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Abstract 

Few database query optimizer models have been validated against actual 
performance. This paper extends an earlier optimizer validation and per- 
formance evaluation of R’ to di.rfribu& queries, i.e. single SQL statements 
having tables at multiple sites. Actual R* message, I/O, and CPU resources 
consumed - and the corresponding costs estimated by the optimizer - 
were written to database tables using new SQL commands, permitting 
automated control from application programs for collecting, reducing, and 
comparing test data. A number of tests were rnn over a wide variety of 
dynamically-created test databases, SQL queries, and system parameters. 
Both high-speed networks (comparable to a local area network) and 
medium-speed long-haul networks (for linking geographically dispersed 
hosts) were evaluated. The tests confirmed the accuracy of R*‘s message 
cost model and the significant contribution of local (CPU and I/O) costs, 
even for a medium-speed network. Although distributed queries consume 
more resources overall, the response time for some execution strategies 
improves disproportionately by exploiting both concurrency and reduced 
contention for buffers. For distributed joins in which a copy of the inner 
table must be transferred to the join site, shipping the whole inner table 
dominated the strategy of fetching only those inner tuples that matched 
each outer-table value, even though the former strategy may require ad- 
ditional I/O. Bloomjoins (hashed semijoins) consistently performed better 
than semijoins and the best R* strategies. 

Few of the distributed optimizer models proposed over the last decade 
CAPER 83, BERN 81~. CHAN 82, CHU 82, EPST 78, HEVN 79. KERS 
82, ONUE 83, PERR 84, WONG 83, YAO 79, YU 831 have been 
validated by comparison with actual performance. The only known vali- 
dations, for Distributed INGRES [STON 821 and the Crystal multicomputer 
[LU 853, have assumed only a high-speed local-area network linking the 
distributed systems. Also, the Distributed INGRES study focused primarily 
on reducing response time by exploiting parallelism using table partitioning 
and broadcast messages. In contrast, R* seeks to minimize total resonrces 
consumed, has not implemented table partitionings, and does not presume 
a network broadcast capability. 

There are many important questions that a thorough validation should 
answer: 

. Under what circumstances (regions of the parameter space) does the 
optimizer choose a suboptimal plan, or, worse, a particularly bad plan? 

. To which parameters is the actual performance most sensitive? 

. Are these parameters being modeled accurately by the optimizer? 

. What is the impact of variations from the optimizer’s simplifying as- 

. Is it possible to simplify the optimizer’s model (by using heuristics, for 

1. Introduction 

example) to speed up optimization7 
. What are the best database statistics to support optimization7 

Performance questions related to optimization include: 

. Are there possible improvements in the implementation of distributed 

One of the most appealing properties of relational data bases is their 
nonprocedural user interface. Users specify only w/tar data is desired, 
leaving the system optimizer to choose how to access that data. The 
built-in decision capabilities of the optimizer therefore play a central role 
regarding system performance. Automated selection of optimal access 
plans is a rather difficult task, because even for simple queries there arc 
many alternatives and factors affecting the performance of each of them. 

. Are there alternative distributed join techniquu that are not implemented 

Optimizers model system performance for some subset of these alternatives, 
taking into consideration a subset of the relevant factors. As with any 
other mathematical model, these simplifications - made for modeling and 
computational efficiency - introduce the potential for errors. The goal 
of our study was to investigate the performance and to thoroughly validate 
the optimizer against actual performance of a working experimental data- 
base system, R* [LOHM 851, which inherited and extended to a distributed 
environment [SELI 80, DANI 821 the optimization algorithms of System 
R [SELI 791. This paper extends our earlier validation and performance 
evaluation of local queries [MACK 861 to distributed queries over either 
(I) a high-speed network having speeds comparable to a local-area network 
(LAN) or (2) over a medium-speed, long-haul network linking geograph- 
ically dispersed host machines. For brevity, we assume that the reader is 
familiar with System R [CHAM RI 1 and R* [LOHM 851, and with the 
issues, methodology, and results of that earlier study [MACK 861. 

The next section gives an overview of distributed compilation and optimi- 
zation in R’. Section 3 discusses how R’ was instrumented to collect 
optimizer estimates and actual performance data at multiple sites in an 
automated way. Section 4 presents some prerequisite measurements of 
the cost component weights and the measurement overhead. The results 
for distributed joins are given in Section 5, and suggestions for improving 
their performance are discussed in Section 6. Section 7 contains our 
conclusions. 

2. Distributed Compilation and Optimization 

The unit of distribution in R’ is a table and each table is stored at one 
and only one site. A dirhilkrlad qnuy is any SQL data manipulation 
statement that references tables at sites other than the gvrrysire. the site 
to which an application program is submitted for compilation. This site 
serves as the mmrrr sire which coordinates the optimization of all SQL 
statements embedded in that program. For each query. sites other than 
the master site that store a table referenced in the query are called 
appmtia sira. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial adoantagq, the VLDB copyright notice and the 
title of the publication and rts date appear, and notice is given 
that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or specialpermission from the Endowment, 

In addition to the parameters chosen for the local case: 

I Current address: University of Erlangen-NUmberg, IMMD-IV, Martensstrasse 
3, D-8520 Erlan@xt. West Germany 

2 Published ideas for horizontal and vertical partitioning of tables have nol been 
implemented in R’. 

Proceedings of the Twelfth International 
Conference on Very Large Data Bases 
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sumptions? 

join techniques? 

but look promising7 
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(I) the order in which tables must be joined 

(2) the join method (nested-loop or merge-scan), and 

(3) the access path for each table (e.g., whether to use an index or not) 

optimization of a di.rfribured query must also choose for each join,: 

(4) the join site, i.e. the site at which each join takes place. and, 

(5) if the inner table is not stored at the join site chosen in (4), the 

method for transferring a copy of the inner table to the join site: 

(5a) s/rip whole: ship a copy of the entire table once to the join site, 

and store it there in a temporary table; or 

(5b) /etch matches (see Figure 1): scan the outer table and sequentially 

execute the following procedure for each outer tuple: 

1. Project the outer table tuple to the join column(s) and ship this 

value to the site of the inner table. 

2. Find those tuples in the inner table that match the value sent 

and project them to the columns needed. 

3. Ship a copy of the projected matching inner tuples back to the 

join site. 

4. Join the matches to the outer table tuple. 

Note that this strategy could be characterized as a semijoin for each 

outer tuple. We will compare it to semijoins in Section 6. 

If a copy of an outer (possibly composite) table of a join has to be moved 

lo another site, it is always shipped in its entirety as a blocked pipeline 

0f tuples [L~HM x53. 

Compilation, and hence optimization, is truly distributed in R’. The 

master’s optimizer makes all inter-sife decisions, such as the site at which 

inter-site joins take place, the method and order for transferring tuples 

between sites, etc. Intro-sic decisions (e.g. order and method of join for 

tables contiguously within a single site) are only suggesfed by the master 

planner; it delegates to each apprentice the final decision on these choices 

as well as the generation of an access module to encode the work to be 

done at that site [DAN1 821. 

