits for some reply
from the inner’s site. Note that the number of bytes transmitted as well
as the number of messages is much higher for the F strategy, because
each message contains relatively little data in proportion to the required
R* control information. Another source for the higher number of bytes
transmitted is the frequent retransmission of inner table tuples for the
large join cardinality of this query. The penalty for this overhead and the
discrepancy between the two transfer strategies is exaggerated by slower
network speeds. For the medium-speed network in Figure 3, the per-
message overhead is 49% of the cost, and the discrepancy between the
two strategies increases from a factor of 4.4 to a factor of 11.6,

The importance of per-message costs dictate two sufficient (but not nec-
essary) conditions for the F strategy to be preferred:

1. the cardinality of the outer table must be less than half the number
of messages required to ship the inner as a whole, and
2. the join cardinality must be less than the inner cardinality,

after any local (non-join) predicates have been applied and the referenced
columns have been projected out. The second condition assures that fewer
inner tuples are transferred to the outer’s site for F than for W. Since
the join cardinality is estimated as the product of the inner cardinality,
outer cardinality, and join-predicate selectivity, these two conditions are

TRANSFER STRATEGIES

1M+

m i

L] se
"
v I LocaL
-
Z
ad
=
pund
"
—d
-
-
(=]
=

TUSHIP WHOLE FETCH NATCHES SHIP WHOLE FETCH NATCRES
HIGH-SPEED NET MEDIUM-SPEED NET

Figure 3: Comparison of the best R* plans, when using the ship-whole ("W") vs.
the fetch-i hes ("F'") ies for shipping the inner table, when merge-scan

joining two indexed 500-tuple tables.

5 Nested loop joins perform very poorly for the "W" strategy, because we can
not ship an index on the join column. For a fair comparison, we therefore only
consider merge-scan joins,

—152—

5.0+
¥ FETCH BATCHING INNER TUPLES Ci-N-01F) %3
B SHIP [NNER WHOLE (CI-¥-01F)
4.0 .
¥ [=e- SHI? OUTER 10 TANER & BACK (¥-CIV-4-01)
3.0

-
o
)

TOTAL ACTUAL TINE {secondn)

LK} T T T T T T T T T —
[} 16 10 3 4% 50 10 70 " 10 100
CARDINALITY of OUTER TADLE

Figure 4: Shipping the outer table (C) to the inner's (D’s) site and returning the
result dominates both strategies for transferring the inner to the outer’s site, even
for small outer cardinalities (inner cardinality = 500 tuples).

equivalent to requiring that the outer cardinality be less than the minimum
of (a) the inner’s size (in bytes) divided by 8K bytes (the size of two
messages) and (b) the inverse of the join-predicate’s filter factor. Clearly
these conditions are sufficiently strict that the F strategy will rarely be
optimal,

Even when these conditions hold, it is likely that shipping the outer table
to the inner's site and returning the result to the outer's site will be a
better plan: by condition (1) the outer will be small, by condition (2) the
result returned will be small, and performing the join at the inner's site
permits the use of indexes on the inner. This observation is confirmed
by Figure 4. The tests of Lu and Carey [LU 857 satisfied condition (2)
by having a semijoin selectivity of 10% and condition (1) by cleverly
altering the R* F strategy to send the outer-tuple values in one-page
batches. Hence they concluded that the F strategy was preferred. Time
constraints prevented us from implementing and testing this variation.

We feel that the conditions for the R* fetch-matches strategy to be
preferred are so restrictive for both kinds of networks that its implementation
without batching the outer-tuple values is not recommended for any future
distributed database system. Therefore, henceforth we will consider only
joins employing the ship-whole strategy.

5.2. Distributed vs. Local Join

Does distribution of tables improve or diminish performance of a particular
query? In terms of total resources consumed, most distributed queries are

Exch tobln;
I TOTAL RESOURCE TIME 1006 tuplen
5 ESPONSE 50 tuplen/page
R TINE
(I 3000 diffarant
jein ealumn
valuna

TIIE_(u:)

11v-4-A1 A--31w

Figure 5: Resource ion time vs. T time for various access plans,
when joining 2 tables (1000 tuples cach) distributed across a high-speed network.

—153—

more expensive than their single-site counterparts. Besides the obvious
added communications cost, distributed queries also consume extra CPU
processing to insert and retrieve the shipped tuples from communications
buffers. In terms of response time, however, distributed queries may
outperform equivalent local queries by bringing more resources to bear on
a given query and by processing portions of that query in parallel on
multiple processing units and 1/0 channels. Exploiting this parallelism is
in fact a major justification for many distributed database systems [EPST
80, APER 83, WONG 83], especially multiprocessor database machines
[BABB 79, DEWI 79, VALD 84, MENO 85].

The degree of simultaneity that can be achieved depends on the plan we
are executing. Figure 5 compares the total resource time and the response
time for some of the better R* access plans for a distributed query that
joins two indexed (unclustered) 1000-tuple tables, A and B, at different
sites, where the query site is A’s site, the join column domain has 3000
different values, and each table is projected by 50%. For the plans shown,
the ordering with respect to the total resource time is the same as the
response time ordering, although this is not generally true. Plans shipping
the outer table enjoy greater simultaneity because the join on the first
buffer-full of outer tuples can proceed in parallel with the shipment of the
next buffer-full. Plans shipping the inner table (whole) are more sequential:
they must wait for the entire table to be received at the join site and
inserted into a temporary table (incurring additional local cost) before
proceeding with the join. For example, in Figure 5, note the difference
between total resource time and response time for BIW-M-AI, as compared
to the same difference for AI-M-BIW. Other plans not shown in Figure
5 that ship the inner table exhibit similar relationships to the corresponding
plans that ship the outer (e.g., A-M-BW vs. BW-M-A, A-M-BIW vs.
BIW-M-A, and AI-M-BW vs. BW-M-AL). This assymmetry is unknown
for local queries.

