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Abstract— In this paper, we propose to use coordinates-based
mechanisms in a peer-to-peer architecture to predict Internet net-
work distance (i.e. round-trip propagation and transmission de-
lay). We study two mechanisms. The first is a previously proposed
scheme, called the triangulated heuristic, which is based on rela-
tive coordinates that are simply the distances from a host to some
special network nodes. We propose the second mechanism, called
Global Network Positioning (GNP), which is based on absolute
coordinates computed from modeling the Internet as a geomet-
ric space. Since end hosts maintain their own coordinates, these
approaches allow end hosts to compute their inter-host distances
as soon as they discover each other. Moreover coordinates are
very efficient in summarizing inter-host distances, making these
approaches very scalable. By performing experiments using mea-
sured Internet distance data, we show that both coordinates-based
schemes are more accurate than the existing state of the art system
IDMaps, and the GNP approach achieves the highest accuracy and
robustness among them.

I. I NTRODUCTION

As innovative ways are being developed to harvest the
enormous potential of the Internet infrastructure, a new class
of large-scale globally-distributed network services and ap-
plications such as distributed content hosting services, over-
lay network multicast [1][2], content addressable overlay net-
works [3][4], and peer-to-peer file sharing such as Napster
and Gnutella have emerged. Because these systems have a
lot of flexibility in choosing their communication paths, they
can greatly benefit from intelligent path selection based on net-
work performance. For example, in a peer-to-peer file sharing
application, a client ideally wants to know the available band-
width between itself and all the peers that have the wanted file.
Unfortunately, although dynamic network performance charac-
teristics such as available bandwidth and latency are the most
relevant to applications and can be accurately measured on-
demand, the huge number of wide-area-spanning end-to-end
paths that need to be considered in these distributed systems
makes performing on-demand network measurements imprac-
tical because it is too costly and time-consuming.

To bridge the gap between the contradicting goals of perfor-
mance optimization and scalability, we believe a promising ap-
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proach is to attempt to predict the network distance (i.e., round-
trip propagation and transmission delay, a relatively stable char-
acteristic) between hosts, and use this as a first-order discrim-
inating metric to greatly reduce or eliminate the need for on-
demand network measurements. Therefore, the critical prob-
lem is to devise techniques that can predict network distance
accurately, scalably, and in a timely fashion.

In the pioneering work of Francis et al [5], the authors ex-
amined the network distance prediction problem in detail from
a topological point of view and proposed the first complete so-
lution called IDMaps. IDMaps is an infrastructural service in
which special HOPS servers maintain a virtual topology map
of the Internet consisting of end hosts and special hosts called
Tracers. The distance between hostsA andB is estimated as
the distance betweenA and its nearest TracerT1, plus the dis-
tance betweenB and its nearest TracerT2, plus the shortest path
distance fromT1 to T2 over the Tracer virtual topology. As the
number of Tracers grow, the prediction accuracy of IDMaps
tends to improve. Designed as a client-server architecture solu-
tion, end hosts can query HOPS servers to obtain network dis-
tance predictions. An experimental IDMaps system has been
deployed.

In this paper, we explore an alternative architecture for net-
work distance prediction that is based on peer-to-peer. Com-
pared with client-server based solutions, peer-to-peer systems
have potential advantages in scaling. Since there is no need
for shared servers, potential performance bottlenecks are elim-
inated, especially when the system size scales up. Performance
may also improve as there is no need to endure the latency
of communicating with remote servers. In addition, this ar-
chitecture is consistent with emerging peer-to-peer applications
such as media files sharing, content addressable overlay net-
works [3][4], and overlay network multicast [1][2] which can
greatly benefit from network distance information.

Specifically, we propose coordinates-based approaches for
network distance prediction in the peer-to-peer architecture.
The main idea is to ask end hosts to maintaincoordinates(i.e.
a set of numbers) that characterize their locations in the Inter-
net such that network distances can be predicted by evaluating
a distance functionover hosts’ coordinates. Coordinates-based
approaches fit well with the peer-to-peer architecture because
when an end host discovers the identities of other end hosts in
a peer-to-peer application, their pre-computed coordinates can
be piggybacked, thus network distances can essentially be com-
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Fig. 1. Geometric space model of the Internet

puted instantaneously by the end host.1

Another benefit of coordinates-based approaches is that co-
ordinates are highly efficient in summarizing a large amount of
distance information. For example, in a multi-party application,
the distances of all paths betweenK hosts can be efficiently
communicated byK sets of coordinates ofD numbers each
(i.e.O(K �D) of data), as opposed toK(K � 1)=2 individual
distances (i.e.,O(K2) of data). Thus, this approach is able to
trade local computations for significantly reduced communica-
tion overhead, achieving higher scalability.

We study two types of coordinates for distance prediction.
The first is a kind ofrelative coordinates, originally proposed
by Hotz [6] to construct thetriangulated heuristic. Hotz’s goal
was to apply this heuristic in theA� heuristic search algorithm
to reduce the computation overhead of shortest-path searches in
interdomain graphs. The potential of this heuristic for network
distance prediction has not been previously studied. The sec-
ond is a kind ofabsolutecoordinates obtained using a new ap-
proach we propose called Global Network Positioning (GNP).
As illustrated in Figure 1, the key idea of GNP is to model the
Internet as a geometric space (e.g. a 3-dimensional Euclidean
space) and characterize the position of any host in the Internet
by a point in this space. The network distance between any
two hosts is then predicted by the modelled geometric distance
between them.

As we will show in Section VI, the two coordinates-based ap-
proaches are both more accurate than the virtual topology map
model used in IDMaps. Furthermore, GNP is the most accu-
rate and robust of all three approaches. Because GNP is very
general, it leads to many research issues. In this study, we will
focus on characterizing its performance and provide insights on
what geometric space should be used to model the Internet, and
how to fine tune it to achieve the highest prediction accuracy.