Optimization in R’ seeks to minimize a cost function that is a linear 

combination of four components: CPU, I/O, and two message costs: the 

number of messages and the total number of bytes transmitted in all 

messages. I/O cost is measured in number of transfers to or from disk, 

and CPU cost is measured in terms of number of instructions: 

R*-total-cost = W,,, * (#-instrs) + W,,,, * (#-~/OS) 

+ WMsc * (#-msgs) + IV,,., l (#-bytes) 

Unlike System R, R’ maintains the four cost components separately, as 

well as the total cost as a weighted sum of the components [LOHM MI. 
enabling validation of each of the cost components independently. By 

assigning (at database generation time) appropriate weights for a given 

hardware configuration, different optimization criteria can he met. Two 

of the most common are time (delay) and money cost CSELI 801. For 

our study we set these weights so that the R’ total cost estimates the 
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Fiptre 1: “Fetch-mntchcs” transfer strateg lor joining at site San Jaw wter 
table DEPARTMENTS to inner table EMPLOYEES. 

total time consumed by all resources. in milliseconds. Since all the sites 

in our tests had equivalent hardware and software configurations. identical 

weights were used Ior each site. 

3. Instrumentation 

An earlier performance study for System R [ASTR 801 demonstrated that 

extracting performance data using the standard database trace and debug- 

ging facilities required substantial manual interaction, severely limiting the 

number of test cases that could be run. Since we wanted to measure 

performance under a wide variety of circumstances, we added instrumen- 

tation that would automate measurements to a very high degree. The 

general design of this instrumentation and its application for the evaluation 

of local queries is described in [MACK 861, so that in this paper we 

recall only the main ideas and confine our discussion to its distributed 

aspects. Principals of our design were: 

1. Add to the SQL language three statements for test control and per- 

formance monitoring which can be executed from an application pro- 

gram as well as interactively. 

2. Develop pre-compiled application programs for automatically (a) test- 

ing queries using the SQL statements of (1) above, and (b) analyzing 

the data collected by step (a). 

3. Store the output of the SQL statements of (1) and the application 

programs of (2) in database tables in order to establish a flexible, 

powerful interface between (I), (2a), and (2b). 

We concentrate here on the first item - the SQL-level measurement tools 
- whose implementation was most complicated by the distribution of 

tables at different sites. 

3.1. Distributed EXPLAIN 

The EXPLAIN command writes to user-owned PLAN TABLES infor- 

mation describing the access plan chosen by the optimizer for a given 

SQL statement, and its estimated cost [RDT 841. For a given distributed 

query, no single site has the complete access plan: the master site has the 

inter-site decisions and each apprentice has its local intra-site decisions. 

Hence the R’ EXPLAIN command was augmented to store each apprentice 

site’s plan in a local PLAN-TABLE. and the test application program 

was altered to retrieve that information from each apprentice’s 

PLAN-TABLE. 

3.2. Distributed COLLECT COUNTERS 

This new SQL statement collects and stores in a user-owned table the 

current values of some 40 internal counters in the RSS’ component (e.g., 

counts of disk reads and writes, lookups in the buffer, etc.), which R’ 

inherited from System R, and some newly implemented counters of the 

communications component DC’. COLLECT COUNTERS automatically 

collects a (pre-defined) subset of these counters at all sites with which 

the user currently has open communication sessions, returns those counters 

to the master site, and inserts into a special user-owned table 

(COUNTER-TABLE) one tuple for each distinct counter at each site. 

Each counter value is tagged with its name, the component (RSS’ or 

DC*) and site that maintains the counter, a timestamp, the invoking 

application program name, and an optional user-supplied sequence number. 

The implementation of the COLLECT COUNTERS statement is dependent 

upon the mechanism for distributed query execution in R* [LIND 831. 

The master site establishes communication sessions with all sites with 

which it has to have direct communication, and spawns children processes 

at these sites. The children may in turn establish additional sessions and 

spawn other children processes, creating a tree of processes that may 

endure through multiple transactions in an application program. Since 

descendant processes may spawn processes at any site, the tree may contain 

multiple descendant processes at a single site on behalf of the same master 

process (loopbock). For collecting the counters from all sites that are 
involved in the current computation, we traverse the user’s process tree. 

For each process, counters are collected at that process’ site and are 

I The site at which any nested query (srrbgury) is applied must also be determined 

[LOHM 841, but consideration of subqueries is omilted from this paper to 

simplify the presentation. 
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returned to the master site. At the master site, each counter value is 

handled in the following way: 

. If we have not yet inserted a tuple into the COUNTER-TABLE for 

the given counter from the given site (while executing the COLLECT 

COUNTERS statement of interest), the counter is inserted into the 

COUNTER-TABLE. 

. RSS’ counters from the given site that have already been inserted into 

the user’s COUNTER-TABLE are discarded (loopbacks will cause 

redundant delivery of certain counters). because RSS counters are 

database-site-specific. 

. DC’ counters are process-specific. If there is already a row in the 

COUNTER TABLE for the given DC* counter at the given site, the 

counter valueis added to the counter value in that row. 

To be sure that sessions had been established with all sites relevant to a 

particular test, the test application program was altered to run the test 

sequence once before the first COLLECT COUNTERS statement. 

3.3. FORCE OPTIMIZER 

As in the local validation study, we had to be able to overrule the 

optimizer’s choice of plan, to measure the performance of plans that the 

optimizer thought were suboptimal. This was done with the FORCE 

OPTIMIZER statement, which was implemented in a special test version 

of R’ only. The FORCE OPTIMIZER statement chooses the plan for 

the next SQL data manipulation (optimizable) statement only. The user 

specifies the desired plan number, a unique positive integer assigned by 

the master site’s optimizer to each candidate plan, by first using the 

EXPLAIN statement (discussed above) to discover the number of the 

desired plan. Apprentice optimization can be forced by simply telling each 

apprentice to utilize the optimization decisions recommended by the rnas- 

ter’s optimizer in its global plan. 

3.4. Conduct of Experiments 

Our distributed query tests were conducted in the same way and in the 

same environment as the local query tests SMACK 861, only with multiple 

database sites. All measurements were run at night on two totally unloaded 

IBM 4381’s connected via a high-speed channel. Each site was initialized 

to provide 40 buffer pages of 4K bytes each, which were available exclu- 

sively to our test applications. This is approximately equivalent, for ex- 

ample, to a system with each site running 5 simultaneous transactions that 

are competing for 800K bytes of buffer space. The same effects of buffer 

size limitations that were investigated in SMACK 861 also apply to dis- 

tributed queries. and thus are not discussed further in this paper. In order 

to vary database parameters systematically, synthetic test tables were gen- 

erated dynamically, inserting tuples whose column values were drawn 

randomly from separate uniform distributions. For example, the join- 

columns’ values were drawn randomly from a domain of 3000 integer 

values when generating the tables. All tables had the same schema: four 

integer and five (fixed) character fields. The tuples were 66 bytes long, 

and the system stored 50 of them on one page. 

Each test was run several times to ensure reproduceability of the results, 

and to reduce the variance of the average response times. However, the 

reader is cautioned that these measurements are highly dependent upon 

numerous factors peculiar to our test environment, including hardware and 

software configuration, database design, etc. We made no attempt to 

“tune” these factors to advantage. For example, each test table was 

assigned to a separate DBSPACE, which tends to favor DBSPACE scans. 

What follows is a sample of our results illustrating major trends for 

distrihuted queries; space considerations preclude showing all combinations 

of all parameters that we examined. For example, for joins we tested a 

matrix of table sizes for the inner and outer tables ranging from 100 to 

6000 tuples (3 times the buffer size), varying the projection factor on the 

joined tables (50% or 100% of both tables) and the availability of totally 

unclustered indexes on the join columns of the outer and/or inner tables. 