For merge joins not using indexes to achieve join-column order (e.g.,
A-M-BW, BW-M-A), R* sorts the two tables sequentially. Although
sorting the two tables concurrently would not decrease the total resource
time, it would lower the response time for those plans considerably (it
should be close to the response time of BIW-M-A).

Comparing the response times for the above set of plans when the query
is distributed vs. when it is local (see Figure 6), we notice that the
distributed joins are faster. The dramatic differences between distributed
and local for BIW-M-AI and AI-M-BIW stem from both simultaneity and
the availability of two database buffers in the distributed case. However,
by noting that for local joins the response time equals the resource time
(since all systems were unloaded) and comparing these to the total resource
times for the distributed query in Figure 5, we find that even the total
resource costs for BIW-M-Al and AI-M-BIW are less than those for the
local joins BI-M-AI and AI-M-BI, so parallelism alone cannot explain the
improvement. The other reason is reduced contention: this particular plan
is accessing both tables using unclustered indexes, which benefit greatly
from larger buffers, and the distributed query enjoys twice as much buffer
space as does the local query. However, not all distributed plans have

re]
. o
'1 ‘. .
.
. .
74 | wocaL doin L . E:“'hilr
':-‘ [III} o1STRIBUTED JOIN :- . 50 teplun/pags
an o* ®o 3088 ditfarast
Kot o’ . join ssiumn velvas
,_l Ll .
= - .
= .
e) .
E .. -
- L
E 34 . .
o .l .
1- .. L]
.. L]
g - :
.. .
u .
- T
SIv-N-A DIN-%-Al Al-2-019 I-4-Al

Figurc 6: Response times for distributed (across a high-speed network) vs. local
execution for various access plans, when joining 2 tables (1000 tuples each).

-
-
i

[svie
[usc
M cry
10

-
-
1

-
-
i

Eseh toble:
tuplan
50 tuples/pege
3000 difterant

join ealemn
valuon

TOTAL RESOURGE TINE {wecs.)

T T T Y
Bv-K-A BIW-N-A DIR-N-A1 AI-N-DIW BW-N-A]

Figure 7: Relative importance of cost components for various access plans when
joining 2 tables (of 1000 tuples each) distribuied across a high-speed network.

better response times than the corresponding local plan; the increased
buffer space doesn’t much help the plans that don’t access both tables
using an index, and most of the distributed plans that ship the inner table
to the join site (except for AI-M-BIW) are 15%-30% more expensive
than their local counterpart because they exhibit a more sequential execution
pattern.

For larger tables (e.g., 2500 tuples each), these effects are even more
exaggerated by the greater demands they place upon the local processing
resources of the two sites. However, for slower network speeds, the
reverse is true; increased communications overhead results in response
times for distributed plans being almost twice those of local plans. For a
comparison of the resource times see Section 6.

5.3. Relative Importance of Cost Components

Many distributed query optimization algorithms proposed in the literature
ignore the intra-site costs of CPU and 1/0, arguing that those costs get
dwarfed by the communication costs for the majority of queries. We have
investigated the relative importance of the four cost components when
joining two tables at different sites, varying the sizes of the tables and
the speeds of the communication lines. Qur results confirmed the analysis
of Selinger and Adiba [SELI 80], which concluded that local processing
costs are relevant and possibly even dominant in modelling the costs of
distributed queries.

In a high-speed network such as a local-area network, message costs are
of secondary importance, as shown by Figure 7 for the distributed join of

14

114
- [evie
o
=10] ase
w W cr
-
= o
-
= Euel takln

. :
s! 1800 tupins
“w 58 tuplen/page
e
e 3000 difterant
< join ealume
b= velusr
had

H

s

¥ N * -
BY-¥-A Iv-N-A BIv-N-AY Al-N-01Y OW-M-4l

Figure 9: Relative importance of cost components for various access plans when
joining 2 tables (of 1000 tuples each) distributed across a (simulated) medium-
speed network.

354
= 304 [svve
S s
ws 151 I cry
-
= B3
wi 19+
& Eech tablis:
a 1800 tuplan
© 15 5¢ tuplan/pags
[
—
=104
o
[

3

Figure 8: Relative importance of cost components for various access plans when
joining 2 tables (of 2500 tuples cach) distributed across a high-speed network.

two 1000-tuple tables. For our test configuration, message costs usually
accounted for less (very often much less) than 10% of the total resource
cost. This remained true for joins of larger tables, as shown in Figure 8
for two 2500-tuple tables. Similarly, message costs account for only 9%
of the total cost for the optimal plan joining a 1000-tuple table to a
6000-tuple table, delivering the result to the site of the first table. This
agrees with the measurements of Lu and Carey [LU 85].

When we altered the weights to simulate a medium-speed long-haul net-
work, local processing costs were still significant, as shown in Figure 9
and Figure 10. In most of the plans, message costs and local processing
costs were equally important, neither ever dropping under 30% of the
total cost. Hence ignoring local costs might well result in a bad choice of
the local parameters whose cost exceeds that of the messages. Also, the
relative importance of per-message and per-byte costs reverses for the
medium-speed network, because the time spent sending and receiving each
message, and the "envelope”" bytes appended to each message, are small
compared to the much higher cost of getting the same information through
a "narrower pipeline" than that of the high-speed network.

5.4. Optimizer Evaluation

How well does the R* optimizer model the costs added by distributed
data? For the ship-whole table transfer strategy, for both outer and inner
tables, our tests detected only minor differences (<2%) between actual
costs and optimizer estimates of the number of messages and the number
of bytes transmitted. The additional local cost for storing the inner table
shipped whole is also correctly modelled by the optimizer, so that the

[

-
-
L

-
-
1

-
-
1

diffurest
eelumz

TOTAL RESOURCE TIBE (secs.)

-kl AL-B

BE-N-A)

Figure 10: Relative importance of cost components for various access plans when
joining 2 tables (of 2500 tuples each) distributed across a (simulated) medium-
speed network.