The rest of this paper is organized as follows. In the next
section, we explain the triangulated heuristic and discuss its
use in a peer-to-peer architecture for Internet distance predic-
tion. In Section III, we describe the GNP approach and its peer-
to-peer realization in the Internet. In Section IV, we compare
the properties of GNP, the triangulated heuristic, and IDMaps.
In Section V, we describe the methodology we use to evaluate
the accuracy of network distance prediction mechanisms and in
Section VI, we present experimental results based on Internet
measurements to compare the performance of the triangulated

1Note that while we focus on the peer-to-peer architecture for coordinates-
based approaches in this paper, nothing prevents coordinates-based approaches
to be used in a client-server architecture when it is deemed more appropriate.

heuristic, GNP and IDMaps. Finally, we summarize in Sec-
tion VII.

II. T RIANGULATED HEURISTIC

The triangulated heuristic is a very interesting way to bound
network distance assuming shortest path routing is enforced.
The key idea is to selectN nodes in a network to bebase nodes
Bi. Then, a nodeH is assigned coordinates which are sim-
ply given by theN -tuple of distances betweenH and theN
base nodes, i.e.(dHB1 ; dHB2 ; ::; dHBN ). Hotz’s coordinates are
thereforerelativeto the set of base nodes. Given two nodesH1

andH2, assuming the triangular inequality holds, the triangu-
lated heuristic states that the distance betweenH1 andH2 is
bounded below byL = maxi2f1;2;::;Ng(jdH1Bi � dH2Bi j) and
bounded above byU = mini2f1;2;::;Ng(dH1Bi + dH2Bi). Vari-
ous weighted averages ofL andU can then be used as distance
functions to estimate the distance betweenH1 andH2.

Hotz’s simulation study focused on tuning this heuristic to
explore the trade-off between path optimality and computation
overhead inA� heuristic shortest path search problems and did
not consider the prediction accuracy of the heuristic.Lwas sug-
gested as the preferred metric to use inA� because it isadmis-
sibleand therefore optimality and completeness are guaranteed.
In a later study, Guyton and Schwartz [7] applied(L + U)=2

as the distance estimate in their simulation study of the nearest
server selection problem with only limited success. In this pa-
per, we apply this heuristic to the Internet distance prediction
problem and conduct a detailed study using measured Internet
distance data to evaluate its effectiveness. We discover that the
upper bound heuristicU actually achieves very good accuracy
and performs far better than the lower bound heuristicL or the
(L+ U)=2 metric in the Internet.

To use the triangulated heuristic for network distance pre-
diction in the Internet, we propose the following simple peer-
to-peer architecture. First, a small number of distributed base
nodes are deployed over the Internet. The only requirement of
these base nodes is that they must reply to in-coming ICMP
ping messages. Each end host that wants to participate mea-
sures the round-trip times between itself and the base nodes
using ICMP ping messages and takes the minimum of several
measurements as the distances. These distances are used as the
end host’s coordinates. When end hosts discover each other,
they piggyback their coordinates and subsequently host-to-host
distances can be predicted by the triangulated heuristic without
performing any on-demand measurement.

III. G LOBAL NETWORK POSITIONING

To enable the scalable computation of geometric host coordi-
nates in the Internet, we propose a two-part architecture. In the
first part, a small distributed set of hosts called Landmarks first
compute their own coordinates in a chosen geometric space.
The Landmarks’ coordinates serve as a frame of reference and
are disseminated to any host who wants to participate. In the
second part, equipped with the Landmarks’ coordinates, any
end host can compute its own coordinates relative to those of
the Landmarks. In the following sections, we describe this two-
part architecture in detail. The properties of this architecture is
summarized and compared to those of IDMaps and the triangu-
lated heuristic in Section IV.
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A. Part 1: Landmark Operations

Suppose we want to model the Internet as a particular geo-
metric spaceS. Let us denote the coordinates of a hostH in S
ascSH, the distance function that operates on these coordinates
asfS(�), and the computed distance between hostsH1 andH2,
i.e. fS(cSH1

; cSH2
), asd̂SH1H2

.
The first part of our architecture is to use a small distributed

set of hosts known as Landmarks to provide a set of reference
coordinates necessary to orient other hosts inS. How to op-
timally choose the locations and the number of Landmarks re-
mains an open question, although we will provide some insights
in Section VI. However, note that for a geometric space of di-
mensionalityD, we must use at leastD+1 Landmarks because
otherwise, as it will become clear in the next section, it is im-
possible to uniquely compute host coordinates.

Suppose there areN Landmarks,L1 to LN . The Land-
marks simply measure the inter-Landmark round-trip times us-
ing ICMP ping messages and take the minimum of several
measurements for each path to produce the bottom half of the
N � N distance matrix (the matrix is assumed to be symmet-
ric along the diagonal). We denote the measured distance be-
tween hostH1 andH2 as dH1H2

. Using the measured dis-
tances,dLiLj ; i > j, a host, perhaps one of theN Landmarks,
computes the coordinates of the Landmarks inS. The goal is
to find a set of coordinates,cSL1

; ::; cSLN , for theN Landmarks
such that the overall error between the measured distances and
the computed distances inS is minimized. Formally, we seek
to minimize the following objective functionfobj1(�):

fobj1(c
S
L1
; ::; cSLN ) =

X

Li;Lj2fL1;::;LNg j i>j

E(dLiLj ; d̂
S
LiLj

)

(1)
whereE(�) is an error measurement function, which can be the
simple squared error

E(dH1H2
; d̂SH1H2

) = (dH1H2
� d̂SH1H2

)2 (2)

or some other more sophisticated error measures. To be ex-
pected, the way error is measured in the objective function
will critically affect the eventual distance prediction accuracy.
In Section VI, we will compare the performance of several
straight-forward error measurement functions. With this for-
mulation, the computation of the coordinates can be cast as
a generic multi-dimensional global minimization problem that
can be approximately solved by many available methods such
as the Simplex Downhill method [8], which we use in this pa-
per. Figure 2 illustrates these Landmark operations for 3 Land-
marks in the 2-dimensional Euclidean space. Note that there
are infinitely many solutions for the Landmarks’ coordinates
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because any rotation and/or additive translation of a set of so-
lution coordinates will preserve the inter-Landmark distances.
But since the Landmarks’ coordinates are only used as a frame
of reference in GNP, only their relative locations are impor-
tant, hence any solution will suffice. When a re-computation
of Landmarks’ coordinates is needed over time, we can ensure
the coordinates are not drastically changed if we simply input
the old coordinates instead of random numbers as the start state
of the minimization problem.