Since unclustered index scans become very expensive when the buffer is 

not big enough to hold all the data and index pages of a table, the ratio 

between the total number of data and index pages of a table to the number 

of pages in the buffer is more important for the local processing cost than 

the absolute table size [MACK 851. Although these tests confirmed the 

accuracy of the overwhelming majority of the optimizer’s predictions, we 

will concentrate here on those aspects of the R’ optimizer that were 

changed or exhibited anomalous behavior. 

4. General Measurements 

Several measurements pertaining to the optimizer as a whole were prereq- 

uisite to more specific studies. These are discussed briefly below. 

4.1. Cost of Measurements 

The COLLECT COUNTERS statement, the means by which we measured 

performance, itself consumes system resources that are tabulated by the 

R’ internal counters. For example, collecting the counters from remote 

sites itself uses messages whose cost would be refIected in the counters 

for number of messages and number of bytes transmitted. The resources 

consumed by the COLLECT COUNTERS instrumentation was determined 

by running two COLLECT COUNTERS statements with no SQL state- 

ments in between, and reducing all other observations by those resources. 

4.2. Component Weights 

The R* cost component weights for any given cost objective and hardware 

configuration can be estimated using “back of the envelope” calculations. 

For example, for converting all components to milliseconds, the weight for 

CPU is the number of milliseconds per CPU instruction, which can be 

estimated as just the inverse of the MIP rate, divided by 1000 MIPS/msec. 

The I/O weight can be estimated as the sum of the average seek, latency, 

and transfer times for one 4K-byte page of data. The per-message weight 

can be estimated by dividing the approximate number of instructions to 

initiate and receive a message by the MIP rate. And the per-byte weight 

estimate is simply the time to send 8 bits at the effecfiw transmission 

speed of the network, which had been measured as 4M bits/set for our 

nominally 24M bit/set (3M Byte/set) channel-to-channel connection. 

These estimates, and the corresponding actual weights for our test config- 

uration. are shown in Figure 2. 

R*-total-cost = Wcpu * (#-insts) + Wt,, * (#-I/O) 

+ wMSG _ * (# msgs) + Wa,, * (U-bytes) 

WEIGHT 1 UNITS 1 HAROWARE/SOFTUARE 1 ESTIMATE 1 ACTUAL 
I I I I 

kPU msec/inst. IBM 4381 CPU 0.0004 0.0004 

h/O msec/I/O IBM 3380 disk 23.48 17.004 

WHSG msec/msg. CICS/VTAM 11.54 16.5 

k3YTE msec/byte 24Mbit/sec (nom.), 0.002 0.002 
4Mbit/sec (eff.) 

Figure 2: Estimated and actual cost component weight% 

The actual per-message and per-byte weights were measured by moving 

to a remote site one table of a two-table query for which the executed 

plan and the local (I/O and CPU) costs were well known. We chose a 

query that nested-loop joined a 500-tuple outer table, A, and a IOO-tuple 

inner table, B, having an index on the join column. The plan for the 

distributed execution of this query had to be one that was executed 

sequentially (i.e., with no parallelism between sites), so that the response 

time (which we could measure) equalled the total resource time. By 

SELECTing all the columns of B, we could require that the large 

(3500-byte) toples of B had to be shipped without projection, thereby 

ensuring that both the number (1000) and size of messages sent was high 

and that the local processing time was a small part (less than 30%) of 

the total resource time. We could control the message traffic by varying 

the number of tuples in B matching values in A: when none matched, 

only very small messages were transferred (carrying fixed-size R* control 

information); when each tuple in A matched exactly one tuple in B, 500 

small and 500 very large messages were transferred. For a given number 

4 The observed per-I/O rate is better than the estimate because the seek lime 
was almost always less than the nominal average seek time, since R’ databases 
are stored by VSAM in clumps of contiguous cylinders called extent% 
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of matching inner tuples. the query was run 10 times to get the average 

response (= total resource) time. The message cost was derived by 

subtracting from the total time the local cost, which was measured by 

averaging the cost of 10 executions of the same query when both A and 

B were at the some site. Knowing the number and size of the messages 

(using COLLECT COUNTERS) for that number of matching inner tuples 

allowed us to compute the per-message and per-byte weights for our test 

environment: 16.5 msecs. minimal transfer time, and an effective transfer 

rate of 4M bit/set. Note that these figures include the instruction and 

envelope overheads, respectively, of R*, CICS. and VTAM [LIND 83. 

VTAM 851. 

By varying the above per-message and per-byte weights, we could also 

use the observed number of messages and bytes transmitted on the high- 

speed channel-to-channel connection to simulate the performance for a 

medium-speed long-haul network linking geographically dispersed hosts: 

50 msecs. minimum transfer time and effective transfer rate of 40K bit/set 

(nominal rate of 56K bit/set, less 30% overhead). The per-message 

weight differs because of the increased delay due to the speed of light for 

longer transmissions, routing through relays, etc. Unavailability of resources 

at remote sites unfortunately precluded validating on a real long-haul 

network these estimated weights. 

5. Distributed Join Results 

Having validated the weights used in the R* cost function, and having 

removed the cost of measuring performance, we were ready to validate 

the R’ optimizer’s decisions for distributed queries. 

The simplest distributed query accesses a single table at a remote site. 

However, since partitioning and replication of tables is not supported in 

R*, accessing a remote table is relatively simple: a process at the remote 

site accesses the table locally and ships the query result back to the query 

site as if it were an outer table to a join (i.e., as a blocked pipeline of 

tuples). Since all of the disfribufed optimization decisions discussed earlier 

pertain to joinr of tables at different sites, picking the optimal global plan 

is solely a local matter: only the access path to the table need be chosen. 

For this reason, we will not consider single-table distributed queries further, 

but focus instead entirely upon distributed join methods. 

In R’, n-table joins are executed as a sequence of n-l two-table joins. 

Hence thorough understanding and correct modeling of distributed two-table 

joins is a prerequisite to validating n-table distributed joins. Intermediate 

results of joins arc called compmi/r tables, and may either be returned as 

a pipeline of tuples or else materialized completely before the succeeding 

two-table join (e.g., if sorting is required for a merge-scan join). We will 

therefore limit our discussion in this section to that fundamental operation, 

the two-table join. 

Our discussion will use a simple notation for expressing distributed access 

plans for joins. There are two different join methods: merge scan joins, 

denoted by the infix operator “-M-l’. and nested loop joins, denoted by 

“-N-‘I. The operand to the left of the join operator specifies the outer 

table access, the right operand the inner table access. A table access 

consists of the table name, optionally suffixed with an “I” if we use the 

index on the join column of this table and/or a “W” or”F” if we ship 

the table whole or fetch only matching tuples, respectively. For example, 

AIW-M-B denotes a plan that merge-scan joins tables A and B at B’s 

site, shipping A whole after scanning it with the index on the join column. 

Since the merge-scan join requires both tables to be in join-column order, 

this plan implies B has to be sorted to accomplish the join. 

5.1. Inner Table Transfer Strategy 

The choice of transfer strategy for the inner table involves some interesting 

trade-offs. Shipping (a copy of) the table whole (“W”) transfers the most 

inner tuples for the least message overhead, but needlessly sends inner 

tuples that have no matching outer tuples and necessitates additional l/O 

and CPU for reading the inner at its home site and then storing it in a 

temporary table at the join site. Any indexes on the inner that might aid 

a join cannot be shipped with the table, since indexes contain physical 

addresses that change when tuples are inserted in the temporary table, and 

R’ does not permit dynamic creation of temporary indexes (we will re-visit 

that design decision in Section 6). However, since the inner is projected 

and any single-table predicates are applied before it is shipped, the tem- 

porary table is potentially much smaller than its permanent version, which 

might make multiple accesses to it (particularly in a nested-loop join) more 

cost-effective. 