—154—

system realizes, for example, that the plan AI-M-BIW is more expensive
than BIW-M-AIL. For the fetch-matches transfer strategy (for inner tables
only), the expected number of messages was equal to the actual number
in all cases, and the estimate for the bytes transmitted was never off by
more than 25%. Although the number of bytes transferred is somewhat
dependent on the join cardinality, the fixed number of bytes shipped with
cach message typically exceeds the inner-table data in each message, unless
the inner’s tuples are very wide (after projection) or are highly duplicated
on the join-column value.

We encountered more severe problems in estimating the cost of shipping
results of a join to the query site, because this cost is directly proportional
to the join cardinality, which is difficult to estimate accurately. This
problem is a special case of shipping a composite table to any site, so that
these errors may be compounded as the number of tables to be joined at
different sites increases.

In a high-speed network, where message costs are a small fraction of the
total cost and the optimizer’s decisions are based more on local processing
costs, these errors (assuming that they are less than 50%) are not very
crucial. For a given join ordering of tables, the choice of a site at which
a particular composite table will be joined with the next inner table will
depend mainly upon the indexes available on the inner, the sizes of the
two tables, and possibly on the order of the composite’s tuples (for a
merge-scan join). However, in a medium-speed long-haul communication
network, where the communications costs range from 30 to 70% of the
total cost, the error in estimating the join cardinality is magnified in the
overall cost estimate. In [MACK 861, we have already suggested replacing
the current estimates of join cardinality with statistics collected while
performing the same join for an earlier SQL statement.

Can we simplify the optimizer for high-speed local-area networks, under
the ption that ge costs usually are less than 10% of the total
cost? More precisely, can we, starting from the best Aypothetical local plan
(assuming all tables are available at the query site) for a given join,
construct a distributed plan that is less than 10% more expensive than
the optimum? This would considerably facilitate the optimization of dis-
tributed queries! Unfortunately the answer is no, because there may be
distributed access plans that have a lower local cost than any hypothetical
local plan. For example, the plan BIW-M-AI in Figure 5 has a lower local
cost than any plan joining the two 1000-tuple tables locally. The corre-
sponding hypothetical local plan BI-M-AI performs very poorly (cf. Figure
6), because the two tables do not fit into one database buffer together.

Estimates of the local processing costs for distributed queries suffered
many of the same problems discovered for local queries by our earlier
study. In particular, a better model is needed of the re-use of pages in
the buffer when performing nested-loop joins using an unclustered index
on the inner table [MACK 86]. However, the more distributed the tables
participating in a join are, the better the R* optimizer estimates are. The
reason for this is that join costs are estimated from the costs for producing
the composite table and accessing the inner table, assuming these component
costs are independent of each other. This assumption is most likely to be
valid when the composite and inner tables are at dilferent sites; tables
joined locally compete for the same buffer space. For example, the esti-
mated local costs (CPU and I/0) for joining two 1000-tuple tables locally
(BI-M-AI) are the same as the estimated local costs for executing the
distributed plan BIW-M-AI, but the first estimate considerably underesti-
mates the actual local cost of BI-M-Al (see Figure 6), whereas it is very
accurate for the actual local cost of BIW-M-AI (cf. Figure §).

6. Alternative Distributed Join Methods

The R* prototype provides an opportunity to compare empirically the
actual performance of the distributed join methods that were implemented
in R* against some other proposed join methods for equi-joins that were
not implemented in R*, but might be interesting candidates for an extension
or for future systems:

1. joins using dynamically-created indexes
2. semijoins
3. joins using hashing (Bloom) filters (Bloomjoins)

None of these methods are new [BERN 79, DEWI 85, BRAT 85). Our
contribution is the use of performance data on a real system to compare

—1565—

these methods with more traditional methods. We will describe the join
algorithms in detail and evaluate their performance using measured R*
costs for executing sub-actions such as scans, local joins, sorting of partial
results, creating indexes, etc. These costs were adjusted appropriately when
necessary: for example, a page does not have to be fetched by a certain
sub-action if it already resides in the buffer as a result of a previous
sub-action. The alternative methods are presented both in the order in
which they were proposed historically and in the order of increasingly
more compact data transmission between sites. Although several hash-based
join algorithms look promising based upon cost-equation analyses [DEW1
85, BRAT 851, we could not evaluate them adequately using this empirical
methodology, simply because we did not have any R* performance figures
for the necessary primitives.

Before comparing the methods, we will first analyze the cost for each one
for a distributed equi-join of two tables S and T, residing at two different
sites 1 and 2, respectively, with site 1 as the query site. Let the equi-
predicate be of the form S.a=T.b, where a is a column of S and b is a
column of T. For simplicity, we will consider only the two cases where
both or neither S and T have an (unclustered) index on their join column(s).
To eliminate interference from secondary effects, we further assume that:
(1) S and T do not have any indexes on columns other than the join
columns, (2) all the columns of § and T are to be returned to the user
(no projection), (3) the join predicate is the only predicate specified in
the query (no selection), and (4) S and T are in separate DBSPACES
that contain no other tables. The extension of the algorithms to the cases
excluded by these assumptions is straightforward.

6.1. Dynamically-Created Temporary Index on Inner

R* does not permit the shipment of any access structures such as indexes,
since these contain physical addresses (TIDs, which contain page numbers)
that are not meaningful outside their home database. Yet earlier studies
of local joins have shown how important indexes can be for improving
the database performance, and how in some situations creating a temporary
index before executing a nested-loop join can be cheaper than executing
a merge-scan join without the index [MACK 86]. This is because creating
an index requires sorting only key-TID pairs, plus creation of the index
structure, whereas a merge-scan join without any indexes on the tables
requires sorting the projected tuples of the outer as well as the inner table.
The question remains whether dynamically-created temporary indexes are
beneficial in a distributed environment. The cost of each step for performing
a distributed join using a dynamically-created temporary index is as follows:

1. Scan table T and ship the whole table to site 1. The cost for this step
is equivalent to our measured cost for a remote access of a single
table, subtracting the CPU cost to extract tuples from the message
buffers.

