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ABSTRACT
In this paper, we address the problem of selectivity estimation in
a crowdsourced database. Specifically, we develop several tech-
niques for using workers on a crowdsourcing platform like Ama-
zon’s Mechanical Turk to estimate the fraction of items in a dataset
(e.g., a collection of photos) that satisfy some property or predi-
cate (e.g., photos of trees). We do this without explicitly iterat-
ing through every item in the dataset. This is important in crowd-
sourced query optimization to support predicate ordering and in
query evaluation, when performing a GROUP BY operation with a
COUNT or AVG aggregate. We compare sampling item labels, a
traditional approach, to showing workers a collection of items and
asking them to estimate how many satisfy some predicate. Addi-
tionally, we develop techniques to eliminate spammers and collud-
ing attackers trying to skew selectivity estimates when using this
count estimation approach. We find that for images, counting can
be much more effective than sampled labeling, reducing the amount
of work necessary to arrive at an estimate that is within 1% of the
true fraction by up to an order of magnitude, with lower worker
latency. We also find that sampled labeling outperforms count es-
timation on a text processing task, presumably because people are
better at quickly processing large batches of images than they are
at reading strings of text. Our spammer detection technique, which
is applicable to both the label- and count-based approaches, can
improve accuracy by up to two orders of magnitude.

1. INTRODUCTION
Crowdsourcing platforms such as Amazon’s Mechanical Turk

(MTurk) (mturk.com) allow users to generate many small tasks
for crowd workers (called Turkers) to complete in exchange for
small amounts of money per task. For example, someone wish-
ing to screen millions of images for offensive content might put
each image on MTurk as a Human Intelligence Task (HIT), offer-
ing 1 cent for each image labeled “offensive” or “inoffensive.” Plat-
forms such as MTurk provide programmatic access to create HITs,
and expose them to more than 100,000 crowd workers. Crowd-
sourcing applications range from human-assisted form processing
(captricity.com) to human-powered grammar correction [4].
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Building robust crowdsourced workflows with reliable, error-
free answers is not easy. One has to consider how to design the
user interface (an HTML form) the crowd worker sees, the price
to pay for each task, how to weed out sloppy or intentionally in-
correct answers, and how to deal with latency on the order of min-
utes to hours as workers generate responses. Several startups, such
as CrowdFlower (crowdflower.com) and MobileWorks (www.
mobileworks.com) aim to make crowdsourced workflow de-
velopment easier by offering simplified and task-specific APIs.

The database community has made several contributions to the
crowdsourcing space. Systems such as CrowdDB [10], Deco [19],
Jabberwocky [1], and our own Qurk [16] make it simpler to write
declarative queries that filter, join, and aggregate data. The ma-
jority of the research generated by the community has focused on
building operators that are human-aware to perform tasks like find-
ing the best photo of a restaurant (a human-powered MAX opera-
tor) [12], or performing entity resolution across images or text (a
human-powered join) [17]. One important but untouched area of
research is in building crowd-powered optimizers.

Our previous work looked at the problem of estimating the cost
of sort and join operators in crowd databases [17]. Given these
costs, one fundamental problem that remains to be addressed to al-
low optimization in a crowd-powered database is that of selectivity
estimation. In selectivity estimation, we are given an expression or
predicate, and we must estimate the number of results that will sat-
isfy the expression. Given cost estimates for individual operators,
input cardinalities, and selectivity estimates, standard cost-based
optimization techniques can be used to estimate overall query cost.

In this paper, we study how to estimate the selectivity of a predi-
cate with help from the crowd. Consider a crowdsourced workflow
that filters photos of people to those of males with red hair. Crowd
workers are shown pictures of people and provide either the gender
or hair color they see. Suppose we could estimate that red hair is
prevalent in only 2% of the photos, and that males constitute 50%
of the photos. We could order the tasks to ask about red hair first
and perform fewer HITs overall. Whereas traditional selectivity
estimation saves database users time, optimizing operator ordering
can save users money by reducing the number of HITs.

In addition to being used inside optimizers to estimate interme-
diate result size and cost, selectivity estimators can be used to esti-
mate answers to COUNT, SUM, and AVERAGE aggregate queries
with GROUP BY clauses. In a crowd context, such answers are
fundamentally approximate, since humans may disagree on answers.
For example, say we had a corpus of tweets and wanted to perform
sentiment analysis on those tweets, identifying how many positive,
negative, and neutral tweets were in our dataset. We could ask our
database to provide us with a count of all tweets grouped by their
crowd-identified sentiment.



The simplest way to perform selectivity estimation and count-
/sum-based aggregation would be to iterate over every item in the
database and ask the crowd to determine its label. Unfortunately,
this requires work proportional to the number of items in the database,
which could be prohibitive for large databases. A more efficient
way to estimate selectivity used in traditional optimizers is to sam-
ple a subset of the rows. This concept naturally translates to the
crowd: in our example, we can generate HITs on a subset of photos,
asking workers to label either the gender or hair color. With enough
samples, we could estimate the popularity of males or redheads in
our dataset. This approach works, but does not take advantage of
humans’ natural ability to batch process multiple elements, espe-
cially for heavily visual items like images [26]. Our hypothesis is
that people can estimate the frequency of objects’ properties in a
batch without having to explicitly label each item.

This observation leads to the first key contribution of this paper:
we employ an interface and estimation algorithm that takes advan-
tage of humans’ batch processing capabilities. Instead of showing
an image at a time, we can show 100 images (or 100 sentences)
to a crowd worker, and ask them to tell us approximately how
many people in the images are red-headed (or how many sentences
have positive sentiment). By aggregating across several batches
and multiple crowd workers, we can converge on the true fraction
of each property. This “wisdom of the crowds” effect, where an
individual may not accurately estimate an aggregate quantity, but
the average of a number of individual estimates does approximate
the quantity, has been well documented [20]. We show that this
approach allows us to estimate aggregates across several image-
based datasets using about an order of magnitude fewer HITs than
sampling-based approaches with comparable accuracy. On textual
datasets, the same effect does not apply: item labeling works better
than batch estimation of an aggregate property of a collection of
short sentences (Tweets, in our experiment.)

The fast convergence of our count-based approach is not without
challenges. Workers are free to provide us with any estimate they
wish, and we must design algorithms to detect and filter out “bad”
workers such as spammers who answer quickly to receive payment
without working in earnest. The algorithm we designed filters out
spammers in both the count- and label-based interfaces by remov-
ing workers whose answer distribution does not match other work-
ers’. Unlike previous techniques that require redundant answers to
each label from multiple workers, here we ask each worker to pro-
cess different random subsets of a dataset. We also identify a solu-
tion to the problem of a coordinated attack by multiple workers, or
sybil attacks [7] from a single worker with multiple identities.

In summary, in this paper, our contributions are:
1. An interface and technique to estimate selectivity for pred-

icates and GROUP BY expressions over categorical data.
Specifically, for a dataset (e.g., a collection of images) the al-
gorithm approximates the distribution of some property (e.g.,
gender) in the dataset. This has applications to query opti-
mization in selectivity estimation, and to SELECT-COUNT-
GROUP BY queries. On image-based datasets, our approach
converges on a correct response with high confidence up to
an order of magnitude faster than traditional sampling tech-
niques. The counting interface also requires less time for
workers to provide estimates than the labeling interface.

2. A method for identifying low-quality or spam responses to
our batched interface. Prior work estimates worker quality
by asking multiple crowd workers to label the same data. We
instead have workers provide us with non-overlapping esti-
mates of the number of items with a property in a given batch.
Workers whose answers are consistently near the global worker

mean are judged to provide quality work, while workers who
consistently stray from the mean are judged to be low-quality.
This approach improves our accuracy on real estimation prob-
lems by up to two orders of magnitude.