The high-speed channel we were using for communication in our tests 

imposed a relatively high per-message overhead, thereby emphatically la- 

voring the “W” strategy. Figure 3 compares the actual performance of 

the best plan for each transfer strategy for both the high-speed channel 

and the long-haul medium-speed network, when merge-scan joinings two 

indexed 500-tuple tables, C and D, shipping the inner table D and returning 

the result to c’s site. Both tables are projected to 50% of their tuple 

length, the join column domain has 100 different values, and the join 

cmdina/i@ - the cardinality of the result of the join - was 2477. If we 

ship the inner table D as a whole, the best plan is CI-M-DIW, and if we 

fetch the matching inner tuples (“F”). CI-M-DIF is best. 

For the W strategy, the message costs are only 2.9% of the total resource 

cost, partly due to the relatively high local cost because of the large join 

cardinality. For the F strategy, we spend 80.9% of the costs for commu- 

nications, since for each outer tuple we have to send one message containing 

the outer tuple’s value and at least one message containing the matching 

inner tuples, if any. The total of 1000 messages cannot be reduced, even 

if there are no matching tuples, since the join site waits for some reply 

from the inner’s site. Note that the number of bytes transmitted as well 

as the number of messages is much higher for the F strategy, because 

each message contains relatively little data in proportion to the required 

R* control information. Another source for the higher number of bytes 

transmitted is the frequent retransmission of inner table tuples for the 

large join cardinality of this query. The penalty for this overhead and the 

discrepancy between the two transfer strategies is exaggerated by slower 

network speeds. For the medium-speed network in Figure 3, the per- 

message overhead is 49% of the cost, and the discrepancy between the 

two strategies increases from a factor of 4.4 to a factor of 1 I .6. 

The importance of per-message costs dictate two sufficient (but not nec- 

essary) conditions for the F strategy to be preferred: 

1. the cardinality of the outer table must be. less than half the number 

of messages required to ship the inner as a whole, and 

2. the join cardinality must be less than the inner cardinality, 

after any local (non-join) predicates have been applied and the referenced 

columns have been projected out. The second condition assures that fewer 

inner tuples are transferred to the outer’s site for F than for W. Since 

the join cardinality is estimated as the product of the inner cardinality, 

outer cardinality, and join-predicate selectivity, these two conditions are 

TRANSFER STRATEGIES 

HII IHOLE iETcn OATCItES SHIP VINE IENS YAICIISS 

HIGH-SPEED NET YED I UY-SPEED NET 

Figure 3: Comparison of the best R* plans, when using the lip-whole (“W”) vs. 
the fetch-matches (“F”) st~~tegiev for shippiw the inner table, when merge-scan 

joining two indexed 500~tupk Iables. 

5 Nested loop joins perform very poorly for the “W” strategy. because we can 
not ship an index on the join column. For a fair comparison. we therefore only 
consider merge-scan joins. 
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Figure 4: Shippinp the outer table (C) to the inner’s (D’s) site and returnbag the 
result dominates both strategies for transfrning the inner to the outer’s site, even 

for small outer csrdinalities (inner cardinslity = 500 tuples). 

equivalent to requiring that the outer cardinality be less than the minimum 
of (a) the inner’s size (in bytes) divided by 8K bytes (the size of two 
messages) and (b) the inverse of the join-predicate’s filter factor. Clearly 
these conditions are sufficiently strict that the F strategy will rarely be 
optimal. 

Even when these conditions hold, it is likely that shipping the outer table 
to the inner’s site and returning the result to the outer’s site will be a 
better plan: by condition (1) the outer will be small, by condition (2) the 
result returned will be small, and performing the join at the inner’s site 
permits the use of indexes on the inner. This observation is confirmed 
by Figure 4. The tests of Lo and Carey [LU 851 satisfied condition (2) 
by having a semijoin selectivity of 10% and condition (1) by cleverly 
altering the R* F strategy to send the outer-tuple values in one-page 
batches. Hence they concluded that the F strategy was preferred. Time 
constraints prevented us from implementing and testing this variation. 

We feel that the conditions for the R* fetch-matches strategy to be 
preferred are so restrictive for both kinds of networks that its implementation 
without batching the outer-tuple values is not recommended for any future 
distributed database system. Therefore, henceforth we will consider only 
joins employing the ship-whole strategy. 

5.2. Distributed vs. Local Join 

Does distribution of tables improve or diminish performance of a particular 
query? In terms of total resources consumed. most distributed queries arc 

Figure 5: Rcwurce consumption time w response time for various scces~ plans, 
when joining 2 tnhles (1000 tuples each) distributed acrnx~ P high-speed network. 

more expensive than their single-site counterparts. Besides the obvious 
added communications cost, distributed queries also consume extra CPU 
processing to insert and retrieve the shipped tuples from communications 
buffers. In terms of response time, however, distributed queries may 
outperform equivalent local queries by bringing more resoorccs to bear on 
a given query and by processing portions of that query in parallel on 
multiple processing units and I/O channels. Exploiting this parallelism is 
in fact a major justification for many distributed database systems [EPST 
80, APER 83, WONG 831, especially multiprocessor database machines 
[BABB 19, DEWI 19. VALD 84, MENO 851. 

The degree of simultaneity that can be achieved depends on the plan we 
arc executing. Figure 5 compares the total resource time and the response 
time for some of the better R’ access plans for a distributed query that 
joins two indexed (onclustered) lOOO-tuple tables, A and B, at different 
sites, where the query site is A’s site, the join column domain has 3000 
different values. and each table is projected by 50%. For the plans shown, 
the ordering with respect to the total resource time is the same as the 
response time ordering, although this is not generally true. Plans shipping 
the outer table enjoy greater simultaneity because the join on the first 
buffer-full of outer tuples can proceed in parallel with the shipment of the 
next buffer-full. Plans shipping the inner table (whole) are more sequential: 
they must wait for the entire table to be received at the join site and 
inserted into a temporary table (incurring additional local cost) before 
proceeding with the join. For example, in Figure 5, note the difference 
between total resource time and response time for BIW-M-AI, as compared 
to the same difference for AI-M-BIW. Other plans not shown in Figure 
5 that ship the inner table exhibit similar relationships to the corresponding 
plans that ship the outer (e.g., A-M-BW vs. BW-M-A, A-M-BIW vs. 
BIW-M-A, and AI-M-BW vs. BW-M-AI.). This assymmetry is unknown 
for local queries. 

For merge joins not using indexes to achieve join-column order (e.g., 
A-M-BW, BW-M-A), R* sorts the two tables sequentially. Although 
sorting the two tables concurrently would not decrease the total resource 
time, it would lower the response time for those plans considerably (it 
should be close to the response time of BIW-M-A). 