2. Store T and create a temporary index on it at site 1. Since reading T
from a message buffer does not involve any I/O cost, and either
reading or writing a page costs one disk 1/0, the 1/O cost of writing
T to a temporary table and creating an index on it will be the same
as for reading it from a permanent table via a sequential scan and
creating an index on that, except the temporary index is not catalogued.
This cost was measured in R* by executing a CREATE INDEX
statement, and then adding CPU time for the insert while subtracting
the known and fixed number of 1/Os to catalog pages.

3. Execute the best plan for a local join at site 1. Again, this cost is
known from the measurements obtained by our earlier study for local
joins. The 1/O cost must be reduced by the number of index and
data pages of T that remain in the buffer from prior steps.

6.2. Semijoin

Semijoins [BERN 79, BERN 81A, BERN 81B] reduce the tuples of T
that are transferred from site 2 to site 1, when only a subset of T matches
tuples in S on the join column (i.e., when the semijoin selectivity < 1), but
at the expense of sending all of S.a from site 1 to site 2. The cost of
each step for performing a distributed join using a semijoin when neither
S.a nor T.b are indexed is as follows:

1. Sort both S and T on the join column, producing S’ and T°. The costs
measured by R* for sorting any table include reading the table initially,
sorting it, and writing the sorted result to a temporary table, but not
the cost of any succeeding read of the sorted temporary table.

2. Read S’.a (at site 1), eliminating duplicates, and send the result to site
2. This cost (and for the sort of S in the previous step) could be
measured in R* for a remote ""SELECT DISTINCT S.a" query, sub-
tracting the CPU cost to extract tuples f[rom the message buffers. If
S’ fits into the buffer, the previous step saves us the 1/0O cost;
otherwise all cost components are included.

3. At site 2, select the tuples of T that match S'.a, yiclding T", and ship
them to site 1. This cost is composed of the costs for scanning S’,
scanning T°, handling matches, and shipping the matching tuples.
Reading S’.a from the message buffer incurs no 1/0 cost, and scanning
T’ also costs only CPU instructions if T’ fits into the buffer. Also,
the pages of the matching tuples. of T’ can be transmitted to site 1
as they are found, and need not be stored, because we are using these
tuples as the outer table in later steps. The cost for finding the
matching tuples involves only a CPU cost that is roughly proportional
to the number of matches found. The cost assessed here was derived
from actual R* measurements for local queries, interpolating when the
table sizes, projection factors, selection factors, etc. fell between values
of those parameters used in the R* experiments.

4. Atsite 1, merge-join the (sorted) temporary tables S’ and T" and return
the resulting tuples to the user. This cost was measured in the same
way as the previous step, less the communications cost. Note that
T" inherits the join-column ordering from T'.

If there are indexes on S.a and T.b, we can either use the above algorithm
or we can alter each step as follows:

1. This step and its cost can be eliminated.

2. Replace this step with a scan of S.a’s index pages only (not touching
any data pages) and their transmission to site 2. The cost was
measured as in Step (2) above, but with an index existing on S.a; R*
can detect that data pages need not be accessed.

3. Using the index on T.b, perform a local merge-scan or a nested-loop
join, whichever is faster, at site 2, yielding T". Again, the cost for
various local joins was measured in the earlier study; they were
reduced by the cost of scanning S that was saved by taking it from
the message buffer as pages arrived. Some interpolation between
actual experiments was required to save re-running those experiments
with the exact join cardinality that resulted here.

4, Join T" with S, using the index on S.a, again choosing between the
merge-scan or nested-loop join plans whose costs were measured on
R*. A known amount of 1/0O was subtracted for the index leaf pages
that remain in the buffer from step (2).

6.3. Bloomjoin

Hashing techniques are known to be efficient ways of finding matching
values, and have recently been applied to database join algorithms [BABB
79, BRAT 84, VALD 84, DEWI 85]. Bloomjoins use Bloom filters
[BLOO 70] as a "hashed semijoin" to filter out tuples that have no
matching tuples in a join [BABB 79, BRAT 84). Thus, as with semijoins,
Bloomjoins reduce the size of the tables that have to be transferred, sorted,
merged, etc. However, the bit tables used in Bloomjoins will typically be
smaller than the join-column values transmitted for semijoins. By reducing
the size of the inner table at an early stage, Bloomjoins also save local
costs. Whereas a semijoin requires executing an extra join for reducing
the inner table, Bloomjoins only need an additional scan in no particular
order. For simplicity, we use only a single hashing function; further
optimization is possible by allowing multiple hashing functions [SEVE
76]. The cost of each step for performing a distributed join using a
Bloomjoin when neither S.a nor T.b are indexed is as follows:

1. Generate a Bloom filter, BfS, from table S. The Bloom filter, a large
vector of bits that are initially all set to "0", is generated by scanning
S and hashing each value of column S.a to a particular bit in the
vector and setting that bit to "1". As beflore, the cost of accessing
S was measured on R*. We added 200 (machine-level} instructions
per tuple (a conservative upper bound for any implementation) for
hashing one value and setting the appropriate bit in the vector.

2. Send BfS to site 2. We assume that sending a Bloom filter causes the
same R* message overhead as if sets of tuples are sent, and the
number of bytes is obvious from the size of the Bloom fiiter.

3. Scan table T at site 2, hashing the values of T.b using the same hash
function as in Step (1). If the bit hashed to is ''1", then send that tuple
to site 1 as tuple stream T°. This cost is calculated as in Step (1), but
the number of tuples is reduced by the Bloom filtering. We need to

estimate the reduced Bloomjoin cardinality of T, i.e. the cardinality of
T'. We know it must be at least the semijoin cardinality of T, SCy,
i.e. the number of tuples in T whose join-column values match a tuple
in S. We must add an estimate of the number of non-matching tuples
in T that erroneously survive filtration due to collisions. Let F be the
size (in bits) of BfS, Dg the number of distinct values of S.a, Dy the
number of distinct values of T.b, and Cy the cardinality of T. Then
the numbes of bits set to "1" in BfS is approximated for large Dgs by
[SEVE 1761
-(%)
bitss, = F(1~e)

So the expected number of tuples in T°, the Bloomjoin cardinality
BCr of table T, is given by

aDy

—(—

BC; = SCp + bisg(1—e 7)
where

SCr
a = (1 —-—E;—)

is the fraction of non-matching tuples in T.