3. A technique to identify and avoid coordinated attacks from
multiple workers, or one worker with multiple identities. If
multiple workers agree to provide the same estimate (e.g.,
“let’s report that any collection of 100 photos we see contains
80 males”), our spammer detection technique may be thrown
off from the true value. To avoid this attack, we insert a
random amount of verified gold standard data into each HIT,
and show that this technique can weaken the strength of an
attack in proportion to the amount of gold standard data used.

We show through experiments that our approaches generalize to
several domains, including image estimation and text classification.

2. MOTIVATING EXAMPLES
In this section, we provide three example use-cases that use crowd-

based counting and selectivity estimation. While our examples uti-
lize features of our Qurk [17] crowd-powered workflow system,
these optimization opportunities are available in all such systems.

2.1 Filtering Photos
Consider a table photos(id, name, picture) that con-

tains names and references to pictures of people. Suppose we want
to identify photos of red-headed males. In Qurk, we would write:
SELECT id, name
FROM photos
WHERE gender(picture) = ’male’
AND hairColor(picture) = ’red’;

In this case, gender and hairColor are crowd-powered user-
defined functions (UDFs) that specify templates for HTML forms
that crowd workers fill out. The gender UDF has the following
definition in Qurk:
TASK gender(field) TYPE Generative:

ItemPrompt: "<table><tr> \
<td><img src=’%s’> \
<td>What is the gender of this person? \

</table>", tuple[field]
Response: Choice("Gender", ["male","female"])
BatchPrompt: "There are %d people below. \

Please identify the gender \
of each.", BATCHSIZE

Combiner: MajorityVote

This UDF instantiates an ItemPrompt per tuple, with a choice/radio
button that allows the worker to select male or female for that tuple.
It is common for workers to answer multiple such ItemPrompts
in a single HIT, and in such situations, the generated HIT is pre-
ceeded with a BatchPrompt, letting the worker know how many
image labels are ahead of them. Qurk identifies the optimal batch
size automatically. Multiple worker responses may be required to
avoid a single incorrect worker from providing a wrong answer,
and the MajorityVote combiner takes the most popular worker
response per tuple. For details on the query and UDF format in
Qurk, see [17].

As we describe below, a good crowd-powered optimizer will
identify gender(picture) = ’male’ as filtering out less records
than hairColor(picture) = ’red’ and first filter all tu-
ples based on hair color to reduce the total number of HITs.

2.2 Counting Image Properties
Our second example involves grouping and aggregating data.

Imagine a table shapes(id, picture) that contains several
pictures of shapes that vary in fill color and shape. If one wanted to
generate an interface to navigate this collection of images, it would
help to summarize all colors of images and their frequency in the
dataset, as in the following query:



SELECT fillColor(picture), COUNT(*)
FROM shapes
GROUP BY fillColor(picture);

This query would also provide a histogram of all image colors in
the shapes table. Here, fillColor is a crowd-based UDF that
asks a worker to specify the color of a shape from a drop-down list
of possible colors. These colors would be predefined, or a crowd-
based technique for listing potential colors [22, 3] could be used.

2.3 Coding Tweet Text
Our final example shows how our approaches apply to datatypes

beyond images. It is common in social science applications to
“code” datasets of user data. For example, in a study of Twitter
usage habits by André et al. [2], the authors had crowd workers
categorize tweets into categories such as “Question to Followers,”
or “Information Sharing.” Given a table of tweet content such as
tweets(authorid, time, text), one might have crowd
workers code those tweets in the following way:
SELECT category(text), COUNT(*)
FROM tweets
GROUP BY category(text);

Here category is a crowd-based UDF that presents workers
with a form asking them to code each tweet. Having a fast way
to provide a histogram over such textual data would be valuable to
social scientists and other data analysts.

3. COUNTING APPROACH
Our fundamental problem comes down to estimating the number

of items in a dataset that satisfy a predicate or belong to a group.
These counts can be used to answer aggregate queries or estimate
selectivities. We explore two methods for counting: a label-based
approach and a count-based approach. The label-based approach is
based on traditional sampling theory. We sample tuples and ask the
crowd to label the category assigned to each tuple (e.g., whether a
photo is of a male or a female) until we achieve a desired confidence
interval around the frequency of each category. The count-based
approach displays a collection of items to a worker and asks them
to approximate how many of the items fall into a particular category
(e.g., the number of images with males displayed).

Both approaches result in estimates of the true frequency of each
category that, in the absence of faulty worker responses, converge
on the true frequency. Because in practice all crowdsourced worker
output has some uncertainty, all crowd-powered techniques result
in approximate answers. We study the convergence rate and accu-
racy of various approaches in Section 6.

We assume that categories are known ahead of time (e.g., we
know the domain of the GROUP BY attributes). One interesting
line of research lies in how we can determine all of the distinct
categories covered by our estimation technique. Various projects
explore how this can be done through crowdsourcing [3, 22].

3.1 User Interfaces for Count Estimation
Crowd worker user interface design, or the specification of tasks

and user interfaces that workers see when they perform a HIT, is
an important component in acheiving good result quality. Asking
questions in a way that does not bias workers to provide incorrect
answers, and providing interfaces that make it as hard to provide an
incorrect answer as it is to provide a correct one is crucial.

After some iterative design, we generated two interfaces that
correspond to the two approaches above: a label-based interface
prompts workers to provide a label for each item displayed, and a
count-based interface shows workers a collection of items and asks
them for an approximate count of items with a given property.

Figure 1: The label-based interface asks workers to label each
item explicitly.

Figure 2: The count-based interface asks workers to estimate
the number of items with a property.

Label-based interfaces are common on MTurk, as image labeling
is a popular task. Our label-based interface is seen in Figure 1. We
show several items, in this case images of people, in a single HIT.
A prompt at the top of the HIT asks workers to select the best label
for each image. Following each image, we see two radio buttons
that the worker toggles between to identify the gender of the person
in the image. After going through several images (in this case, the
batch size of images per HIT is 2), the worker clicks the Submit
button. We error-check the submission to ensure all of the radio
button pairs have a selection, and upon successful submission of
the HIT, offer the worker another set of 2 images to label.

Count-based interfaces are less common on MTurk, so this inter-
face required more design. The interface we used for count-based
experiments is in Figure 2. A prompt at the top of the HIT asks
workers to identify how many images have a particular property.
Below that general instruction, workers are prompted to enter the
number of males and females in the collection of images below. To
estimate the frequency of two categories such as male and female,
we only need to ask about the number of items in one of those cat-
egories. We included both questions in the screenshot to illustrate
the appearance of a multi-class interface. Fixed-width images are
displayed below the questions in tabular format. With more images
(e.g., 100) per page, the worker may have to scroll to reach the sub-
mit button. When a worker pushes submit, the interface alerts them
if they have not filled in all of the requested counts, and performs
bounds-checking on the inputs to ensure they are non-negative and
add up to less than or equal the total number of images displayed.

Our count-based interface design has several alternatives. One
interface would resize images so that, as more images are displayed
on a page, the thumbnails shrink and no scrolling is required. We
avoided this design so that we could study batch size (the num-
ber of images on a page) independent of task difficulty (identifying



properties of images as they shrink). Another design choice in-
volves where to place the prompts (i.e., the questions asking how
many males are displayed). We found that placing prompts at the
top of the page made it easier for first-time workers to learn the
task without scrolling to the bottom of pages with large batch sizes.
Scrolling to the top of the page to fill in an answer after count-
ing items did not seem to disturb veteran workers. Finally, there
are several options for the wording of the prompts. We can ask
workers to approximate the number of males, or prompt them for a
precise measurement, and study the effect on result accuracy. We
prompted workers to tell us “About how many” items have a given
property, but allow them to be as precise as they desire. We leave a
study of the effect of wording on performance for future work.