Comparing the response times for the above set of plans when the query 
is distributed vs. when it is local (see Figure 6). we notice that the 
distributed joins are faster. The dramatic differences between distributed 
and local for BIW-M-AI and AI-M-BIW stem from both simultaneity and 
the availability of two database buffers in the distributed case. However, 
by noting that for local joins the response time equals the resource time 
(since all systems were unloaded) and comparing these to the total resource 
times for the distributed query in Figure 5, we find that even the total 
resource costs for BIW-M-AI and AI-M-BIW are less than those for the 
local joins BI-M-AI and AI-M-B], so parallelism alone cannot explain the 
improvement. The other reason is reduced contention: this particular plan 
is accessing both tables using onclustered indexes, which benefit greatly 
from larger buffers, and the distributed query enjoys twice as much buffer 
space as does the local query. However, not all distributed plans have 

Figure 6: Responv times for distributed (acrwa a high-speed network) Y& locnl 
execution for vnrious access plans, when joining 2 tables (1000 tupks each). 
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Fire 7: R&live importance 01 cost components for various acce~q plans when 

joining 2 Iables (of 1000 tupler each) distribu4ed acrww a high-speed network. 

better response times than the corresponding local plan; the increased 

buffer space doesn’t much help the plans that don’t access both tables 

using an index, and most of the distributed plans that ship the inner table 

to the join site (except for AI-M-BIW) are 15%-30% more expensive 

than their local counterpart because they exhibit a more sequential execution 

paltern. 

For larger tables (e.g., 2500 tuples each), these effects are eve” more. 

exaggerated by the greater demands they place upon the local processing 

resources of the two sites. However, for slower network speeds, the 

reverse is true; increased communications overhead results in response 

times for distributed plans being almost twice those of local plans. For a 

comparison of the resource times see Section 6. 

5.3. Relative Importance of Cost Components 

Many distributed query optimization algorithms proposed in the literature 

ignore the infra-site costs of CPU and I/O, arguing that those costs get 

dwarfed by the communication costs for the majority of queries. We have 

investigated the relative importance of the four cost components when 

joining two tables at different sites, varying the sizes of the tables and 

the speeds of the conlmunication lines. Our results confirmed the analysis 

of &linger and Adiba CSELl 801, which concluded that local processing 

costs are relevant and possibly even dominant in modelling the costs of 

distributed queries. 

I” a high-speed network such as a local-area network, message costs are 

of secondary importance, as shown by Figure 7 for the distributed join of 

11-i-A I II-I-A III-i-Al Al-i-III II-i-Al 

II-i-A I I&-A III-i-Al Al-ill1 II-i-Al 

Figure 8: Relative importance of cost components for various access pIam when 

joining 2 tables (of 2500 toples each) diibuIed wn.. l b&speed network. 

two 1000~tuple tables. For our test configuration. message costs usually 

accounted for less (very often much less) than 10% of the total resource 

cost. This remained true for joins of larger tables, as shown in Figure 8 

for two 2.500-tuple tables. Similarly, message costs account for only 9% 

of the total cost for the optimal plan joining a IOOO-tuple table to a 

6000-tuple table, delivering the result to the site of the first table. This 

agrees with the measurements of Lu and Carey [LU 851. 

When we altered the weights to simulate a medium-speed long-haul net- 

work, local processing costs were still significant, as shown in Figure 9 

and Figure 10. In most of the plans, message costs and local processing 

costs were equally important, neither ever dropping under 30% of the 

total cost. Hence ignoring local costs might well result in a bad choice of 

the local parameters whose cost exceeds that of the messages. Also, the 

relative importance of per-message and per-byte costs reverses for the 

medium-speed network, because the time spent sending and receiving each 

message, and the “envelope” bytes appended to each message, are small 

compared to the much higher cost of getting the same information through 

a “narrower pipeline” than that of the high-speed network. 

5.4. Optimizer Evaluation 

How well does the R* optimizer model the costs added by distributed 

data? For the ship-whole table transfer strategy, for both outer and inner 

tables, our tests detected only minor differences (<20/o) between actual 

costs and optimizer estimates of the number of messages and the number 

of bytes transmitted. The additional local cost for storing the inner table 

shipped whole is also correctly modelled by the optimizer. so that the 

Figure 9: Relative importance of cost components for varinuc ~CCESF plans when 

joining 2 tables (of 1000 tuples each) distributed acres? P (simulated) medium- 

speed network. 

II-I-A : II-I-A III-I-AI Al-1-111 II-I-Al 

Figure IO: Relative importance of cast components for varies mxess plmw when 

joining 2 tables (of 2500 luples each) diilributed acres a (simulated) medium- 

speed nehvork. 
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system realizes. for example, that the plan AI-M-BIW is more expensive 

than BlW-M-AI. For the fetch-matches transfer strategy (for inner tables 

only), the expected number of messages was equal to the actual number 

in all cases, and the estimate for the bytes transmitted was never off by 

more than 25%. Although the number of bytes transferred is somewhat 

dependent on the join cardinality, the fixed number of bytes shipped with 

each message typically exceeds the inner-table data in each message, unless 

the inner’s tuples are very wide (after projection) or are highly duplicated 

on the join-column value. 

We encountered more severe problems in estimating the cost of shipping 

results of a join to the query site, because this cost is directly proportional 

to the join cardinality, which is difficult to estimate accurately. This 

problem is a special case of shipping a composite table to any site, so that 

these errors may he compounded as the number of tables to be joined at 

different sites increases. 

In a high-speed network, where message costs are a small fraction of the 

total cost and the optimizer’s decisions are based more on local processing 

costs, these errors (assuming that they are less than 50%) are not very 

crucial. For a given join ordering of tables, the choice of a site at which 

a particular composite table will be joined with the next inner table will 

depend mainly upon the indexes available on the inner, the sizes of the 

two tables, and possibly on the order of the composite’s tuples (for a 

merge-scan join). However, in a medium-speed long-haul communication 

network, where the communications costs range from 30 to 70% of the 

total cost, the error in estimating the join cardinality is magnified in the 

overall cost estimate. In [MACK 861, we have already suggested replacing 

the current estimates of join cardinality with statistics collected while 

performing the same join for an earlier SQL statement. 

Can we simplify the optimizer for high-speed local-area networks, under 

the assumption that message costs usually are less than 10% of the total 

cost? More precisely, can we, starting from the best h.qx&&a/ /oca/p/an 
(assuming all tables are available at the query site) for a given join, 

construct a distributed plan that is less than 10% more expensive than 

the optimum? This would considerably facilitate the optimization of dis- 

tributed queries! Unfortunately the answer is no. because there may be 

distributed access plans that have a lower local cost than any hypothetical 

local plan. For example, the plan BIW-M-AI in Figure 5 has a lower local 

cost than any plan joining the two IOOO-tuple tables locally. The corre- 

sponding hypothetical local plan BI-M-AI performs very poorly (cf. Figure 

6). because the two tables do not fit into one database buffer together. 

Estimates of the local processing costs for distributed queries suffered 

many of the same problems discovered for local queries by our earlier 

study. In particular, a better model is needed of the re-use of pages in 

the buffer when performing nested-loop joins using an unclustered index 

on the inner table [MACK 861. Ilowever. the more distributed the tables 

participating in a join are, the better the R* optimizer estimates are. The 

reason for this is that join costs are estimated from the costs for producing 

the composite table and accessing the inner table, assuming these component 

costs are independent of each other. This assumption is most likely to be 

valid when the composite and inner tables are at different sites; tables 

joined locally compete for the same buffer space. For example, the esti- 

mated local costs (CPU and I/O) for joining two lOOO-tuple tables locally 

@-M-AI) are the same as the estimated local costs for executing the 

distributed plan BIW-M-AI, but the first estimate considerably underesti- 

mates the actual local cost of BI-M-AI (see Figure 6). whereas it is very 

accurate for the actual local cost of BIW-M-AI (cf. Figure 5). 