4. Atsite 1, join T’ to S and return the result to the user. This cost was
derived as for semijoins, again using the Bloomjoin cardinality estimate
for T'.

If there are indexes on S.a and T.b, we can either use the above algorithm
or, as with semijoins, use the index on S.a to generate BfS -- thus saving
accesses to the data pages in Step (1) — and use the index on both T.b
and S.a to perform the join in Step (4).

As with semijoins, filtration can also proceed in the opposite direction: S
can also be reduced before the join by sending to site 1 another Bloom
filter BfT based upon the values in T. This is usually advantageous if S
needs to be sorted for a merge-scan join, because a smaller S will be
cheaper to sort. Filtration is maximized by constructing the more selective
Bloom filter first, i.e. on the table having the fewer distinct join column
values®, and altering the Bloomjoin procedure accordingly:

« If we first produce BIS, then add step (3.5): while scanning T in step
(3), generate BIT, send it to site 1, and use it to reduce S.

« If we first produce BT, then add step (0.5): generate BfT, send it to
site 1, and use it to reduce S while scanning S in step (1).

6.4. Comparison of Alternative Join Methods

Using the actual costs measured by R* as described above, we were able
to compare the alternative join methods empirically with the best R* plan,
for both the distributed and local join, for a two-table join with no
projections and no predicates other than the equi-join on an integer col-
umn. The measured cost was total resource time, since response time will
vary too much depending upon other applications executing concurrently.

Our experimental parameters for this analysis were identical to those in
the previous section. We fixed the size of table A at site 1 at 1000
tuples, and varied the size of table B at site 2 from 100 to 6000 tuples.
For the Bloomjoin we chose a filter size (F) of 2K bytes (16384 bits) to
ensure that it would fit in one 4K byte page. Again, we assumed the
availability of (unclustered) indexes on the join columns. We will discuss
the impact of relaxing this and other assumed parameters where appropriate
in the following, and at the end of this section.

As in the previous section, we compared the performance of the join
methods under two classes of networks:

« a high-speed network (16.5 msecs. minimum transfer time, 4M bit/sec.
effective transfer rate); and

» a medium-speed long-haul network (50 msecs. minimum transfer time,
40K bit/sec. effective transfer rate)

by appropriately adjusting the per-message and per-byte weights by which
observed numbers of messages and bytes transmitted were multiplied. For
each of these classes, we varied the query site between site 1 and site 2.

6 If this cannot be determined, simply choose the smaller table [BRAT 84].

—156—

6.4.1. High-speed Network

For a high-speed network (Figure 11), the cost of transmission is dominated
by local processing costs, as shown by the following table of the average
percentage of the total costs for the different join algorithms that are due
to local processing costs:

Query Site R* R* + temp. Semijoin Bloomjoin
index
1 = site of A 88.9% 89.2% 96.5% 93.0%
2 =siteof B 86.5% 91.4% 94.7% 90.1%

Temporary indexes generally provided little improvement over R* perfor-
mance, because the inexpensive shipping costs permit the optimal R* plan
to ship B to site 1, there to use the aircady-existent index on A to perform
a very efficient nested-loop join. When there was no index on A, the
ability to build temporary indexes improved upon the R* plan by up to
30%: A was shipped to site 2, where a temporary index was dynamically
built on it and the join performed. Such a situation would be common
in multi-table joins having a small composite table that is to be joined
with a large inner, so temporary indexes would still be a desirable extension
for R*.

Semijoins were advantageous only in the limited case where both the data
and index pages of B fit into the buffer (cardinalit(B) < 1500), so that
efficient use of the indexes on A and B kept the semijoin’s local processing
cost only slightly higher than that of the optimal R* plan. Once B no
longer fits in the buffer (cardinality(B) 2 2000), the high cost of accessing
B with the unclustered index precluded its use, and the added cost of
sorting B was not offset by sufficient savings in the transler cost.

Bloomjoins dominated all other join alternatives, even R* joining local
tables! This should not be too surprising, because local Bloomjoins out-
perform local R* by 20-40%, as already shown in [MACK 861, and
transmission costs represent less than 10% of the total costs. The per-
formance gains depend upon the ratios, ro and rg, between the Bloomjoin
cardinality and the table cardinality of A and B, respectively: rp is relatively
constant (0.31), whereas r, is varying (e.g., 0.53 for cardinality(B) = 2000
and 1.0 for cardinality(B) = 6000). But even if those ratios are close to
1, Bloomjoins are still better than R*. For example, when ry=1.0, ry=0.8,
and cardinality(B) = 6000, a Bloomjoin would still be almost two seconds
faster than R*. Note that due to a much higher join cardinality in this
case, the R* optimum would be more expensive than the plotted one.

Why are Bloomjoins — essentially "hashed semijoins" — so much better

than semijoins? The message costs were comparable, because the Bloom
filter was relatively large (1 message) compared to the number of distinct

30

X
£} X Semijuis '/
15 E 4= Re + Tomp. Indexms .
= e ke (Dint'd) /./
10+ : [3 Re (Lees)) .
: K O Hesnjsin =
= < g
515- -
z 8 - -0
=10 _ o
-
5

T T T Y T T T T T T T
] 500 1,000 1,500 1,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
CARDINALITY of TABLE B

Figure 11: Iligh-speed network; Query Site = 1 (A’s site)

R*’s best distributed and local plan (measured) vs. performance of other join strategies
(simulated) for a high-speed network, joining an indexed 1000-tuple table A at site
1 with an indexed table B (of increasing size) at site 2, returning the result at site
1.