Once the Landmarks’ coordinates,cSL1
; ::; cSLN , are com-

puted, they are disseminated, along with the identifier for the
geometric spaceS used and (perhaps implicitly) the corre-
sponding distance functionfS(�), to any ordinary host that
wants to participate in GNP. In this discussion, we leave the
dissemination mechanism (e.g. unicast vs. multicast, push vs.
pull, etc) and protocol unspecified.

B. Part 2: Ordinary Host Operations

In the second part of our architecture, ordinary hosts are
required to actively participate. Using the coordinates of the
Landmarks in the geometric spaceS, each ordinary host now
derives its own coordinates. To do so, an ordinary hostH mea-
sures its round-trip times to theN Landmarks using ICMP ping
messages and takes the minimum of several measurements for
each path as the distance. In this phase, the Landmarks are
completely passive and simply reply to incoming ICMP ping
messages. Using theN measured host-to-Landmark distances,
dHLi , hostH can compute its own coordinatescSH that mini-
mize the overall error between the measured and the computed
host-to-Landmark distances. Formally, we seek to minimize the
following objective functionfobj2(�):

fobj2(c
S
H) =

X

Li2fL1;::;LNg

E(dHLi ; d̂
S
HLi) (3)

whereE(�) is again an error measurement function as discussed
in the previous section. Like deriving the Landmarks’ coor-
dinates, this computation can also be cast as a generic multi-
dimensional global minimization problem. Figure 3 illustrates
these operations for an ordinary host in the 2-dimensional Eu-
clidean space with 3 Landmarks.

It should now become clear why the number of Landmarks
N must be greater than the dimensionalityD of the geometric
spaceS. If N is not greater thanD, the Landmarks’ coordinates
are guaranteed to lie on a hyperplane of at mostD � 1 dimen-
sions. Consequently, a point in theD-dimensional space and
its reflection across the Landmarks’ hyperplane cannot be dis-
tinguished by the objective function, leading to ambiguous host
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coordinates. Note that in general there is no guarantee that the
host coordinates will be unique. Using fewer dimensions than
the number of Landmarks is simply to avoid obvious problems.

IV. IDM APS, TRIANGULATED HEURISTIC AND GNP
COMPARISON

In this section, we discuss the differences between IDMaps,
the triangulated heuristic, and GNP and illustrate the benefits
of each approach and the trade-offs. First, let us briefly de-
scribe IDMaps’ architecture. IDMaps is an infrastructural ser-
vice in which hosts called Tracers are deployed to measure the
distances between themselves, possibly not the full mesh to re-
duce cost, and each Tracer is responsible for measuring the dis-
tances between itself and the set of IP addresses or IP address
prefixes in the world that are closest to it. These raw distance
measurements are broadcasted over IP multicast to hosts call
HOPS servers which use the raw distances to build a virtual
topology consisting of Tracers and end hosts to model the In-
ternet. HOPS servers perform distance prediction computations
and interact with client hosts via a query/reply protocol.

Common to all three approaches is the need for some in-
frastructure nodes (i-nodes), i.e. the Tracers of IDMaps, the
base nodes of the triangulated heuristic, or the Landmarks of
GNP. Thus, a key parameter of these architectures is the num-
ber of these i-nodes,N . In addition toN Tracers, the IDMaps
architecture is further characterized by the number of HOPS
servers,S, and the number of address prefixes,AP , for Tracers
to probe. For GNP and the triangulated heuristic, in addition
to N base nodes or Landmarks, they are characterized by the
number of end hosts,H , that need distance predictions. GNP is
further characterized by the dimensionality,D, of the geometric
space used in computing host coordinates. Figure 4 summarizes
the differences between the three schemes in terms of measure-
ment cost, communication cost, computation cost, and deploy-
ment. To clarify, the off-line computation cost of IDMaps is
O(AP �N � logN) +O(N3) because theAP address prefixes
need to be associated with their nearest Tracers and the all-pair
shortest path distances between theN Tracers need to be com-
puted. For GNP, in computing Landmarks’ coordinates, each
evaluation offobj1(�) takesO(N2 �D) time. In computing end
host coordinates, each evaluation offobj2(�) takesO(N � D)

time. In our experiments, on a 866 MHz Pentium III, com-
puting all 15 Landmarks’ coordinates takes on the order of a
second, and computing an ordinary host’s coordinates takes on
the order of ten milliseconds.

Since the measurement overhead and the off-line costs of all
three schemes are acceptable, what differentiate them are their
on-line scalability, their prediction accuracy (which we shall
discuss in Section VI) and other qualitative differences. The
main difference between the distance prediction techniques is
scaling. The coordinates-based approaches have higher scala-
bility because the communication cost of exchanging coordi-
nates to convey distance information among a group ofK hosts
grows linearly withK as opposed to quadratically. In addition,
the peer-to-peer architecture also helps to achieve higher scal-
ability because on-line computations of network distances are
not performed by shared servers. Since end hosts coordinates
can be piggybacked when end hosts discover each other, dis-
tance predictions in the peer-to-peer architecture are essentially
instantaneous and will not be subjected to the additional com-
munication latency required to contact a server or delays due to
server overload. Finally, the peer-to-peer architecture is easier
to deploy because the i-nodes are passive and therefore do not
require detailed knowledge of the Internet in order to choose IP
addresses to probe. An added benefit is that end hosts behind
firewalls can still participate in the peer-to-peer architecture.