6. Alternative Distributed Join Methods 

The R* prototype provides an opportunity to compare empirically the 

actual performance of the distributed join methods that were implemented 

in R* against some other proposed join methods for equi-joins that were 

not implemented in R*, but might be interesting candidates for an extension 

or for future systems: 

1. joins using dynamically-created indexes 

2. semijoins 

3. joins using hashing (Bloom) filters (B/uomjoinr) 

None of these methods are new [BERN 79, DEW1 85, BRAT 851. OW 

contribution is the use of performance data on a real system to compare 

these methods with more traditional methods. We will describe the join 

algorithms in detail and evaluate their performance using measured R* 

costs for executing sub-actions such as scans, local joins, sorting of partial 

results, creating indexes, etc. These costs were adjusted appropriately when 

necessary: for example, a page does not have to be fetched by a certain 

sub-action if it already resides in the buffer as a result of a previous 

sub-action. The alternative methods are presented both in the order in 

which they were proposed historically and in the order of increasingly 

more compact data transmission between sites. Although several hash-based 

join algorithms look promising based upon cost-equation analyses [DEWI 

85. BRAT 85 I, we could not evaluate them adequately using this empirical 

methodology, simply because we did not have any R* performance figures 

for the necessary primitives. 

Before comparing the methods, we will first analyze the cost for each one 

for a distributed equi-join of two tables S and T, residing at two different 

sites 1 and 2, respectively, with site 1 as the query site. Let the equi- 

predicate be of the form S.a=T.b, where a is a column of S and b is a 

column of T. For simplicity, we wiU consider only the two cases where 

both or neither S and T have an (unclustered) index on their join column(s). 

To eliminate interference from secondary effects, we further assume that: 

(1) S and T do not have any indexes on columns other than the join 

columns. (2) all the columns of S and T are to be returned to the user 

(no projection), (3) the join predicate is the only predicate specified in 

the query (no selection), and (4) S and T are in separate DBSPACES 

that contain no other tables. The extension of the algorithms to the cases 

excluded by these assumptions is straightforward. 

6.1. Dynamically-Created Temporary Index on Inner 

R* does not permit the shipment of any access structures such as indexes, 

since these contain physical addresses (TIDs, which contain page numbers) 

that are not meaningful outside their home database. Yet earlier studies 

of local joins have shown how important indexes can be for improving 

the database performance, and how in some situations creating a temporary 

index before executing a nested-loop join can be cheaper than executing 

a merge-scan join without the index [MACK 861. This is because creating 

an index requires sorting only key-TID pairs, plus creation of the index 

structure, whereas a merge-scan join without any indexes on the tables 

requires sorting the projected tuples of the outer as well as the inner table. 

The question remains whether dynamically-created temporary indexes are 

beneficial in a distributed environment. The cost of each step for performing 

a distributed join using a dynamically-created temporary index is as follows: 

1. Scan table T and ship the whole table to sire 1. The cost for this step 

is equivalent to our measured cost for a remote access of a single 

table, subtracting the CPU cost to extract tuples from the message 

buffers. 

2. Store T and create a temporary Index on it at site 1. Since reading T 

from a message buffer does not involve any I/O cost, and either 

reading or writing a page costs one disk I/O, the I/O cost of writing 

T to a temporary table and creating an index on it will be the same 

as for reading it from a permanent table via a sequential scan and 

creating an index on that, except the temporary index is not catalogued. 

This cost was measured in R’ by executing a CREATE INDEX 

statement, and then adding CPU time for the insert while subtracting 

the known and fixed number of I/OS to catalog pages. 

3. Execute the best plan for a IocaI join at site 1. Again, this cost is 

known from the measurements obtained by our earlier study for local 

joins. The I/O cost must be reduced by the number of index and 

data pages of T that remain in the buffer from prior steps. 

6.2. Semijoin 

Semijoins [BERN 79, BERN RlA, BERN 8161 reduce the tuples of T 

that are transferred from site 2 to site 1, when only a subset of T matches 

tuples in S on the join column (i.e., when the San&in srkrhtify < l), but 

at the expense of sending all of S.a from site 1 to site 2. The cost of 

each step for performing a distributed join using a semijoin when neither 

S.a nor T.b are indexed is as follows: 

1. Sort both S and T on the join column, producing S’ and T. The costs 

measured by R* for sorting any table include reading the table initially, 

sorting it, and writing the sorted result to a temporary table, but not 

the cost of any succeeding read of the sorted temporary table. 
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Read 57.~1 (at site I), eliminating duplicates, and send the result to site 

2. This cost (and for the sort of S in the previous step) could be 

measured in R’ for a remote “SELECT DISTINCT S.a” query, sub- 

tracting the CPU cost to extract tuples from the message buffers. If 

S’ fits into the buffer, the previous step saves us the J/O cost; 

otherwise all cost components are included. 

At site 2, select the tuples of T’ that match S’.a, yielding T”, and ship 

them to site 1. This cost is composed of the costs for scanning S’. 

scanning T’, handling matches, and shipping the matching tuples. 

Reading S’.a from the message buffer incurs no J/O cost, and scanning 

T’ also costs only CPU instructions if T’ fits into the buffer. Also, 

the pages of the matching tuples of T’ can be transmitted to site I 

as they are found, and need not be stored, because we are using these 

tuples as the outer table in later steps. The cost for finding the 

matching tuples involves only a CPU cost that is roughly proportional 

to the number of matches found. The cost assessed here was derived 

from actual R* measurements for local queries, interpolating when the 

table sizes, projection factors, selection factors, etc. fell between values 

of those parameters used in the R* experiments. 

At site I, merge-join the (sorted) temporary tables S’ and T” and return 

the resulting tuples to the user. This cost was measured in the same 

way as the previou: step, less the communicalions cost. Note that 

T” inherits the join-column ordering lrom T’. 

If there are indexes on S.a and T.b, we can either use the above algorithm 

or we can alter each step as follows: 

This step and its cost can be eliminated. 

Replace this step with a scan of Sa’s index pages only (not touching 

any data pages) and their transmission to site 2. The cost was 

measured as in Step (2) above, but with an index existing on .?.a; R’ 

can detect that data pages need not be accessed. 

Using the index on T.b, perform a local merge-scan or a nestGd-loop 

join, whichever is faster, at site 2, yielding T”. Again, the cost for 

various local joins was measured in the earlier study; they were 

reduced by the cost of scanning S that was saved by taking it from 

the message buffer as pages arrived. Some interpolation between 

actual experiments was required to save re-running those experiments 

with the exact join cardinality that resulted here. 

Join T” with S. using the index on S.a, again choosing between the 

merge-scan or nested-loop join plans whose costs were measured on 

R*. A known amount of l/O was subtracted for the index leaf pages 

that remain in the buffer from step (2). 