—157—

join column values, and the number of non-matching tuples not filtered
by the Bloom filter was less than 10% of the semijoin cardinality. The
answer is that the semijoin incurs higher local processing costs to essentially
perform a second join at B’s site, compared to a simple scan of B in no
particular order to do the hash filtering.

The above results were almost identical when B's site (2) was the query
site, because the fast network makes it cheap to ship the resuits back after
performing the join at site 1 (desirable because table A fits in the buffer).
The only exception was that temporary indexes have increased advantage
over R* when A could be moved to the query site and still have an
(dynamically-created temporary) index with which a fast nested-loop join
could be done.

We also experimented with combining a temporary index with semijoins
and Bloomjoins. Such combinations improved performance only when
there were no indexes, and even then by less than 10%.

6.4.2. Medium-speed Network

In a medium-speed network, local processing costs represent a much smaller
(but still very significant!) proportion of the cost for each join method:

Query Site R* R* + temp. | Semijoin | Bloomjoin
index

1=siteof A | 385% 22.6% 46.3% 32.3%

2 =siteof B | 385% 36.0% 53.0% 41.6%

Regardless of the choice of query site, Bloomjoins dominated all other
distributed join methods by 15-40% for cardinality(B) > 100 (compare
Figure 12 and Figure 13). The main reason was smaller transmissions:
the communications costs for Bloomjoins were 20-40% less than R*’s;
and for cardinality(B) > 1500 shipping the Bloom filter and some non-
matching tuples not filtered by the Bloom filter was cheaper than shipping
B's join column for semijoins. Because of their compactness, Bloom filters
can be shipped equally easily in either direction, whereas R* and R* with
temporary indexes always try to perform the join at A's site to avoid
shipping table B (which would cost approximately 93.2 seconds when
cardinality(B) = 60001).

Also independent of the choice of query site was the fact that temporary
indexes improved the R* performance somewhat for bigger tables.

Only R* and semijoins change relative positions depending upon the query

site. When the query site is the site of the non-varying 1000-tuple table
A, semijoins are clearly better than R* (see Figure 12). When the query

- X Samijuie
70 B[A= 4 Tomp. tadernn
Ti e ke (iet'd)

" <3 e (Laen) x
E“* .;; & Masmjels P
2 3) _--*
= 4 . ’,‘0
=30+ . -

2 A _- P 4
14
a5 — —a
104 . —

T T T T T T T T T T T
] 500 1,000 1,500 2,000 1,500 3,000 3,500 4,000 4,500 5,000 5,500
CARDINALITY of TABLE B

Figure 12: Medium-speed network; Query Site = 1 (A’s site)

R*s best distributed and loca) plan (measured) vs. performance of other join strategies
(simulated) for a medium-speed rk, joining an indexed 1000-tuple table A at
site 1 with an indexed table B (of increasing size) at site 2, returning the result at
site 1.

5 T:E X Semijoin '/x
k3 4= Re + Tump. lundases :
40 : e Re (Dint'd))(
E 3 R {Laead)
n = &= Blaemjsin
34 °
- s O
210 - o
B e
- =
18

T T T T T T T T T T T 1
[] 500 1,000 1,500 1,000 1,500 3,000 3,508 4,000 4,500 5,000 5,500
CARDINALITY of TABLE 8 (Inderad)

Figure 13: Medium-speed .network; Query Site = 2 (B’s site)

R*'s best distributed and local plan (measured) vs. performance of other join strategies
(simulated) for a medium-speed network, joining an indexed 1000-tuple table A at
site 1 with an indexed table B (of increasing size) at site 2, returning the result at
site 2,

site is B’s site, however, R* still beals semijoins when B is sufficiently
large (cf. Figure 13). The reason is straightforward but important for
performance on large queries. Since the join columns had a domain of
3000 different values, most of these values had matches in B when
cardinality(B) 2> 3000. Thus, the semijoin cardinality of A was close to its
table cardinality, meaning that most of the tuples of A survived the
semijoin and were shipped to site 2 anyway (as in the R* plan). With
the additional overhead of sending the join column of B to site 1 and the
higher local processing cost, semijoins could not compete.

Note that both the R* and the semijoin curves jumped when the index

and data pages of table B no longer fit in the buffer (between 1500 and
2000 tuples), because they switched (o sorting the (ables.

6.4.3. Variation of the Experimental Parameters

Space constraints prevent us from presenting the results of numerous other
experiments for different values of our experimental parameters:

When indexes were clustered (rather than unclustered), semijoins beat
R* by at most 10% (except when the query site = B’s site and B is
very large), but Bloomjoins stili dominated all other distributed join
techniques.

Introducing a 50% projection on both tables in our join query did not
change the dominance of Bloomjoins, but eliminated any performance
advantage that temporary indexes provided over R* and, when the query
site was A’s site, reduced the local processing cost disadvantage of
semijoins sulficiently that they beat R* (but by less than 10%). How-
ever, when the query site was B’s site, the 50% projection reduced R*'s
message costs more than those for semijoins, giving R* an even wider
performance margin over semijoins.

As expected, a wider join column (e.g., a long character column or a
multi-column join predicate) decreased the semijoin performance while
not affecting the other algorithms.

7. Conclusions

Our experiments on two-table distributed equi-joins found that the strategy
of shipping thc entire inner table to the join site and storing it there
dominates the fetch-matches strategy, which incurs prohibitive per-message
costs for each outer tuple even in high-speed networks.

The R* optimizer’s modelling of message costs was very accurate, a
necessary condition for picking the correct join site. Estimated message
costs were within 2% of actual message costs when the cardinality of the

table to be shipped was well known. Errors in estimating message costs
originated from poor estimates of join cardinalities. This problem is not
introduced by distribution, and suggestions for alleviating it by collecting
join-cardinality statistics have already been advanced [MACK 86].