The peer-to-peer architecture however does have several dis-
advantages. First, there is nothing to prevent an end host from
lying about its coordinates in order to avoid being selected by
other end hosts. Thus, this architecture may not be suitable in
an uncooperative environment. In contrast, in the client-server
architecture, an i-node can verify an end host’s ping response
time against the response time of its neighbors. Another poten-
tial issue is that because the i-nodes in the peer-to-peer architec-
ture do not control the arrival of round-trip time measurements
from end hosts, they can potentially be overloaded if the arrival
pattern is bursty.

A common concern that affects all three approaches is that if
the fundamental assumption about the stability of network dis-
tance (i.e. round-trip propagation delay) does not hold due to
frequent network topology changes, all three distance predic-
tion approaches would suffer badly in prediction accuracy. The
level of impact such problem has on each distance prediction
technique is out of the scope of this paper. However, we do
believe that Internet paths are fairly stable as Zhang et al’s In-
ternet path study in 2000 reported that roughly 80% of Internet
routes studied were stable for longer than a day [9]. In addition,
because propagation delay is somewhat related to geography, a
route change need not directly imply a large change in propa-
gation delay excepting for pathological cases.

A. Other Applications of GNP

We want to point out that using GNP for network distance
predictions is only one particular application. The fundamen-
tal difference between GNP and other approaches is that GNP
computesabsolutegeometric coordinates to characterize posi-
tions of end hosts. In other words, GNP is able to generate a
simple mathematical structure that maps extremely well onto
the Internet in terms of distances. This structure can greatly



benefit a variety of applications. For example, many scalable
overlay routing schemes such as CAN [3] and Delaunay tri-
angulation based overlay [2] achieve scalability by organizing
end hosts into a simple abstract structure. The problem is that
it is not easy to build such an abstract structure that simultane-
ously reflects the underlying network topology so as to increase
performance [10]. GNP coordinates can bedirectly used in
these overlay structures and can potentially improve their per-
formance significantly. Another interesting application of GNP
is to build a proxy location service. For example, the GNP coor-
dinates of a large number of network proxies can be organized
as a kd-tree data structure. Then, to locate a proxy that is near-
est to an end host at a particular set of coordinates, only an
efficient lookup operation in this data structure is required. No
expensive sorting of distances is needed.

V. EVALUATION METHODOLOGY

In this section, we describe the methodology we use to evalu-
ate the accuracy of GNP, the triangulated heuristic, and IDMaps
using measured Internet distance data.

A. Data Collection

We have login access to 19 hosts we callprobesin research
institutions distributed around the world.2 Twelve of these
probes are in North America, 5 are in Asia Pacific, and 2 are
in Europe. In addition to probes, we have compiled several sets
of IP addresses that respond to ICMP ping messages. We call
these IP addressestargets.

To collect a data set, we measure the distances between the
19 probes and the distances from each probe to a set of targets.
To measure the distance between two hosts, we send 220 84-
byte ICMP ping packets at one second apart and take the min-
imum round-trip time estimate from all replies as the distance.
This raw data is then post-processed to retain only the targets
that are reachable from all probes. Correspondingly, there is a
bias against having targets that are not always-on (e.g. modem
hosts) or do not have global connectivity in our final targets set.

We have collected two data sets. The first set, collected over
a two-day period in the last week of May 2001, is based on a
set of targets that contains 2000 “ping-able” IP addresses ob-
tained at an earlier time. These IP addresses were chosen via
uniform probing over the IP address space such that any valid
IP address has an equal chance of being selected. After post-
processing, we are left with 869 targets that are reachable from
all probes. The relatively low yield is partially due to the case
where some targets are not on the Internet during our measure-
ments, and partially due to the possibility that some targets are
not globally reachable due to partial failures of the Internet. Us-
ing the NetGeo [11] tool from CAIDA, we have found that the
869 targets span 44 different countries. 467 targets are in the
United States, and each of the remaining countries contributes
fewer than 40 targets. In summary, 506 targets are in North
America, 30 targets are in South America, 138 targets are in
Europe, 94 targets are in Asia, 24 targets are in Oceania, 12 tar-
gets are in Africa, and 65 targets have unknown locations. This

2We would like to thank our colleagues in these institutions for granting us
host access. We especially thank ETH, HKUST, KAIST, NUS, and Politecnico
di Torino for their generous support for this study.

Globaldata set allows us to evaluate the global applicability of
the different distance prediction mechanisms.

Our second data set, collected over an 8-hour period in the
first week of June 2001, is based on a set of 164 targets that are
web servers of institutions connected to the Abilene backbone
network. After post-processing, we are left with 127 targets
that are reachable from all probes. The vast majority of these
targets are located in universities in the United States. Note that
10 of our 19 probes are also connected to Abilene. ThisAbilene
data set allows us to examine the performance of the different
mechanisms in a more homogeneous environment.

B. Experiment Methodology

All three distance prediction mechanisms considered in this
paper require the use of some special infrastructure nodes (i-
nodes). To perform an experiment using a data set, we first
select a subset of the 19 probes to use as i-nodes, and use the
remaining probes and the targets as ordinary hosts. This way,
we can evaluate the performance of a mechanism by directly
comparing the predicted distances and the measured distances
from the remaining probes to the targets. Because the particular
choice of i-nodes can potentially affect the resulting prediction
accuracy, in Section V-C, we propose 3 strawman selection cri-
teria to consider in this study.