6.3. Bloomjoin 

Hashing techniques are known to be efficient ways of finding matching 

values, and have recently been applied to database join algorithms [UABB 

79. BRAT 84, VALD 84. DEW1 MI. Bloomjoins use Bloom filters 

[BLOO 701 as a “hashed semijoin” to filter out tuples that have no 

matching tuples in a join [BABB 79, BRAT 841. Thus, as with semijoins, 

Bloomjoins reduce the size of the tables that have lo be transferred, sorted, 

merged. etc. However, the bit tables used in Bloomjoins will typically be 

smaller than the join-column values transmitted for semijoins. By reducing 

the size of the inner table at an early stage, Bloomjoins also save local 

cosfs. Whereas a semijoin requires executing an extra join for reducing 

the inner table. Bloomjoins only need an additional scan in no particular 

order. For simplicity, we use only a single hashing function; further 

optimization is possible by allowing multiple hashing functions [SEVE 

761. The cost of each step for performing a distributed join using a 

Bloomjoin when neither S.a nor T.b are indexed is as follows: 

Generate a Bloom filter, BfS, from table S. The Bloom filter, a large 

vector of bits that are initially all set lo “O”, is generated by scanning 

S and hashing each value of column S.a to a particular bit in the 

vector and setting that bit lo “1”. As before, the cost of accessing 

S was measured on R’. We added 200 (machine-level) instructions 

per tuple (a conservative upper bound for any implementation) for 

hashing one value and setting the appropriate bit in the vector. 

Send BfS to site 2. We assume that sending a Bloom filler causes the 

sane R* message overhead as if sets of tuples are sent, and the 

number of bytes is obvious from the size of the Bloom filter. 

Scan table T at site 2, hashing the values of T.b using the .same hash 

function as in Step (1). Jf the bit hashed to is “I”, then send that tuple 

to site 1 8s tuple stream T’. This cost is calculated as in Step (I), but 

the number of tuplcs is reduced by the Bloom filtering. We need to 

estimate the reduced Sl~m~oin canGw/ity of T, i.e. the cardinality of 

T’. We know it must be at least the semijoin amiimli~ of T, SCT, 
i.e. the number of tuples in T whose join-column values match a tuple 

in S. We must add an estimate of the number of non-matching tuples 

in T that erroneously survive fiitration due to collisions. Let F be the 

size (in bits) of BfS, D, the number of distinct values of S.a, DT the 

number of distinct values of T.b. and CT the cardinality of T. Then 

the number of bits set to “1” in BIS is approximated for large D.7 by 

CSEVE 761: 

biISs = F( 1 --e 
4:) 

) 

So the expected number of tuples in T’. the Bloomjoin cardinality 

BCT of table T. is given by 

“DT 

EC, = SC, + hiIss( I -e 
-+4 

) 

where 

-(I-~) 
is the fraction of non-matching tuples in T. 

4. At site 1, join T’ to S and return the result to the user. This cost was 

derived as for semijoins, again using the Bloomjoin cardinality estimate 

for T’. 

If there are indexes on S.a and T.b, we can either use the above algorithm 

or, as with semijoins, use the index on S.a to generate BIS -- thus saving 

accesses to the data pages in Step (1) - and use the index on both T.b 

and S.a to perform the join in Step (4). 

As with semijoins. filtration can also proceed in the opposite direction: S 

can also be reduced before the join by sending to site I another Bloom 

filter BfT based upon the values in T. This is usually advantageous if S 

needs to be sorted for a merge-scan join, because a smaller S will be 

cheaper to sort. Filtration is maximized by constructing the more selective 

Bloom filter first, i.e. on the table having the fewer distinct join column 

values”, and altering the Bloomjoin procedure accordingly: 

. If we first produce BfS. then add step (3.5): while scanning T in step 

(3). generate BfT. send it lo site 1, and use it to reduce S. 

. If we first produce BfT. then add step (0.5): generate BfT, send it to 

site 1. and use it to reduce S while scanning S in step (1). 

6.4. Comparison of Alternative Join Methods 

Using the actual costs measured by R* as described above. we were able 
to compare the alternative join methods empirically with the best R’ plan. 

for both the distributed and local join, for a two-table join with no 

projections and no predicates other than the equi-join on an integer col- 

umn. The measured cost was total resource time, since response time will 

vary too much depending upon other applications executing concurrently. 

Our experimental parameters for this analysis were identical to those in 

the previous section. We fixed the size of table A at site I at 1000 

tuples, and varied the size of table B at site 2 from 100 to 6000 tuples. 

For the Bloomjoin we chose a filter size (F) of 2K bytes (16384 bits) to 

ensure that it would fit in one 4K byte page. Again, we assumed the 

availability of (unclustered) indexes on the join columns. We will discuss 

the impact of relaxing this and other assumed parameters where appropriate 

in the following, and at the end of this section. 

As in the previous section, we compared the performance of the join 

methods under two classes of networks: 

. a high-speed network (16.5 msecs. minimum transfer time, 4M bit/set. 

effective transfer rate); and 
. a medium-speed long-haul network (50 msecs. minimum transfer time, 

40K bit/set. effective transfer rate) 

by appropriately adjusting the per-message and per-byte weights by which 

observed numbers of messages and bytes transmitted were multiplied. For 

each of these classes, we varied the query site between site I and site 2. 

6 II this cannot be determined, simply choose the smaller table [BRAT 841. 
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6.4.1. High-speed Network 

For a high-speed network (Figure 11) the cost of transmission is dominated 

by local processing costs, as shown by the following table of the average 
percentage of the total costs for the different join algorithms that are due 

to local processing costs: 

Quay Siic R’ R* + temp. Semijoin Bloomjoin 

inkr 

1 = site of A 88.9% 89.2% 96.5% 93.0% 

2 = site of B 86.5% 91.41/o 94.1% 90.1% 

Temporary indexes generally provided little improvement over R’ perfor- 

mance, because the inexpensive shipping costs permit the optimal R’ plan 

to ship B to site 1, there to use the already-existent index on A to perform 

a very efficient nested-loop join. When there was no index on A, the 

ability to build temporary indexes improved upon the R* plan by up to 

30Y0: A was shipped to site 2, where a temporary index was dynamically 

built on it and the join performed. Such a situation would be common 

in mu/&ruble joins having a small composite table that is to be joined 

with a large inner, so temporary indexes would still be a desirable extension 

for R*. 

Semijoins were advantageous only in the limited case where both the data 

and index pages of B fit into the buffer (cardinalify(B) 5 1500), so that 

efficient use of the indexes on A and B kept the semijoin’s local processing 

cost only slightly higher than that of the optimal R’ plan. Once B no 

longer fits in the buffer (cardinolify(B) > 2000), the high cost of accessing 

B with the unclustered index precluded its use. and the added cost of 

sorting B was not offset by sufficient savings in the transfer cost. 

Bloomjoins dominated all other join alternatives, even R’ joining local 

tables! This should not be too surprising, because local Bloomjoins out- 

perform local R* by 20-40%. as already shown in [MACK 861, and 

transmission costs represent less than 10% of the total costs. The per- 

formance gains depend upon the ratios, rA and rn, between the Bloomjoin 

cardinality and the table cardinality of A and 9, respectively: rn is relatively 

constant (0.31). whereas r,, is varying (e.g., 0.53 for cardinalify(B) = 2000 

and 1 .O for cordino/ify(B) = 6000). But even if those ratios are close to 

1, Bloomjoins are still better than R’. For example, when rA=l.O, rn=0.8, 

and cardino/ify(B) = 6000, a Bloomjoin would still be almost two seconds 

faster than R*. Note that due to a much higher join cardinality in this 
case, the R’ optimum would be more expensive than the plotted one. 

Why are Bloomjoins - essentially “hashed semijoins” - so much better 

than semijoins? The message costs were comparable, because the Bloom 

filter was relatively large (1 message) compared to the number of distinct 

Figure 11: II&h-speed network; Query Site = I (A.5 rite) Figure 12: Medium-speed mtwort; Query Sile = 1 (A’s site) 

R*‘s best distributed and local plan (measured) vs. pei-fommnce of other join strategies 
(simulated) lor a high-speed network, joining an indexed 1000~tuple table A at site 
1 with an indexed table B (of incrercing size) at site 2, rehamiq the rend1 PI site 
1. 