As we will show in Section 6, the count-based interface allows
a batch size of about an order of magnitude more images than the
label-based interface. Given the lack of prior work on count-based
interfaces, it is likely that further user studies and design itera-
tions could lead to more effective count-based interfaces. It is less
likely that label-based interfaces, which are so popular and well-
researched on MTurk, will see much improvement.

3.2 Modifying UDFs to Support Counting
The label-based approach to estimating the fraction of items with

a property simply requires sampling the tuples in a table and apply-
ing a labeling UDF. Because we can apply the UDF directly, the
user interface for the label-based approach can be derived directly
from the UDF definition used in Qurk with no additional infor-
mation. In the case of the count-based approach, however, new
prompts are necessary to give the worker instructions on how to
answer each query.

As an example, we modify the genderUDF from Section 2.1 to
include prompts for counting the males and females in the dataset.
Below is the original gender defintion with two additions in bold:
TASK gender(field) TYPE Generative:

ItemPrompt: "<table><tr> \
<td><img src=’%s’> \
<td>What is the gender of this person? \

</table>", tuple[field]
PropertyPrompt: "About how many of the %d \

people are %s?", BATCHSIZE, PROPERTY
Response: Choice("Gender", ["male","female"])
BatchPrompt: "There are %d people below. \

Please identify the gender \
of each.", BATCHSIZE

CountPrompt: "There are %d people below. \
Please provide rough estimates for how \
many of the people have various \
properties.", BATCHSIZE

Combiner: MajorityVote

The first addition is PropertyPrompt, that specifies how to
ask about each individual property. We also add CountPrompt,
that specifies the overall instructions for the entire HIT. With these
modifications, the Qurk optimizer can now prompt workers with
the count-based interface for selectivity estimation and SELECT-
COUNT-GROUP BY queries.

3.3 Estimating Overall Counts with Workers
The “wisdom of the crowds” [20] says one can get a reasonable

estimate for the number of jelly beans in a jar by asking many peo-
ple to estimate the number of beans in the jar and taking the average
of their responses. Our problem is not quite this simple, because the
population of items is large and the individual items are not com-
pact enough to show every person all of the items at the same time.
Instead, we show each worker a random sample of the items in our
collection, and ask them how many items have some property. For
example, we can take a sample of 100 images from a collection of
several million, and ask a worker to approximate how many of the

people in the images are male. There are three sources of error in
measuring several of these samples across multiple workers:
Sampling error. In traditional sampling theory, we see errors in
approximations derived from samples due to variations in the indi-
vidual subsets that are selected.
Worker error. Workers provide incorrect responses due to human
error, or because entering nonsensical or less-than-acurate results
allows them to complete more tasks for money.
Dependent samples. Platforms such as MTurk allow workers to
perform more than one of the available HITs, meaning that multiple
responses can be received from each worker, and often spammers
are the workers who complete the most tasks.

By the central limit theorem [9], taking the average of all worker
estimates of the fraction of items with a given property reduces the
sampling error. The average of N such samples has a standard
deviation proportional to 1√

N
, implying that averaging more sam-

ples probabilistically increases accuracy. While the sampling error
can be reduced by averaging, worker error and dependent samples
make taking an average inaccurate. Furthermore, it is difficult to
model error bounds for these sources of error because worker be-
havior is unpredictable.

Limiting each worker to a single response would reduce serious
error due to spammers, but goes against the design of platforms
such as MTurk, in which the majority of the work is often done by
a small group of workers [10]. The majority of workers provide
accurate results, and one should allow these workers the opportu-
nity to do as much work as possible. Still, there is a danger in the
spammer who sometimes provides the largest number of responses
due to the speed at which they can generate inaccurate results. It is
better to design algorithms that detect, discount, and block future
results from these workers while letting other workers productively
produce results. We explore a solution to this problem in Section 4.

3.4 Comparing the Approaches
The label- and count-based approaches see different rates of worker

error, as they provide different interfaces and prompts to generate
their estimates. They also incur different sampling errors because
of the differing amount of items that workers are willing to process
for a price in the different interfaces. We will study worker error in
the experiments, and for now focus on how each approach results
in different amounts of items sampled in a given number of HITs.

The approach to getting an item’s label (e.g., identifying a pic-
ture of a flower as being blue) through multiple crowd workers is
well-studied [14, 15]. At a high level, we retrieve R redundant la-
bels for each item, usually around 3–7. The redundancy allows us
to run majority vote-like algorithms amongst the multiple worker
responses to boost the likelihood of a correct item label. A label-
based interface supports batching BL item labels per HIT, usually
in the range of 5–20. For example, to label 500 pictures as male
or female, we may display 10 images per HIT, and ask 5 workers
to provide labels for each image. This would require 5∗500

10
= 250

HIT assignments to complete the labeling task. More generally,
with a budget of H HITs, each HIT containing BL items to be la-
beled, andR redundant labels per HIT, the number of items we can
label (NL) is NL = BL

⌊
H
R

⌋
.

In the count-based approach, we are not labeling particular items
precisely, and our spammer detection technique does not require re-
dundant responses. We can batch BC items per HIT, usually in the
range of 50–150, since workers are performing less work per item
labeled (they are counting or estimating images in chunks rather
than explicitly working to label each image). In our image label-
ing example with 500 images of people and a batch rate of 75, we
examine all images in 7 HITs, rather than the 250 it took to label



images precisely. More generally, with a budget of H HITs and
each HIT containing BC items to be counted, the number of items
we can count (NC ) is NC = BCH.

Putting aside differences in worker error in each approach, we
can compare how many items can be counted or labeled in our ap-
proach given a budget ofH HITs. Taking the ratio of items counted
to items labeled and assuming H is a multiple of R, we get

NC

NL

=
BCR

BL

.

In our running example (BL = 10, R = 5, BC = 75), we end
up with workers reviewing 37.5 times as many items counted as
labeled for a given budget.

3.5 Estimating Confidence Intervals
In both the label- and count-based approach, a user wants to

know that the estimate provided to them is within a certain margin
of error from the true distribution of item properties. For example,
in selectivity estimation, a user might be comfortable with a rela-
tively wide margin of error between two filters, say 10%, as small
errors will not harm query processing or cost too much. When
performing an aggregate query, however, the user might prefer to
attain high confidence in their results, demanding the confidence of
the gender split in their dataset to be near 1%.

In the label-based approach, we can consider each item’s label
a Bernoulli random variable (a categorical random variable in the
case of more than two property values) with some probability of
each property value occurring. For example, when estimating the
fraction of male photos in a collection after labeling around 100,
the gender displayed in any photo is modeled as a Bernoulli vari-
able with probability of being male pmale. If we have labeled 40
photos as male, we can estimate pmale as 40

100
= 0.4. Using sam-

pling theory, we can either utilize the normal approximation of the
confidence interval for binomial distributions or the more accurate
Wilson score [24] to determine, with high probability, how close
the actual answer is to the estimate.

The count-based approach works similarly. If we display BC

items (e.g., photos) per HIT and have workers provide us with a
count (e.g., the number of males), we can model this count as a bi-
nomial random variableC that is distributed asBinomial(BC , pmale).
As we collect countsCi from various HITs, the average of the frac-
tions Ci

BC
will approach pmale and we can again employ the Wilson

score or normal approximation of the confidence interval.
In practice, some of the responses will come from spammers, and

assuming we can detect them using techniques in Section 4, we can
calculate a confidence interval on the remaining values. Addition-
ally, instead of calculating confidence intervals, one might employ
resampling techniques such as the bootstrap [8] to estimate these
values on smaller sample sizes.