There is however an important and subtle issue that we must
address. Suppose we want to compare GNP to IDMaps. We can
pick a selection criterion to selectN i-nodes and conduct one
experiment using GNP and one using IDMaps. Unfortunately,
when we compare the results, it is difficult to conclude whether
the difference is due to the inherent difference in these mecha-
nisms, or simply due to the fact that the particular set of i-nodes
happens to work better with one mechanism. To increase the
confidence in our results, we use a technique that is similar to
k-fold validation in machine learning. Instead of choosingN

i-nodes based on a criterion, we chooseN+1 i-nodes. Then by
eliminating one of theN +1 i-nodes at a time, we can generate
N+1 different sets ofN i-nodes that are fairly close to satisfy-
ing the criterion forN . We then compare different mechanisms
by using the overall result from allN + 1 sets ofN i-nodes.

To solve the multi-dimensional global minimization prob-
lems in computing GNP coordinates, we use the Simplex
Downhill method [8]. In our experience, this method is highly
robust and quite efficient. To ensure a high quality solution,
we repeat the minimization procedure for 300 iterations when
computing Landmarks’ coordinates, and for 30 iterations when
computing an ordinary host’s coordinates. In practice, 3 itera-
tions is enough to obtain a fairly robust estimate.

C. Infrastructure Node Selection

Intuitively, we would like the i-nodes to be well distributed
so that the useful information they provide is maximized. Based
on this intuition, we propose three strawman criteria to choose
N i-nodes from the 19 probes. The first criterion, called max-
imum separation, is to choose theN probes that maximize the
total inter-chosen-probe distances. The second criterion, called
N -medians, is to choose theN probes that minimize the to-
tal distance from each not-chosen probe to its nearest chosen
probe. The third criterion, calledN -cluster-medians, is to form
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N clusters of probes and then choose the median of each clus-
ter as the i-nodes. TheN clusters are formed by iteratively
merging the two nearest clusters, starting with 19 probe clus-
ters, until we are left withN clusters.

In addition, to observe how each prediction mechanism re-
acts to a wide range of unintelligent i-node choices, we will
also use random combinations of i-nodes in this study.

D. Performance metrics

To measure how well a predicted distance matches the corre-
sponding measured distance, we use a metric calleddirectional
relative error that is defined as:

predicted distance�measured distance

min(measured distance; predicted distance)
(4)

Thus, a value of zero implies a perfect prediction, a value of
one implies the predicted distance is larger by a factor of two,
and a value of negative one implies the predicted distance is
smaller by a factor of two. Compared to simple percentage er-
ror, this metric can guard against the “always predict zero” pol-
icy. When considering the general prediction accuracy, we will
also use therelative error metric, which is simply the absolute
value of the directional relative error.

To measure the effectiveness of using predicted distances for
server-selection type of applications, we use a metric called
rank accuracy. The idea is that, after each experiment, we
have the predicted distances and measured distances for the
paths between the non-i-node probes and the targets. We then
sort these paths based on the predicted distances to generate a
predicted ranked list, and also generate a measured ranked list
based on the measured distances. The rank accuracy is then de-
fined as the percentage of paths correctly selected when we use
the predicted ranked list to select some number of the shortest
paths. If the predicted ranking is perfect, then the rank accu-
racy is 100% regardless of the number of shortest paths we are
selecting. Note that a prediction mechanism can potentially be
extremely inaccurate with respect to the directional relative er-
ror metric but still have high rank accuracy because the ranking
of the paths may still be preserved.

VI. EXPERIMENTAL RESULTS

In this section, we present our experimental results. First, by
using the same set of i-nodes (unless otherwise noted, we al-
ways use theN -cluster-medians selection criterion withk-fold

# I-Nodes 15 12 9 6
GNP 0.5/7D 0.59/7D 0.69/5D 0.74/5D
Tri./U 0.59 0.69 0.8 1.05
IDMaps 0.97 1.09 1.16 1.39

TABLE I
SUMMARY OF 90 PERCENTILE RELATIVE ERROR(GLOBAL )
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Fig. 6. Rank accuracy comparison (Global)

validation) for each mechanism, we present results to compare
the accuracy of GNP, the triangulated heuristic, and IDMaps.
Then we compare the effectiveness of the three i-node selection
criteria under each mechanism. After that, we present a series
of results that are aimed to highlight several interesting aspects
of GNP.

A. Comparisons Using the Global Data Set

We have conducted a set of experiments using the Global
data set to compare the three mechanisms. Figure 5 compares
the three mechanisms using the relative error metric when 6 and
15 i-nodes are used. For GNP, the best results are achieved with
the Euclidean space model of 5 and 7 dimensions respectively;
for the triangulated heuristic, the upper bound heuristic (U ) per-
forms by far the best. Note thatU is simply the shortest dis-
tance between two end hosts via one i-node. Both coordinates-
based mechanisms perform significantly better than IDMaps,
with GNP achieving the highest overall accuracy in all cases.
With 15 Landmarks, GNP can predict 90% of all paths with rel-
ative error of 0.5 or less. We will defer the explanation for the
differences in accuracy of the three schemes until Section VI-E.

We have also conducted experiments when 9 and 12 i-nodes
are used. To summarize all the results, we report the 90 per-
centile relative error value for all three mechanisms at 6, 9, 12
and 15 i-nodes in Table I. Clearly as the number of i-nodes in-
crease, all three mechanisms benefit, with GNP being the most
accurate in all cases. However, the accuracy of IDMaps and tri-
angulated heuristic will eventually become higher than that of
GNP as the number of i-nodes increases. Without larger data
sets, it will be difficult to understand the asymptotic behavior
of each scheme. Nevertheless, it is safe to conclude that with a
small number of Landmarks, these differences will be observed.

Figure 6 compares the three mechanisms in terms of the rank
accuracy metric when 15 i-nodes are used. The ability to rank
the shortest paths correctly is desirable because it is important
to server-selection problems. Overall, GNP is most accurate
at ranking the paths. In particular, GNP is significantly more
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Fig. 7. Directional relative error comparison (Global)

accurate at ranking the shortest 5% of the paths than the tri-
angulated heuristic even though their difference by the relative
error measure is small. In fact, even though IDMaps has poor
performance in terms of relative error, it is better at ranking the
shortest paths than the triangulated heuristic.