P’s best distributed and local plan (measured) vs. performance of other join Jmtegies 
(simulated) for a medium-speed nehrork. joining an indexed IOOO-htple table A at 
site 1 with an indexed table B (of incre%4ng size) .t site 2, rehn’ni~ the result al 
sfte 1. 

join column values, and the number of non-matching tuples not filtered 

by the Bloom filter was less than 10% of the semijoin cardinality. The 

answer is that the semijoin incurs higher local processing costs to essentially 

perform a second join at B’s site, compared to a simple scan of B in no 

particular order to do the hash filtering. 

The above results were almost identical when B’s site (2) was the query 

site, because the fast network makes it cheap to ship the results back after 

performing the join at site 1 (desirable because table A fits in the buffer). 

The only exception was that temporary indexes have increased advantage 

over R* when A could be moved to the query site and still have an 

(dynamically-created temporary) index with which a fast nested-loop join 

could be done. 

We also experhnented with combining a temporary index with semijoins 

and Bloomjoins. Such combinations improved performance only when 

there were no indexes, and even then by less than 10%. 

6.4.2. Medium-speed Network 

In a medium-speed network, local processing costs represent a much smalfer 

(but still very significant!) proportion of the cost for each join method: 

Qnuy Site 

1 = site of A 

2 = site of B 

R* R++hp. Semi&in BiOtl+iR 

in&x 

38.5% 22.6% 46.3% 32.3% 

38.5% 36.0% 53.0% 41.6% 

Regardless of the choice of query site, Bloomjoins dominated aIt other 

distributed join methods by 15-40% for cmdina/ify(B) > 100 (compare 

Figure 12 and Figure 13). The main reason was smafler transmissions: 

the communications costs for Bloomjoins were 2040% less than R*‘s, 

and for cordina/ify(B) 2 1500 shipping the Bloom filter and some non- 

matching tuples not filtered by the Bloom filter was cheaper than shipping 

B’s join column for semijoins. Because of their compactness, Bloom filters 

can be shipped equally easily in either direction. whereas R* and R* with 

temporary indexes always try to perform the join at A’s site to avoid 

shipping table B (which would cost approximately 93.2 seconds when 

cardinnlify(E) = 6000!). 

Also independent of the choice of query site was the fact that temporary 

indexes improved the R* perfortnance somewhat for bigger tables. 

Only R’ and semijoins change relative positions depending upon the query 

site. When the query site is the site of the non-varying lOOO-tuple table 

A. semijoins are clearly better than R* (see Figure 12). When the query 
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Ftgwe 13: Medium-speed nelnork; Query Site = 2 (B’s site) 

R*‘a best dirtrihuled and local plan (measured) vs. petfommnce of other join stratcgtcs 

(simulated) for a medium-.specd nelrork, joining an indexed IOOO-lupte tatde ‘A nt 

silt 1 with nn indexed labk B (of incrervtng size) at dte 2, retuminp: Ihe result at 

she 2. 

site is B’s sile, however, R’ still heals semijoins when B is sulficiently 

large (cf. Figure 13). The reason is straightforward but important for 

performance on large queries. Since the join columns had a domain of 

3000 different values, most of these values had matches in B when 

cordino/i~y(B) 2 3000. Thus, the semijoin cardinality of A was close to its 

table cardinality, meaning that most of the tuples of A survived the 

semijoin and were shipped to site 2 anyway (as in the R’ plan). With 

the additional overhead of sending the join column of B to site I and the 

higher local processing cost, semijoins could not compete. 

Note that both the R* and the semijoin curves jumped when the index 

and data pages of table B no longer fit in the buffer (between 1500 and 

2000 tuples). because they switched to sorting the tables. 

6.4.3. Variation of the Experimental Parameters 

Space constraints prevent us from presenting the results of numerous other 

experiments for different values ol our experimental parameters: 

. When indexes were clustered (rather than unclustered). semijoins beat 

R* by at most 10% (except when the query site = B’s site and B is 

very large), but Bloomjoins still dominated all other distributed join 

techniques. 

* Introducing a 50% projection on both tables in our join query did not 

change the dominance of Bloomjoins, but eliminated any performance 

advantage that temporary indexes provided over R* and, when the query 

site was A’s site, reduced the local processing cost disadvantage of 

semijoins sulficiently that they beat R* (hut by less than 10%). How- 

ever, when the query site was B’s site, the 50% projection reduced R*‘s 

message costs more than those for semijoins. giving R’ an even wider 

performance margin over semijoins. 

. As expected. a wider join column (e.g., a long character column or a 

multi-column join predicate) decreased the semijoin performance while 

not affecting the other algorithms. 

7. Conclusions 

Our experiments on two-table distributed equi-joins found that the strategy 
of shipping the entire inner table to the join site and storing it there 

dominates the fetch-matches strategy, which incurs prohibitive per-message 

costs for each outer tuple even in high-speed networks. 

The R* optimizer’s modelling of message costs was very accurate, a 

necessary condition for picking the correct join site. Estimated message 

costs were within 2% of actual message costs when the cardinality of the 

table to be shipped was well known. Errors in estimating message costs 

originated from poor estimates of join cardinalities. This problem is not 

introduced by distribution, and suggestions for alleviating it by collecting 

join-cardinality statistics have already been advanced [MACK 861. 

The modelling of local costs actually improves with greater distribution of 

the tables involved, because the optimizer’s assumption of independence 

of access is closer to being true when tables do not interfere with each 

other by competing for the same resource (especially buffer space) within 

a given site. While more resources are consumed overall by distributed 

queries, in a high-speed network this results in response limes that are 

actually less than for local queries for certain plans that can benefit from: 

* concurrent execution due to pipelining. and/or 

. the availability of more key resources - such as buffer space - to 

reduce contqntion. 

Even for medium-speed, long-haul networks linking geographically dispersed 

hosts, local costs for CPU and I/O are significant enough to affect the 

choice of plans. Their relative contribution increases rather than decreases 

as the tables grow in size, and varies considerably depending upon the 

access path and join method. Hence. no distributed query optimizer can 

afford to ignore their contribution. 

Furthermore, the significance of local costs cannot be ignored when con- 

sidering alternative distributed join techniques such as semijoins. They are 

advantageous only when message costs are high (e.g., for a medium-speed 

network) and any table remote from the join site is quite large. However, 

we have shown that a Bloomjoin - using Bloom filters to do “hashed 

semijoins” - dominates the other distributed join methods in 011 c~lws 

inws/igafed, except when the semijoin selectivities of the outer and the 

inner tables are very close to 1. This agrees with the analysis of [BRAT 

841. 

There remain many open questions which time did not allow us to pursue. 

We did not test joins for very large tables (e.g., 100,000 tuples). for more 

than 2 tables, for varying buffer sizes, or for varying tables per DBSPACE. 

Experimenting with n-table joins, in particular, is crucial to validating the 

optimizer’s selection of join order. We hope to actually test rather than 

simulate semijoins, Bloomjoins, and medium-speed long-haul networks. 

Finally, R’ employs a homogeneous model of reality, assuming that all 

sites have the same processing capabilities and are connected by a uniform 

network with equal link characteristics. In a real environment, it is very 

likely that these assumptions are not valid. Adapting the optimizer to this 

kind of environment is likely to be difficult but important to correctly 

choosing optimal plans for real configurations. 
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