4. IDENTIFYING SPAMMERS
We now discuss how to identify spammers using count-based in-

put from crowd workers. Spammer identification for label-based
approaches is well-studied [14, 15], and so we focus on count-
based spammer identification.

Unlike the label-based approach, the count-based one does not
require redundant responses (each worker sees a random sample of
the items in our dataset), and the responses are continuous/ordinal
(workers provide us with sample property estimates which map to
fractions in the range [0, 1]). While the spam detection techniques
we discuss below apply to our estimation problem, it is more gener-
ally applicable for any worker response for data which is sampled
from a continuous distributions concentrated around some mean
(e.g., counts, movie ratings, best-frame selection [5]).

A useful side-effect of our algorithm working on non-redundant
worker output is that, while we designed it for count-based inputs,
it also works for label-based inputs where no redundant labels are
collected. If a worker labels five sampled images as male and 20 as
female, we can feed these numbers into the spammer detection al-
gorithm below to determine how likely that worker is to be a spam-
mer. We will show in Section 6 that collecting redundant labels
requires excessive amount of worker resources for the label-based
approach, so the applicability of our spammer detection technique
to non-redundant label-based data is also a benefit of the approach.

We will first define some variables and terms used in our algo-
rithmic descriptions. With these definitions, and some insights we
got while engineering an effective algorithm, we will conclude with
the algorithm that we will show works well in Section 6.

4.1 Definitions
Say we have N workers T1, ..., TN . Each worker Ti completes

Hi HITs, and for each HIT provides us with countsCi1, ...,CiHi of
the number of items in that HIT with a particular property. If there
are BC randomly sampled items in each HIT, we can convert Cij

(count from HIT j reported by worker i) into a fraction Fij =
Cij

BC
.

We wish to calculate F̂ , an approximation of F , the overall frac-
tion of items with a given property in our population. If we know
there are no spammers, we could simply average the worker re-
sponses to get F̂ =

∑
i,j Fij∑
i,j 1

. However, given the presence of
spammers, we would like to discount workers with bad results. We
will accomplish this by identifying workers as potential spammers
and assigning each worker a weight θi ∈ [0, 1], with 0 representing
a spammer and 1 representing a worker with high quality.

4.2 Spammer Detection Algorithm
Given these definitions, we develop an algorithm for identifying

spammers. We estimate θi for all workers Ti. Our approach as-
sumes that the majority of workers are not spammers, and that most
workers will be able to reasonably estimate the correct answer to
HITs. This means a spammer is a worker whose answers deviate
substantially from the other workers’ distribution of answers, and
in particular from the mean of all responses. We propose an iter-
ative algorithm that estimates the mean, uses that estimated mean
to identify spammers, and then repeats, re-estimating the mean and
finding spammers until a fixed point is reached.

Because spammers often answer many questions (often they are
trying to maximize profit by doing many HITs cheaply), we limit
the contribution of an individual worker to the overall estimate by
first averaging that worker’s estimate across all of the HITs they
have submitted by calculating Fi =

∑
j Fij

Hi
.

We can now compute our first estimate of F̂ as F̂initial =
∑

i Fi

N
.

Here F̂ is our current estimate, where each workers’ contribu-
tions are limited by averaging over all of their answers. To sum-
marize a worker’s contribution, we also tried to use a worker’s first
response or to pick a random worker response, but we have found
these approaches to be more fickle when a worker makes a single
mistake that is not representative of their overall contribution.

We then compute θi, the weight of each worker, by computing
the bias of their average response Fi relative to the current global
estimate F̂ . We also threshold, disallowing workers who are too far
from the mean estimate. More precisely, in each iteration:

θi =

{
1− |Fi − F̂ |, if |Fi − F̂ | < λ

0, otherwise
.

Setting θi = 1−|Fi−F̂ |when |Fi−F̂ | < λ assumes an absolute
loss function. In our experiments using a squared loss function did



not noticeably change results. For θi values to be accurate, we
must calculate the global mean estimate F̂ iteratively after every
recalculation of θ values, as above, weighting by the θ values:

F̂ =

∑
i θiF̂i∑
i θi

.

In our experiments in Section 6, we show that setting λ = 0.14
(approximately two standard deviations from the mean) tends to
remove outlier workers while still including workers with moderate
bias. This technique can be thought of as iterative outlier detection:
workers whose performance is outside of a 95% confidence interval
(two standard deviations) are removed. Our use of a λ cutoff at
which θi becomes 0 comes from the literature on statistics that are
robust to outliers, in particular trimmed means [23]. The biggest
diversion from the traditional trimmed mean approach was to trim
outlier workers rather than individual worker responses, and this
observation gave us the biggest estimator accuracy improvement.

The algorithm iterates between estimating F̂ and recalculating
θi’s until convergence. Once we have identified spammers, we
no longer need to protect against a disproportionate number of re-
sponses from a single spammer, so we calculate our final F̂ based
on individual worker responses:

F̂final =

∑
i,j θiFij∑

i,j θi
.

5. AVOIDING COORDINATED ATTACKS
In the previous section, we presented an algorithm that estimates

the fraction of items with a given property (F ) by preventing any
one worker from skewing the estimate F̂ toward their own by quickly
responding to many HITs. This is because we calculate F̂ as the av-
erage of each worker’s average response, rather than the average of
all worker responses. Each worker only contributes a single value
toward the average regardless of how many HITs they performed.

The algorithm described in Section 4 is still vulnerable to a co-
ordinated attack from multiple workers, however. While we have
not seen a coordinated attack in our experiments, there are reports
of sophisticated Turkers who deploy multiple accounts to subvert
worker quality detection algorithms [13]. If several workers, or a
single worker with multiple automated accounts, all submit esti-
mates Fij such that several values of Fi are similar to each other
but far from the true mean, they will be able to skew their worker
quality estimates in their own favor so that they are not blacklisted,
or receive bonuses or additional pay for doing good work.

Note that an attack in which workers agree to submit random
noise Fij estimates is less effective than one in which workers co-
ordinate on a single attack value. This is because the average-based
algorithm in Section 4 is robust to random noise. Even an attack
that is not random but has workers provide different values from
one-another would result in less of an effect, as the algorithm would
iteratively remove the most extreme worker Fi values.

Susceptibility to coordinated attacks is not limited to our algo-
rithm. Any crowd-powered approach that rewards workers in the
same range as other workers is susceptible. One such example is
an approach by Bernstein et al. [5] to identify the best video frame
by having crowd workers agree on the best scenes in the video.

A simple way to avoid this is to collect “gold standard” data with
known labels on several items {G1, ..., GM} [11]. One can then
generate HITs over that gold standard data for workers to complete
to ensure that they accurately count data from a known distribution.
We will see in Section 6 that in a few HITs we can sample several
thousand items, and so collecting a few tens or hundreds of gold
standard items is not too resource-intensive.

The simple gold standard approach has several issues. First, so-
phisticated workers could learn to identify the page with the gold

standard data and the correct answer to the estimates for that page.
Second, because the distribution of the number of tasks completed
by each worker is zipfian [10], many workers will only complete
one or two tasks. This limitation means that the gold standard
task would constitute the bulk of the contribution of many work-
ers, which is not ideal.