The explanation to this seemingly contradictory result can
be found in Figure 7. In this figure, we classify the evalu-
ated paths into groups of 50ms each (i.e. (0ms, 50ms], (50ms,
100ms],...,(1000ms,1]), and plot the summary statistics that
describe the distribution of the directional relative error of each
mechanism in each group. Each set of statistics is plotted on a
vertical line. The mean directional relative error of each mech-
anism is indicated by the squares (GNP), circles (triangulated
heuristic) and triangles (IDMaps). The 5th percentile and 95th
percentile are indicated by the outer whiskers of the line, the
25th percentile and 75th percentile are indicated by the inner
whiskers. Note that in some cases these whiskers are off the
chart. Finally, the asterisk (*) on the line indicates the median.

We can see that GNP is more accurate in predicting short
distances than the other mechanisms. Although the triangu-
lated heuristic is more accurate than IDMaps in predicting dis-
tances of less than 50ms, IDMaps is veryconsistentin its over-
predictions for distances of up-to 350ms. This consistent over-
prediction behavior causes IDMaps to rank the shortest paths
better than the triangulated heuristic. Beyond 800ms, we see
large under-predictions by all mechanisms. However, because
these paths account for less than 0.7% of all evaluated paths,
the result here is far from being representative. In the last group,
there are several outliers of distances of over 6000ms, contribut-
ing to the large under-predictions (the means are off the chart
between -5 and -6). Finally, notice that paths between 350ms
and 550ms appear to be much harder to predict than their im-
mediate neighbors. We will conduct further investigations to
try to understand this behavior.

B. Comparisons Using the Abilene Data Set

Now we turn our attention to experiments we have con-
ducted with the Abilene data set usingonly the subset of 10
Abilene-attached probes. Figure 8 compares the three mecha-
nisms when 6 and 9 i-nodes are used. The 6 i-nodes are selected
using theN -cluster-medians criterion withk-fold validation,
but the 9 i-nodes are obtained simply from eliminating one of
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the 10 Abilene-attached probes at a time, providing 10 differ-
ent combinations of 9 i-nodes. For GNP, the best performance
is achieved with the Euclidean space model of 5 and 8 dimen-
sions respectively, and for the triangulated heuristic, again the
upper boundU heuristic achieves better accuracy than the lower
bound or the average of the two. Notice that in the homoge-
neous environment of Abilene, the accuracy of all three mecha-
nisms barely improves from 6 to 9 i-nodes. We believe that the
additional i-nodes simply do not add much more information in
such a homogeneous environment.

Comparing to previous results based on the Global data set
with 9 i-nodes, the 90 percentile relative error for GNP, the tri-
angulated heuristic and IDMaps are 0.69, 0.8 and 1.16 respec-
tively. Using the Abilene data set with 9 i-nodes, those figures
are 0.56, 0.88 and 1.72 respectively. In other words, only GNP’s
accuracy improves in the more homogeneous environment of
Abilene. We believe this is because the paths in Abilene are
all very short, 90% of the paths are shorter than 70ms. As a
result, the advantage GNP has in prediction short distances is
amplified.

Figure 9 compares how well each mechanism rank paths in
Abilene when 9 i-nodes are used. The advantage that GNP has
in predicting the shortest paths is clear. This is confirmed again
in the directional relative error comparison shown in Figure 10.
Again, IDMaps’ consistent over-predictions for paths of up-to
80ms allow it to be better at ranking the shortest paths than the
triangulated heuristic even though it is not accurate in terms of
relative error.
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Max Min Mean Std Dev
GNP 0.94 0.65 0.7375 0.06906
Triangulate/U 1.37 0.66 0.8685 0.1686
IDMaps 1.84 1.0 1.287 0.2308

TABLE II
STATISTICAL SUMMARY OF 90 PERCENTILE RELATIVE ERROR UNDER

RANDOM I-NODE PLACEMENT

C. Sensitivity to Infrastructure Node Placement

Although the triangulated heuristic is very simple, it lacks ro-
bustness because its accuracy is highly dependent on the num-
ber and the locations of the base nodes in the network.

To study how sensitive are GNP, the triangulated heuristic,
and IDMaps to unintelligent placement of i-nodes, we conduct
a set of experiments with 20 random combinations of 6 i-nodes
using the Global data set. For each mechanism and each of the
20 random combinations, we compute the 90 percentile relative
error value. Table II shows the key statistics of the 90 percentile
relative error for each mechanism. Of the three mechanisms,
GNP’s accuracy is the highest by all measures and also has the
smallest spread. Because GNP does not use the virtual topology
model, it is highly robust in producing accurate predictions even
under random i-nodes placement.

D. Infrastructure Node Selection

In the previous experiments we have been using theN -
cluster-medians i-node selection method whenever appropriate.
In this section, we go back to examine the differences in the 3
proposed i-node selection criteria. Using the Global data set,
we conduct experiments using the 3 criteria under 6 and 9 i-
nodes (withk-fold validation) and compute the 90 percentile
relative error for each set of experiments. We also take the op-
portunity here to compare the different triangulated heuristics.
Table III summarizes the results.