The modelling of local costs actually improves with greater distribution of
the tables involved, because the optimizer’s assumption of independence
of access is closer to being true when tables do not interfere with each
other by competing for the same resource (especially buffer space) within
a given site. While more resources are consumed overall by distributed
queries, in a high-speed network this results in response times that are
actually less than for local queries for certain plans that can benefit from:

« concurrent execution due to pipelining, and/or
» the availability of more key resources — such as buffer space — to
reduce contention.

Even for medium-speed, long-haul networks linking geographically dispersed
hosts, local costs for CPU and I/O are significant enough to affect the
choice of plans. Their relative contribution increases rather than decreases
as the tables grow in size, and varies considerably depending upon the
access path and join method. Hence no distributed query optimizer can
afford to ignore their contribution.

Furthermore, the significance of local costs cannot be ignored when con-
sidering alternative distributed join techniques such as semijoins. They are
advantageous only when message costs are high (e.g., for a medium-speed
network) and any table remote from the join site is quite large. However,
we have shown that a Bloomjoin — using Bloom filters to do "hashed
semijoins" — dominates the other distributed join methods in all cases
investigated, except when the semijoin selectivities of the outer and the
inner tables are very close to 1. This agrees with the analysis of [BRAT
84].

There remain many open questions which time did not allow us to pursue.
We did not test joins for very large tables (e.g., 100,000 tuples), for more
than 2 tables, for varying buffer sizes, or for varying tables per DBSPACE.
Experimenting with n-table joins, in particuiar, is crucial to validating the
optimizer’s selection of join order. We hope to actually test rather than
simulate semijoins, Bloomjoins, and medium-speed Jong-haul networks.

Finally, R* employs a homogeneous model of reality, assuming that all
sites have the same processing capabilities and are connected by a uniform
network with equal link characteristics. In a real environment, it is very
likely that these assumptions are not valid. Adapting the optimizer to this
kind of environment is likely to be difficult but important to correctly
choosing optimal plans for real configurations.

8. Acknowledgements

We wish to acknowledge the contributions to this work by several col-
leagues, especially the R* research team, and Lo Hsieh and his group at
IBM’s Santa Teresa Laboratory. We particularly benefitted from lengthy
discussions with — and suggestions by — Bruce Lindsay. Toby Lehman
(visiting from the University of Wisconsin) implemented the DC* counters.
George Lapis helped with database generation and implemented the R*
interface to GDDM that enabled us to graph performance results quickly
and elegantly. Paul Wilms contributed some PL/I programs that aided our
testing, and assisted in the implementation of the COLLECT COUNTERS
and EXPLAIN statements. Christoph Freytag, Laura Haas, Bruce Lindsay,
John McPherson, Pat Selinger, and Irv Traiger constructively critiqued an
earlier draft of this paper, improving its readability significantly. Finally,
Tzu-Fang Chang and Alice Kay provided invaluable systems support and
patience while our tests consumed considerable computing resources.

—158-

Bibliography

[APER 83]

[ASTR 80]

{BABB 79]

[BERN 79]

{BERN 81A]

[BERN 81B]

[BLOO 70]

[BRAT 84]

[CHAM 81]

[CHAN 82]

{CHU 82]

[DANI 82]

[DEWI 79]

[DEWI 85]

[EPST 78]

[EPST 80]

[HEVN 79]

[KERS 82]

[LIND 83}

P.M.G. Apers, A.R. Hevner, and S.B. Yao, Optimizing Al-
gorithms for Distributed Queries, JEEE Trans. on Software
Engineering SE-9 (January 1983) pp. 57-68.

M.M. Astrahan, M. Schkolnick, and W. Kim, Performance
of the System R Access Path Selection Mechanism, Infor-
mation Processing 80 (1980) pp. 487-491.

E. Babb, Implementing a Relational Database by Means of
Specialized Hardware, ACM Trans. on Database Systems 4,1
(1979) pp.
P.A. Bernstein and N. Goodman, Full reducers for relational
queries using muliti-attribute semi-joins, Proc. 1979 NBS
Symp. on Comp. Network. (December 1979).

P.A. Bernstein and D.W. Chiu, Using semijoins to solve
relational queries, Journal of the ACM 28,1 (January 1981)
pp. 25-40.

P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve, J.
Rothnie, Query Processing in a System for Distributed Da-
tabases (SDD-1), ACM Trans. on Database Systems 6,4 (De-
cember 1981) pp. 602-625.

B.H. Bloom, Space/Time Trade-offs in Hash Coding with
Allowable Errors, Communications of the ACM 13,7 (July
1970) pp. 422-426.

K. Bratbergsengen, Hashing Methods and Relational Algebra
Operations, Procs. of the Tenth International Conf. on Very
Large Data Bases (Singapore, 1984) pp. 323-333. Morgan
Kaufmann Publishers, Los Altos, CA.

D.D. Chamberlin, M.M. Astrahan, W.F. King, R.A. Lorie,
JL.W. Mehl, T.G. Price, M. Schkolnick, P. Griffiths Selinger,
D.R. Slutz, B.W. Wade, and R.A. Yost, Support for Re-
petitive Transactions and Ad Hoc Queries in System R,
ACM Trans. on Database Systems 6,1 (March 1981) pp.
70-94.

J-M. Chang, A Heuristic Approach to Distributed Query
Processing, Procs. of the Eighth International Conf. on Very
Large Data Bases (Mexico City, September 1982) pp. 54-61.
Morgan Kaufmann Publishers, Los Altos, CA.

W.W. Chu and P. Hurley, Optimal Query Processing for
Distributed Database Systems, IEEE Trans. on Computers
C-31 (September 1982) pp. 835-850.

D. Daniels, P.G. Selinger, L..M. Haas, B.G. Lindsay, C.
Mohan, A. Walker, and P. Wilms, An Introduction to Dis-
tributed Query Compilation in R*, Procs. Second International
Conf. on Distributed Databases (Berlin, September 1982).
Also available as IBM Research Report RJ3497, San Jose,
CA, June 1982.