We propose a different use of the gold standard data. Rather
than generate an entire gold standard task, we randomly distribute
the gold standard items throughout each task. To do this, we first
vary the number of gold standard items with a given label in each
task a worker completes. For example, if a worker is estimating the
number of men and women in a task with 100 images, we will ran-
domly place between 1 and 20 gold standard images with known
labels into the 100. When a worker tells us the number of items
with a property in the task they just completed (say, 25 males in
100 images), we subtract the number of gold standard images with
that property (e.g., 13 gold standard male images) from their count
when calculating the fraction Fij . We cannot just check how the
worker did on the gold standard items, because we are not asking
the worker to label individual items, but to estimate the overall fre-
quency of some property.

Using this approach, there is no one repeating gold standard HIT,
as some gold standard data is mixed into every HIT. As a result, at-
tackers can not identify and correctly solve the gold standard HIT.
Additionally, we can continue to measure worker quality through-
out the worker’s contributions.

5.1 Correcting Worker Responses
Formally, we show a worker R items at a time, where Gij gold

standard items are introduced into the jth HIT shown to worker i.
When a worker tells us there are Cij items with a given property,
we subtract the Gij known items when calculating the fraction:

Fij =
Cij −Gij

R−Gij
.

In this approach, since each worker sees a different fraction of
gold standard data, two or more workers who are colluding to skew
F to some value should no longer agree once the gold standard
data is removed. If these attackers coordinate in repeating the same
value Cij for each task, the estimate Fij will still vary per task due
to the randomness in Gij . The larger the variance of Gij is per hit,
the larger the variance will be in the corrected Fij . This variance
will reduce the power of disruption of a coordinated attack, and
increase the probability that attackers will be removed as outliers
because their answer varies from the overall mean.

In contrast, non-colluding workers who estimate the true value
of F should still agree once the gold standard data is removed.

A second benefit of our approach comes in cases where the counts
of items with a given property that a worker reports are smaller
than the number of gold standard items with that property in a HIT
(Cij < Gij). In these cases, a worker’s Fij estimate will be nega-
tive, which is not possible. Aside from boundary situations where
some user error results in negative Fij estimates that are near 0, we
can discard such workers as spammers. This benefit works against
individual attackers and coordinated attacks by outright removing
some workers with negative fraction estimates.

The second benefit is value-dependent, as attackers who sub-
mit low count values are more likely to be identified by the ap-
proach than attackers who submit high counts. Luckily, there is
symmetry to the value-dependence: assuming we can determine
early which property the attackers will say is least frequent, we
can increase our likelihood of identifying attackers by providing
a higher proportion of gold standard examples of that type, or by
providing small amounts of gold standard data of the less frequent



types. For example, if workers estimate that 90% of pictures are of
males, then they are implicitly claiming that 10% are of females. A
small amount of gold standard female samples would allow us to
spot spammers. Identifying the best classes of gold standard data to
use becomes more challenging as the number of classes increases,
since one has to identify classes that are both low-frequency and
that attackers are coordinating to spam. We leave these challenges
to future work.

Our approach is not without drawbacks. The most direct is that
utilizing more gold data on average results in less information from
each worker on average. If on average we use G gold standard
items per task, and have R items per HIT total, then on average we
require 1

1−G
R

more HITs to cover the same amount of work. For

example, if half of the data is gold, we require twice as many tasks
to be completed to cover as much real data. Another drawback is
that collecting gold standard data takes time (and possibly money),
which in practice limits the maximum value of G.

5.2 Random Gold Standard Selection
For our gold standard technique to be effective, we need to intro-

duce a different fraction of gold standard data into each HIT, while
keeping the average amount of gold standard data used per HIT at
some level. This allows users to control how much of their budget
is spent on gold standard data.

Given a user-specified average number of gold standard items
µ, we intersperse Gij = µ + G gold standard items into each
task, where G is a random integer chosen uniformly from the range
[−g . . . g]. We require that the user pick µ > g and R − µ > g
to prevent Gij from falling below 0 or exceeding R. In our exper-
iments we use g = .2R, though even doubling this value did not
meaningfully change our findings.

6. EXPERIMENTS
The goal of our experiments is to understand how the conver-

gence rates and accuracy of count-based and label-based count-
ing/selectivity estimation compare on these different datasets. We
show that the count-based approach has similar accuracy and much
faster convergence than the label-based approaches on images, but
does far worse on textual data (tweets). Finally, we simulate the ef-
fect of sybil attacks, and show scenarios in which our randomized
gold standard approach averts the attacks.

6.1 Datasets
We utilize three datasets in our experiments, each of which is

aligned with one of the three motivating examples in Section 2.
Face Gender. The dataset we use for most of our performance
evaluation is the GTAV Face Database [21]. This dataset contains
1767 photos of 44 people. For each person, there are between 34
and 65 images of that person in different poses. We manually la-
beled each person in the dataset as male or female, so that we could
verify our estimation techniques to determine the number of im-
ages in the dataset of a given gender. Some sample images from
this dataset can be seen in Figures 1 and 2.

Shapes and Colors. To test the difficulty of perceptual tasks, we
generated an image dataset of shapes. Our generated dataset con-
sists of triangles, circles, squares, and diamonds. The fill color of
each shape is either yellow, orange, red, green, blue, or pink. Ad-
ditionally, each shape has an outline that is one of these colors. For
variety, shapes are sized to fit various proportions inside a 100x100
pixel box. An example can be seen in Figure 3. We generated 1680
such sample shapes.

Figure 3: Example shapes in our Shapes and Colors dataset.

Tweet Categorization. To test our approaches on non-image data,
we also ran our approximation techniques on tweet text. Our tweets
come from an initial collection of approximately 4200 from André
et al., who studied the value of tweet content to Twitter users’ fol-
lowers [2]. Tweets in this study were categorized using Crowd-
Flower into eight categories. The authors of that paper found sev-
eral tweets to which it was hard to assign a single label, so we
selected a subset of 2530 tweets in the three most stable categories:
Information Sharing, where a user links to a piece of information
(e.g., Awesome article explaining the credit crisis: http://...),
Me Now, where a user says what they are doing now, (e.g., Just fin-
ished cleaning the apartment!), and Question to Followers, where
a user poses a question (e.g., What is your favorite headphone
brand?). We use our techniques to determine the fraction of tweets
in these categories. “Coding” tasks, where a crowd is asked to cat-
egorize various items, are common in the social sciences, and we
imagine our techniques may be useful in these situations.

For all datasets, since we have ground truth data on their labels,
we can generate artificial datasets by sampling at different frequen-
cies of labels. For example, we can generate a version of the face
dataset with 10% males or 50% males by sampling more heavily
from a subset of the data. For the faces and shapes dataset, all sam-
ples are of size 1000, meaning that regardless of the property dis-
tribution, we always select 1000 images on which to estimate prop-
erties. On the tweet dataset, our samples are of size 2500 tweets.

6.2 Estimating Counts
To quantify the error of our different algorithms, we tested sev-

eral estimations on MTurk, varying parameters. For each param-
eter setting, we generated 1000 HITs. We tried the label-based
and count-based worker interfaces, as shown in Figures 1 and 2.
When counting, we used per-HIT batch sizes of: 5, 10, 25, 50, 75,
100, 125, and 150. For labeling, we used batch sizes of: 5, 10,
15, and 20. In label-based scenarios, we collected redundant la-
bels (generating 200 HITs, with 5 workers completing each HIT)
and no-redundancy labels (generating 1000 HITs, with 1 worker
completing each HIT). We use Ipeirotis et al.’s approach [14] to
combine redundant answers. We ran tests using the Faces, Shapes,
and Tweet datasets. To understand the effect of varying selectivity,
we sampled the Faces dataset such that it had 1%, 10%, 25%, 50%,
75%, 90%, and 99% male faces. To ensure repeatability, we ran
each experiment at least twice during business hours in the East-
ern US time zone. For all experiments, we paid workers $0.01 per
HIT, avoiding higher pay increments because batching more than
one item per HIT was possible even at this pay increment.