TheN -cluster-medians andN -medians perform very simi-
larly. On the other hand, the Max separation criterion works
very poorly because this criterion tends to select probes only
in Europe and Asia, and therefore they are not necessarily very
well distributed. A comparison with the results reported in Ta-
ble II reveals that theN -cluster-medians criterion is not opti-
mal because there exists some combinations of 6 infrastructure
nodes that can lead to relative error as low as 0.65, 0.66 and 1.0
for GNP, the triangulated heuristic, and IDMaps respectively.
Note that the triangulated lower bound heuristicL has poor

N = 6 N -cluster-medians N -medians Max sep.
GNP 0.74 0.78 1.04
Triangulated/U 1.05 1.08 4.64
Triangulated/L 1.85 1.53 1.93
Triangulated/(L+U)/2 1.53 1.31 3.3
IDMaps 1.39 1.43 5.57

N = 9 N -cluster-medians N -medians Max sep.
GNP 0.68 0.7 0.83
Triangulated/U 0.8 0.77 1.19
Triangulated/L 2.06 2.0 2.11
Triangulated/(L+U)/2 1.43 1.38 1.69
IDMaps 1.16 1.09 1.74

TABLE III
SUMMARY OF 90 PERCENTILE RELATIVE ERROR UNDER DIFFERENT

I -NODE SELECTION CRITERIA

predictive power in general compared to the upper boundU

heuristic (the average ofU andL always leads to accuracy in
between the two bounds). Intuitively, since themax filter is
used in theL metric, it is more sensitive to large outliers in the
data. The fact thatU works well implies that shortest path rout-
ing is still a reasonably close approximation for the majority of
cases. There is however an exception. When 6 i-nodes cho-
sen by the maximum separation criterion is used, theL metric
performs much better than theU metric. Looking at the set of
i-nodes, we discover that except for one i-node in Canada, all
other i-nodes are located in Asia and Europe. This is interesting
because since the majority of our targets are in North America,
they are in between most of the i-nodes. Thus, we have the
exact configuration where theL metric is most accurate!

We have also looked at the rank accuracy of the triangulated
heuristics in these experiments. For 6 i-nodes, there is no sur-
prise, the difference in rank accuracy of theU ,L and(L+U)=2
metrics agrees with their difference in relative error. However,
for 9 i-nodes, under all three different i-node selection criteria,
theL and(L+U)=2 metrics have higher rank accuracy by 5 to
12 percents than theU metric for only the shortest 1% of paths.
Beyond the shortest 1%, the difference in rank accuracy again
agrees with the difference in relative error. Further studies need
to be conducted to analyze this anomaly.

E. Sources of Inaccuracy

So far we have only shown the differences in accuracy of
the three distance prediction schemes, but where the inaccuracy
and differences originate is not clear. In this section, we discuss
several sources for the inaccuracy.

1) Inefficient Routing: Since all three distance prediction
schemes rely in some degree on shortest (by propagation delay)
path routing in the Internet, we believe the largest source for in-
accuracy is the inefficient routing behavior in the Internet stem-
ming from BGP policy routing and hop count based routing. To
assess the level of inefficient routing in our global data set, we
conducted the same triangular inequality test as in [5]. That is
for all the triangular closed loop paths(a; b), (b; c), and(a; c)
that we measured, we computed all the(a; c)=((a; b) + (b; c))

ratios. We found that 7% of the ratios are greater than one,
which is consistent with the previous findings. To measure
the impact of this on prediction accuracy, we performed the
following experiment. For each targett in the global data
set, we removet from consideration ift is in fa; b; cg and
(a; c)=((a; b) + (b; c)) > 1:5. After applying this filter, we are



Internet

YX BA

Fig. 11. Predicting short distances

left with 392 targets. We performed the 15 i-nodes experiments
again, and found that all three distance prediction schemes’ per-
formance improves. For GNP, the 90 percentile relative error
is improved from 0.5 to 0.33; for the triangulated heuristic/U,
the relative error improved from 0.59 to 0.42; and finally for
IDMaps, the relative error improved from 0.97 to 0.89.

2) Predicting Short Distances:A major difference between
the performance of the three schemes lie in their ability to pre-
dict short distances. As we have shown, GNP is the most accu-
rate in this category and IDMaps is the least accurate and tend
to heavily over-predict short distances. The difference is actu-
ally easy to explain. Consider the example in Figure 11.X

andY are i-nodes, andA andB are two end hosts that are very
nearby. Clearly, IDMaps gives the most pessimistic prediction
of (A;X) + (B; Y ) + (X;Y ). The triangulated heuristicU
metric is slightly less pessimistic, since it predicts the distance
to be (A; Y ) + (B; Y ). In contrast, with a one-dimensional
model, GNP will be able to perfectly predict the distance be-
tweenA andB. Although the triangulated heuristicL metric
would have given a perfect prediction in this example, in prac-
tice it is too easily influenced by a single large distance to an
i-node, thus, as we have shown, it works very poorly in prac-
tice. GNP is more robust against outliers in measurements since
it takes all measurements into account when computing coordi-
nates. In summary, GNP performs better because it exploits the
relationships between the positions of Landmarks and end hosts
rather than depending on the exact topological locations of the
i-nodes, thus it is highly accurate and robust.

F. Exploring the GNP Framework

1) Error Measurement Function:Recall that when com-
puting GNP coordinates, an error measurement functionE(�)

is used in the objective functions. Appropriately characteriz-
ing the goodness of a set of coordinates is key to the eventual
predictive power of those coordinates. In Section III, we men-
tioned the squared error measure (Eq. 2). However, intuitively,
this error measure might not be very desirable because one unit
of error in a very short distance accounts for just as much as
one unit of error in a very long distance. This leads us to ex-
periment with two other relative error measures. The first one
is the normalized error measure:

E(dH1H2
; d̂SH1H2

) = (
dH1H2

� d̂SH1H2

dH1H2

)2 (5)

and the second one is the logarithmic transformed error mea-
sure:

E(dH1H2
; d̂SH1H2

) = (log(dH1H2
)� log(d̂SH1H2

))2 (6)

We perform experiments using the Global data set with 6 and
15 Landmarks selected using theN -cluster-medians criterion

# Landmarks 6 15
Normalized error 0.74 0.5
Logarithmic transform 0.75 0.51
Squared error 1.03 0.74

TABLE IV
SUMMARY OF 90 PERCENTILE RELATIVE ERROR FOR DIFFERENT ERROR

MEASUREMENT FUNCTIONS
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Fig. 12. Convergence of GNP performance

(with k-fold validation) and compare the three error measures.
Table IV reports the 90 percentile relative error for each ex-
periment. The results confirm our intuition. The normalized
measure and the logarithmic measure are very similar because
they are both a form of relative error measure. It is clear that
the squared error measure is not very suitable. Thus, through-
put this paper, to compute GNP coordinates, we have always
used the normalized error measure.