D.J. DeWitt, Query Execution in DIRECT, Procs. of ACM-
SIGMOD (May 1979).

D.J. DeWitt and R. Gerber, Multiprocessor Hash-Based Join
Algorithms, Procs. of the Eleventh International Conf. on Very
Large Data Bases (Stockholm, Sweden, September 1985)
pp. 151-164. Morgan Kaufmann Publishers, Los Altos, CA.
R. Epstein, M. Stonebraker, and E. Wong, Distributed Query
Processing in a Relational Data Base System, Procs. of ACM-
SIGMOD (Austin, TX, May 1978) pp. 169-180.

R. Epstein and M. Stonebraker, Analysis of Distributed Data
Base Processing Strategies, Procs. of the Sixth International
Conf. on Very Large Data Bases (Montreal IEEE, October
1980) pp. 92-101.

A.R. Hevner and S.B. Yao, Query Processing in Distributed
Database Systems, TEEE Trans. on Software Engineering
SE-5 (May 1979) pp. 177-187.

L. Kerschberg, P.D. Ting, and S.B. Yao, Query Optimization
in Star Computer Networks, ACM Trans. on Database Sys-
tems 7,4 (December 1982) pp. 678-711.

B.G. Lindsay, L.M. Haas, C. Mohan, P.F. Wilms, and R.A.
Yost, Computation and Communication in R*: A Distributed
Database Manager, Proc. 9th ACM Symposium on Principles

1 A0
1-47.

[LOHM 84]

[LOHM 85]

[LU 85]

[MACK 85]

[MACK 86]

{MENO 85]

[ONUE 83]

{PERR 84]

[RDT 84]

[SELI 79]

[SELI 80]

[SEVE 176]

[STON 82]

[VALD 84]

[VTAM 85]

[WONG 83]

[YAO 79]

[YU 83]

—159—

of Operating Systems (Bretton Woods, October 1983). Also
in ACM Transactions on Computer Systems 2, 1 (Feb. 1984},
pp. 24-38.

G.M. Lohman, D. Daniels, L.M. Haas, R. Kistler, P.G.
Selinger, Optimization of Nested Queries in a Distributed
Relational Database, Procs. of the Tenth International Conf.
on Very Large Data Bases (Singapore, 1984) pp. 403-415.
Morgan Kaufmann Publishers, Los Altos, CA. Also available
as IBM Research Report RJ4260, San Jose, CA, April 1984.
G.M. Lohman, C. Mohan, L.M. Haas, B.G. Lindsay, P.G.
Selinger, P.F. Wilms, and D. Daniels, Query Processing in
R*, Query Processing in Database Systems (Kim, Batory, &
Reiner (eds.), 1985) pp. 31-47. Springer-Verlag, Heidelberg.
Also available as IBM Research Report RJ4272, San Jose,
CA, April 1984.

H. Lu and M.J. Carey, Some Experimental Results on Dis-
tributed Join Algorithms in a Local Network, Procs. of the
Eleventh International Conf. on Very Large Data Bases (Stock-
holm, Sweden, August 1985) pp. 292-304. Morgan Kaufmann
Publishers, Los Altos, CA.

L.F. Mackert and G.M. Lohman, Index Scans using a Finite
LRU Buffer: A Validated 1/0 Model, IBM Research Report
RJ4836 (San Jose, CA, September 1985).

L.F. Mackert and G.M. Lohman, R* Optimizer Validation
and Performance Evaluation for Local Queries, Procs. of
ACM-SIGMOD (Washington, DC, May 1986 (to appear)).
Also available as IBM Research Report RJ4989, San Jose,
CA, January 1986.

M.J. Menon, Sorting and Join Algorithms for Multiprocessor
Database Machines, NATO-AS] on Relational Database Ma-
chine Architecture (Les Arcs, France, July 1985).

E. Onuegbe, S. Rahimi, and A.R. Hevner, Local Query
Translation and Optimization in a Distributed System, Procs.
NCC 1983 (July 1983) pp. 229-239.

W. Perrizo, A Meihod for Processing Distributed Daiabase
Queries, IEEE Trans. on Software Engineering SE-10,4 (July
1984) pp. 466-471.

RDT: Relational Design Tool, IBM Reference Manual
SH20-6415. (IBM Corp., June 1984).

P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie,
and T.G. Price, Access Path Selection in a Relational Da-
tabase Management System, Procs. of ACM-SIGMOD (1979)
pp. 23-34.

P.G. Selinger and M. Adiba, Access Path Selection in Dis-
tributed Database Management Systems, Procs. International
Conf. on Data Bases (Univ. of Aberdeen, Scotiand, July
1980 pp. 204-215. Deen and Hammersly, ed.

D.G. Severance and G.M. Lohman, Differential Files: Their
Application to the Maintenance of Large Databases, ACM
Trans. on Database Systems 1,3 (September 1976) pp.
256-267.

M. Stonebraker, J. Woodfill, J. Ranstrom, M. Murphy, J.
Kalash, M. Carey, K. Arnold, Performance Analysis of Dis-
tributed Data Base Systems, Database Engineering 5 (IEEE
Computer Society, December 1982) pp. 58-65.

P. Valduriez and G. Gardarin, Join and Semi-Join Algorithms
for a Multiprocessor Database Machine, ACM Trans. on
Database Systems 9,1 (March 1984) pp. 133-161.

Network Program Products Planning (MVS, VSE, and VM),
IBM Reference Manual SC23-0110-1 (IBM Corp., April
1985).

E. Wong, Dynamic Rematerialization: Processing Distributed
Queries using Redundant Data, IEEE Trans. on Software
Engineering SE-9,3 (May 1983) pp. 228-232.

S.B. Yao, Optimization of Query Algorithms, ACM Trans.
on Database Systems 4,2 (June 1979) pp. 133-155.

C.T. Yu, and C.C. Chang, On the Design of a Query
Processing Strategy in a Distributed Database Environment,
Proc. SIGMOD 83 (San Jose, CA, May 1983) pp. 30-39.