Overall Error. We start by studying the errors of various ap-
proaches on the Faces dataset. Figure 4 shows the error rates of the
label- and count-based approaches. For the label-based approach,
we report the errors with redundant labels (LabelR) and without
(LabelNoR). For the count-based approach, we feed worker values
into the thresholding-based spammer-detection algorithm described



Figure 4: Chart of average error by approach, with error bars
for min/max values. Numbers above each bar are batch size.
LabelNoR: labels, no redundancy. LabelR: labels, 5-worker re-
dundancy. Thresh: counts, spam detection. Avg: counts, no
spam detection. Thresh and Avg have the same inputs.
in Section 4 (Thresh) and into a simple average of all worker-reported
counts (Avg). We also tried the median and the average of the mid-
dle 5% and 10% of answers (not shown), but they were as vulner-
able to spammers as the average. The bar charts displayed in this
figure represent the average error across the experiments we ran,
with the error bars representing the minimum and maximum error
values. Error is calculated as the absolute difference between the
estimated fraction and the ground-truth result of each experiment
using all 1000 HITs in each experiment. We break the results down
by the batch size of the various approaches.

We see that when using labeling, getting multiple labels per item
does not appear to reduce the overall error. That is, we do not
have evidence of heavy spamming of these interfaces, and we do
have evidence that across several experiments, non-redundant la-
bels have commensurate error rates to redundant labels. Because
user error is low, sampling error dominates the error term in the
labeling-based approach, and the 5× increase in non-redundantly
sampled items in LabelNoR reduces the overall error. For the count-
based approaches, we see that taking a simple average across all
worker-provided counts generates error rates up to 25%. Feeding
that same count data into the spam-detecting thresholded approach
generates error rates on par with the label-based approaches. In
terms of error rates on 1000 HITs, it is possible to achieve simi-
lar results using label- and count-based approaches, although the
count-based approach requires spam detection. The same count-
based spam detection approach could be used on the non-redundant
label-based approach should spammers strike.

Interface Latency. While the largest batch size we tried in the
count-based interface was 150, we limited label-based interfaces to
batching at most 20 items per HIT. Anecdotally, even at a batch
size of 20, we would sometimes run into situations where work-
ers would take a long time to pick up our tasks because they were
bordering on undesirable. More importantly, as evidenced by Fig-
ure 5, workers took longer to label 20 images than they did to report
counts on 150. In this figure, we show different experiments along
the X-axis. Along the Y-axis, we display a box-and-whiskers plot
of the number of seconds to complete each HIT. For each exper-
iment, the edges of the box represent the 25th (bottom) and 75th
(top) percentile, while the red line inside each box represents the
median seconds to complete a HIT. The whiskers, or ends of each

C150
Face
0.1

C100
Face
0.1

C50
Face
0.1

C5
Face
0.1

L20
Face
0.1

L10
Face
0.1

L5
Face
0.1

C50
Face
0.5

C50
Shape

C50
Color

C50
Tweet

L20
Tweet

0

10

20

30

40

50

60

70

80

HI
T 

co
m

pl
et

io
n 

tim
e 

(s
ec

on
ds

) o
f v

ar
io

us
 e

xp
er

im
en

ts

Figure 5: Box-and-whisker plots of the number of seconds
workers took to complete tasks. The top of each box is the
75th percentile completion time and the bottom is the 25th per-
centile. Red lines indicate medians. Whiskers (error bars) rep-
resent minimum (bottom) and maximum (top) values.

dotted line, represent the minimum and maximum seconds to com-
plete a HIT in that experiment. Maximums are often not shown,
because of pathological cases where workers would pick up a HIT
but not submit it until a maximum of 5 minutes was up.

The different experiments are labeled on the X-axis. Experi-
ments labeled C150, ..., C5 are count-based with batch size 150,
..., 5. Experiments labeled L20, ..., L5 are label-based with batch
size 20, ..., 5. In this section, we focus only on experiments for
Face 0.1 (Faces with males representing 10% of the dataset); the
other experiments are described below.

First, we see that the count-based batch 150 approach takes work-
ers less time, in general, than the label-based batch 20 approach.
Decreasing batch size generally reduces the time it takes workers
to complete each task. For any equivalent batch size, the count-
based approach takes less time than the label-based one. The fact
that we paid $0.01 per HIT regardless of batch size suggests MTurk
is not a liquid market for tasks. Because label-based batches larger
than 20 were not guaranteed to be picked up by workers in reason-
able time, and because workers were spending longer on these tasks
than on batch 150 count-based tasks, we decided to limit our batch-
ing at these values. The fact that counting is so much faster than
labeling for images suggests that people are quickly scanning and
estimating the quantities the HITs ask about, rather than manually
iterating through each item and explicitly counting frequencies.

Another factor to consider is the end-to-end query time, or how
long it takes to complete these HITs from start to finish. We omit
a chart due to space limitations, but completing 1000 HITs in the
count-based interface with batch size 150 takes about as long as
1000 HITs in the label-based interface with batch size 20 (30-40
minutes). For smaller batch sizes, 1000 HITs of counting 25 takes
about as long as labeling 5 (15 minutes). Even though label-based
tasks take workers longer to complete per task, we hypothesize that
they are more recognizable to workers and see higher initial partic-
ipation rates until enough workers warm up to the idea of trying a
less familiar count-based interface. In our experience, these end-
to-end times go down as an employer gets a reputation for reliably
paying for work and for providing many similar work units.

Spam Detection Example. In Figure 6, we show an example
where our spam detection algorithm reduces error. Here, the two
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Figure 6: Given input data laden with spammer-provided val-
ues, the spammer-detection algorithm (Thresh) arrives at the
correct estimate while a simple average of inputs (Avg) does not.

top workers finished 349 and 203 HITs of the 1000 HITs with error
rates of about 46% and 26% respectively. In this figure we see that
even after 1000 HITs, simply averaging across worker responses,
more than half of which are spam, results in an inaccurate response.
Applying our threshold-based spammer detection technique allows
us to arrive at the actual fraction of items with high accuracy.

The chart also shows the convergence rate of the two approaches.
Along the X-axis, we vary the number of HITs we sample from the
1000. For each X-axis value, we take 100 subsamples of that size
from the 1000 HITs, and run Avg and Thresh on each of those sub-
samples. We plot the value of the 2nd smallest and 3rd largest es-
timates based on these subsamples, providing a bootstrapped mea-
surement of the 95% confidence interval of the approach at each
HIT size. Note that the gap between the lower and upper lines is
smaller in the case of our threshold-based approach. From this, we
can conclude that in addition to getting an accurate estimate with a
large amount of HITs, we also converge on the correct value with a
small number of them.

By using Thresh, the error in this example is reduced from 16.64%
to 0.06% (a factor of about 265). The largest absolute improvement
of the spam detection algorithm in our dataset brings an error from
26.74% to 1.77% (a 24.97% improvement).

Convergence Rates. As evidenced by the lack of a pattern in error
rates amongst batch sizes in Figure 4, we did not find that batch
size had a significant impact on the accuracy of our estimates at the
limit (after 1000 HITs). As long as workers were willing to take on
a count-based task, the error across batch sizes did not vary.

Since the label- and (spammer-eliminated) count-based approaches
achieve similar error rates at the limit, what separates them is how
quickly they converge on the true value. We explore the conver-
gence rate of various approaches in Figure 7. In this chart, we
measure the rate of convergence of various approaches when the
fraction of males is 0.1. As we vary the sample size of the 1000 to-
tal HITs along the X-axis, we measure the 95% confidence interval
width (e.g., the gap between the top and bottom lines in Figure 6),
using the same subsampling method as the previous experiment.