2) Choosing the Geometric Space:Although in the previ-
ous experiments we have always reported results with the Eu-
clidean space model of various dimensions, we have also exper-
imented with the spherical surface and the cylindrical surface as
potential models. The spherical surface makes sense because
the Earth is roughly a sphere, and since almost certainly no ma-
jor communication paths pass through the two Poles, the cylin-
drical surface may also be a good approximation. The GNP
framework is flexible enough to accommodate these models,
the only change is that the distance functions are different. With
the Global data set and 6 Landmarks chosen with theN -cluster-
medians criterion, we conduct experiments to examine the fit-
ness of the spherical and cylindrical surface of various sizes.
For the spherical surface, we specify the radius; for the cylin-
drical surface, we specify the circumference and the height is
taken to be half the circumference. It turns out that both of
these models’ performance increases as the size of their sur-
face increases, and in the limit approaches the performance of
the 2-dimensional Euclidean space model. We believe this is a
consequence of the fact that we have no probes in central Asia
or Africa, and there are also very few targets in those regions,
hence a curved surface does not help.

Focusing on the Euclidean space models, we turn our atten-
tion to the question of how many dimensions we should use in
GNP. To answer this question, we conduct experiments with the
Global data set using 6, 9, 12, and 15 Landmarks chosen with
theN -cluster-medians criterion (withk-fold validation) under
various number of dimensions. Figure 12 shows the result for
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the case of 15 Landmarks. Generally, as the number of dimen-
sions is increased, GNP’s accuracy improves, but the improve-
ment diminishes with each successive dimension. To character-
ize this effect, consider the cumulative probability distribution
functions of the relative error under two different dimensions
D andD + 1. Between the 70 and 90 percentile, if the perfor-
mance ofD + 1 dimensions is not strictly greater than that of
D dimensions, or if the average improvement is less that 0.1%,
then we say the results have converged atD dimensions. Us-
ing this criterion, for 6, 9, 12, and 15 Landmarks, the results
converge at 5, 5, 7, and 7 dimensions respectively.

Intuitively, adding more dimensions increases the model’s
flexibility and allows more accurate coordinates to be com-
puted. To illustrate, consider the situation shown in Figure 13
where there are four hosts,A, B, C, andD, with A in the same
network asB, andC in the same network asD. The hypotheti-
cal measured distances between them are shown in the matrix.
Clearly, in a 2-dimensional space, the distances cannot be per-
fectly modeled. One possible approximation is the rectangle
of width 5 and height 1, preserving most of the distances, ex-
cept the diagonal distances are over-estimated. However, in a
3-dimensional space, we can perfectly model all the distances
with a tetrahedron. Of course, any Euclidean space model is
still constrained by the triangular inequality, which is generally
not satisfied by Internet distances. As a result, adding more
dimensions beyond a certain point does not help.

3) Reducing Measurement Overhead:So far we have as-
sumed that an end host must measure its distances to all Land-
mark hosts in order to compute its coordinates. However, only
D+1 host-to-Landmark distances are really required for the co-
ordinates computation in aD-dimensional space. To expose the
trade-offs, we conducted an experiment with 15 Landmarks and
a 7-dimensional Euclidean space model, where we randomly
chose 8 out of 15 Landmarks for each end host for the coor-
dinates computation. We found that the 90 percentile relative
error of GNP increases from 0.5 to 0.65. However, when we
chose the 8 Landmarks that are nearest to each end host for the
computations, the prediction accuracy is virtually unchanged!
While further study of this technique is needed, it seems feasi-
ble to greatly reduce the measurement overhead without sacri-
ficing accuracy.

4) Why Not Geographical Coordinates?:Finally, we ask
whether GNP is simply discovering the geographical relation-
ships between hosts. If so, then a straight forward alternative
is to use the geographical coordinates (longitude and latitude)
of end hosts to perform distance estimates. We obtain the ap-
proximate geographical coordinates for our probes and targets
in the Global data set from NetGeo [11]. Although more so-

phisticated techniques than NetGeo have been proposed [12],
the NetGeo tool is publicly available and so we use it as a
first approximation. We compute the linear correlation coef-
ficient between geographical distances and measured distances,
and also between GNP computed distances and measured dis-
tances. Excluding the outliers of measured distances greater
than 2500ms, the overall correlation between geographical dis-
tances and measured distances is 0.638, while the overall corre-
lation between GNP distances and measured distances is 0.915.
Knowing that the NetGeo tool is not 100% accurate, we note
with caution that the performance gap between GNP distances
and the geographical distances led us to believe that GNP is
indeed discovering network specific relationships beyond geo-
graphical relationships.

VII. SUMMARY

In this paper, we have studied a new class of solutions to
the Internet distance prediction problem that is based on end
hosts-maintained coordinates, namely the previously proposed
triangulated heuristic and our new approach called Global Net-
work Positioning (GNP). We propose to apply these solutions
in the context of a peer-to-peer architecture. These solutions al-
low end hosts to perform distance predictions in a timely fash-
ion and are highly scalable. Using measured Internet distance
data, we have conducted a realistic Internet study of the dis-
tance prediction accuracy of the triangulated heuristic, GNP
and IDMaps. We have shown that both the triangulated heuris-
tic and GNP out-perform IDMaps significantly. In particular,
GNP is most accurate and robust.

We have also explored a number of key issues related to the
GNP approach to maximize performance. The main finding is
that a relative error measurement function combined with a Eu-
clidean space model of an appropriate number of dimensions
achieves good performance. We will continue to develop solu-
tions around the GNP framework in the future.
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