We see that the fastest convergence rate is achieved with a count-
based interface after spammer elimination with a batch size of 150
(the yellow line closest to the bottom left). The next fastest con-
vergence rate is achieved by the label-based approach with no re-
dundancy and a batch size of 20, followed by the batch size 5

Figure 7: As we vary approaches and batch sizes, what 95%
confidence interval width (Y-axis) do we achieve in a given
number of HITs (X-axis)?

Figure 8: Bar chart of average error per approach, broken
down by selectivity of males in the dataset. See Figure 4 for
a description of the graph elements.

count-based and non-redundant label-based approaches. The two
approaches with the slowest rates of convergence are the batch size
20 and batch size 5 redundant label-based approaches. Essentially,
because they provide no additional protection against spammers,
only 1 out of every 5 redundant HITs for each label provide novel
information. Most importantly, we see that to be within 0.05 of the
correct answer, the batch 150 count-based approach requires about
5 HITs, whereas the next fastest approach takes about 50. Simi-
larly, we reach a confidence interval of .01 in less than 100 HITs
with count-based batches of size 150, whereas the next fastest ap-
proach takes almost 600 HITs.

Varying Selectivity. In Figure 8, we show the error rates of differ-
ent approaches as selectivity changes. While there is no clear trend
for label-based interfaces, the spam-detected count-based technique
(Thresh) sees a slight trend toward higher errors as selectivities ap-
proach 0.5. We see this trend again in Figure 9, where we show
the convergence rate of the 95% confidence interval as we vary the
frequency of males in the Face dataset, with slower convergence as
selectivity approaches 0.5. The results are symmetric for selectivity
.75, .9, and .99, and we omit them to make the graph clearer.



Figure 9: As we vary the selectivity of males, what 95% confi-
dence interval width (Y-axis) do we achieve in a given number
of HITs (X-axis)?

The increased error and reduced convergence rates for selectiv-
ities near 0.5 suggest that there are fewer errors in estimating the
fraction of items with very frequent or very infrequent occurrences.
We hypothesize that as the number of males approaches 50% of the
data, workers have to perform more work to spot subtle differences
in distribution. If the distribution is instead lopsided toward males
or females, a quick glance can identify the outliers (less frequent)
items in the dataset. A second observation also supports this hy-
pothesis. In Figure 5, we see that the time workers spend in the
count batch 50-based interface for male selectivities of 0.1 and 0.5
are about equal. If workers spend equivalent amounts of time on
tasks that are easier to spot-check (e.g., identify 5 males of 50 pic-
tures) than more nuanced tasks (e.g., are there 20 or 25 males out
of 50?), the higher-selectivity tasks will see less accurate results.

A natural question arises: if the confidence interval becomes
wider at higher frequencies, is there still a benefit to the count-
based approach over the label-based one? The result is a rough
draw at the highest level of batching for both techniques.

Generalizing Our Results. To see how well the results on the Face
dataset generalize, we ran similar ones on the Shape and Tweet
datasets. We were able to achieve similar conclusions on the Shape
dataset, with very similar error and convergence rates, but our find-
ings on the Tweet dataset revealed important differences.

On the Shape dataset, we tried two variations. Using a batch size
of 50 for counting and 20 for labeling, we had workers approximate
the border color and shape of two sampled distributions. For shape
frequency estimation, we generated a dataset with 10% triangles,
30% circles, 30% squares, and 30% diamonds. For shape outline
estimation, we generated a dataset with shape outline colors of 10%
yellow, 30% orange, 30% red, and 30% green. These tasks are of
different difficulty: given that the primary color of each shape is
its fill color, identifying outline color is harder than determining
its shape. Still, we found similar result and accuracy trends to the
ones on the Face dataset. Additionally, as evidenced in Figure 5
(see C50 Shape and C50 Color), workers spent about as much time
on these tasks as they did on batch 50 counts of faces at different
selectivities. This further supports our hypothesis that across selec-
tivities and visual task difficulties, workers tend to spend a constant
amount of time per task, varying time on task only with batch size.

Results from the Tweet dataset were more surprising. Workers
were asked to label and count tweets into one of the three categories

Figure 10: As we increase the number of coordinated attackers
(X-axis), the spam detection algorithm eventually reports the
attackers’ values (Y-axis).

described in Section 6.1. This task is harder than other estimation
tasks described so far, since each tweet has to be read and analyzed,
without any visual “pop-out” [26] effects.

Even though the task was harder, in Figure 5, we see that work-
ers spent less time on Tweet counting (C50 Tweet) and labeling
(L20 Tweet) tasks than they did on the images with equivalent batch
sizes. Workers spent significantly less time on the count-based
tasks than the equivalently sized count-based image counting tasks.

The error rates on the tweet datasets were also interesting. The
label-based approach saw larger error rates than label-based im-
age counting techniques, but still provided usable outcomes. The
count-based approaches, on the other hand, saw error rates of up
to 50%, signaling that workers were not accurately providing count
estimates on tweets in our interface. These two error rate results
are consistent with our timing results: as workers spent less time
on a more difficult task, their error rates made the count-based in-
terface less dependable. We consider the implications and future
work suggested by these findings in Section 7.

6.3 Sybil Attacks
Coordinated attacks by a single worker with multiple identities

(so-called “sybil attacks”) or multiple workers attacking in concert
make our count-based approach less effective at catching spam-
mers, since such coordinated attacks can skew our estimate of the
true mean. In Section 5 we described a technique for placing ran-
dom amounts of gold standard data into each HIT to filter out such
attackers, and we now quantify the benefit of this approach.

Because (to the best our knowledge) we did not experience any
sybil attacks in our actual experiments on MTurk, we ran a series
of simulations. We simulate a crowd of 30 workers estimating the
fraction of items with a given property (the actual fraction is 0.5).
Figure 10 shows the effect of this coordinated attack as we increase
the number of attackers on the X-axis. The attackers do not count
the items shown to them, instead agreeing to report the same frac-
tion. The fraction they coordinate on (from 0.1 to 0.9) is shown on
different lines. We use the spam-detection technique employed in
the previous experiments and described in Section 4, without our
gold-standard-based provisions to detect sybil attacks.

We see that as the number of coordinated attackers increases, the
results become less and less accurate, eventually converging on the
fraction that the attackers coordinate on. Larger attack fractions
are initially farther from the overall mean, and so our spammer



Figure 11: How do various amounts of gold standard data re-
duce the effectiveness of a coordinated attack?

elimination technique can withstand and filter more spammers with
large attack fractions. With a large enough fraction of the attackers,
however, the algorithm is always subverted.

In Figure 11, we see what happens when we add random amounts
of gold standard data to each HIT, depicted in two scenarios. The
dotted lines represent coordinated attackers providing response frac-
tions equal to 0.9 pitted against HITs with various amounts of gold
standard data ranging from 0% to 90% of each HIT on average.
The solid lines represent coordinated attacks from attackers who
provide a false value of 0.1, again pitted against HITs with varying
average gold standard amounts.

We see that when attackers provide an incorrect value of 0.1
(solid lines), adding between 10% and 30% gold standard data
nearly eliminates their effect. This shows the first benefit of gold
standard data: outright identifying spammers whose corrected re-
sponses are negative. By the time workers see on average 30%
gold standard data, all of the coordinating attackers are eliminated
in all scenarios except for when there are 27 coordinating attack-
ers. In that last case, one attacker was not eliminated because their
assigned gold standard data was exactly 10%, which helped bring
down the small sample that the remaining three accurate workers
provided. More broadly, in expectation we eliminate 50% of attack-
ers when the average amount of gold distributed equals the attack
fraction, with linear increases in gold resulting in a linear amount
of more attackers detected.

When attackers provide an incorrect value of 0.9 (dotted lines),
it takes more gold standard data to neutralize their attack. This
is because the benefit of outright spammer elimination is not avail-
able: inserting on average 20% males into tasks for which attackers
claim 90% males will not result in a negative fraction after correc-
tion. Still, the other benefit of the gold standard approach kicks in
with enough gold data (around 40%-70%): attackers who agreed on
a single attack value are spread out by the random amounts of gold
standard data on each HIT, reducing the coordination in their attack
and making them easier to spot with spam elimination techniques.

As we discuss in Section 5, there are several ways to eliminate
attackers that collude on a high value, and leave this to future work.

7. TAKEAWAYS AND DISCUSSION
Our results show that for estimation problems on datasets that ex-

hibit visual “pop-out” effects such as images, count-based estimation
is as accurate as label-based estimation, but arrives at an accurate

result up to an order of magnitude faster. For datasets that require
crowd workers to examine each item in detail, such as text classi-
fication, the label-based approach provides better accuracy. In our
experience, the label-based approach works better with no redun-
dant labels, instead using each additional HIT to sample more of
the dataset and increasing the amount of information we learn.

Our spam detection algorithm successfully and significantly im-
proved count-based estimation accuracy, in some cases by more
than two orders of magnitude, over techniques such as taking the
average or median worker result. While we did not experience
label-based spammers, if the label-based approach is susceptible
to spammers in the future, we can apply our count-based spammer
elimination technique to the counts of non-redundant labels, thus
eliminating spammers without requiring redundant labels.

In simulations, we showed how effective sybil attackers can be
at subverting the spammer elimination technique. We then showed
that as the number of coordinating attackers increases, we can in-
crease the amount of gold standard data we add to every task on
average to dampen the attack. In several cases, this approach elim-
inates the effect of the attackers. We also showed that it is impor-
tant to use gold standard data from the least frequent class in our
dataset, so that spammers attacking an infrequent property will be
identified with less overall use of gold standard data.

To put our findings into context, we can get to within 5% of
the fraction of items in a dataset using about 10 HITs. Labeling
datasets that require 1000 HITs takes on the order of an hour at
higher batch sizes. It would take less than five minutes to process
10 HITs on a system like MTurk. Thus, in addition to saving more
than an order of magnitude of work in picking the correct operator
to process first, we can also make the operator selection decision
quickly, saving query processing time and money.

Given our ability to reproduce the low error and fast convergence
of the count-based interface on several image datasets, and the poor
performance of the count-based approach on the tweet dataset, we
offer guidance for future usage. Text classification, which is harder
to skim than high pop-out images, can not accurately be counted
using the count-based interface. While more experiments are nec-
essary, we do not believe that the limitations of the count-based
approach are due to the specifics of our count-based interface as
much as they are due to humans’ inability to skim low pop-out data
and estimate counts based on that skimming. The label-based inter-
face is able to draw a worker’s attention to each item and achieve
better accuracy. One direction for future interfaces would be to
combine the dense count-based interface’s layout (a grid of items
to be counted) with a lightweight marking mechanism for each data
item (e.g., “click on tweets below that ask a question to followers”).

One area for future development is in scaling up count- and label-
based approaches to higher-cardinality groupings. Both interfaces
are overwhelming to workers when more than five categories are
available, and we are interested in interfaces that avoid this.

Finally, given that our spammer detection technique does not re-
quire redundant labels, it would be interesting to see how we can
improve result quality in domains other than selectivity estimation.
Using our technique, one could imagine an image labeling task that
has high coverage but does not require redundantly labeling each
image. Instead, once a worker is determined to be a spammer be-
cause their answer distribution differs from the crowd’s, we could
ask another trusted worker for an assessment.

8. RELATED WORK
In the databases field, several crowd-powered databases and query

executors including CrowdDB [10], Deco [19], Jabberwocky [1],
and our own Qurk [16] enable users to issue data-oriented tasks



to crowd workers. The majority of the work in the space has been
around database operators, including filters [18], sorts and joins [17],
and max-finding [12]. Recently, Trushkowsky et al. have shown
how to both estimate the cardinality of a set, and identify the unique
elements in that set with the help of the crowd [22]. This work is
most related to our problem: particularly for calculating counts of
large numbers of groups with the crowd, it is important to enumer-
ate all members of that group. Our work, in addition to facilitating
crowd-powered counts over such groups, is also the first to make
use of crowds to power query optimizers by generating statistics
for selectivity estimation. We show that it is both cost-effective
and important to approximate how many items in a dataset have a
given property to save time and money while avoiding extra crowd-
powered operator invocations.

One of the key problems we solve is in crowd quality manage-
ment. Ipeirotis et al. [14] show a practical algorithm for accurately
labeling items in a dataset while identifying worker quality that
is based on work by Dawid and Skene [6]. Karger et al. extend
this work, identifying a theoretically better algorithm for quality la-
bels [15]. We find that for count estimation, it is better to avoid the
redundant labels required by these approaches, and instead increase
diversity in samples to achieve faster convergence. Our spammer
detection technique allows us to achieve even faster convergence.

Note that the use of the term “spammer” presents parallels to
other forms of detection for uses such as email spam elimination.
At a technical level, however, our work is different because both
the signal (i.e., a count estimate) and mode of attack (i.e., providing
a count along a spectrum) are different than in areas such as email
spam detection, which tend to rely on more traditional unstructured
text classification frameworks.

Human vision and psychology research has seen many studies of
people’s performance at visual search tasks. A related finding from
Wolfe et al. suggests that for rare (low-selectivity) items, error rates
will increase [25]. Our findings suggest a different pattern, though
the scenario is different. In situations such as security scans or ra-
diology, rare detection events (e.g., bombs or tumors) require a re-
port, while frequent events are to go unreported. In our tasks, both
rare and frequent events must be acted on by reporting a count or a
label. Thus, more frequent items require counting more, resulting
in higher fatigue and mistakes than low-frequency items. We thus
found higher error rates for frequent/high-selectivity items than in
rare items that pose less of a threat of being miscounted. Item fre-
quency is not the only factor in human perception. The “pop-out”
effect [26] also matters. Due to the effect, the relative prevalence
of colors, shapes, location, and orientation of items affect reaction
time and accuracy of finding a particular item.

While our algorithm and count-based approach achieves good
estimates faster than the state of the art, it is susceptible to sybil
attacks by workers with multiple identities or workers who act in
concert to avoid being identified as spammers while finishing tasks
faster than high-quality workers. Sybil attacks [7] are well-researched
in systems design, but have not yet been introduced as research
problems with practical solutions in the field of human computa-
tion. We propose a sybil-resistant solution to our estimation prob-
lem, and show that it works in simulations of such attacks.

9. CONCLUSION
We have shown that, for images, a count-based approach with

a large batch size can achieve commensurate accuracy to a label-
based approach using an order of magnitude less HITs. For text-
based counts, we found that the label-based approach has better
accuracy. Our spammer detection algorithm improves accuracy by
up to two orders of magnitude without requiring redundant worker

responses. In simulations, we show how randomized placement
of gold standard data can reduce the effects of a coordinated attack.
This is the first work, to our knowledge, to push crowdsourced com-
putation into database optimizers. In doing so, we enable fast selec-
tivity estimation decisions that reduce downstream monetary cost
and latency, and facilitate accurate image-based count estimation
with less input from the crowd. Such optimizations can potentially
save crowd-powered database users significant time and money.
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