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Abstract—In this paper, we propose to use coordinates-based proach is to attempt to predict the network distance (i.e., round-
mechanisms in a peer-to-peer architecture to predict Internet net-  trip propagation and transmission delay, a relatively stable char-

work distance (i.e. round-trip propagation and transmission de- g teristic) between hosts, and use this as a first-order discrim-
lay). We study two mechanisms. The first is a previously proposed

scheme, called the triangulated heuristic, which is based on rela- inating metric to greatly reduce or eliminate the “e?‘?' for on-
tive coordinates that are simply the distances from a host to some demand network measurements. Therefore, the critical prob-
special network nodes. We propose the second mechanism, calledem is to devise techniques that can predict network distance
Global Network Positioning (GNP), which is based on absolute accurately, scalably, and in a timely fashion.

coordinates computed from modeling the Internet as a geomet- ) ) i

ric space. Since end hosts maintain their own coordinates, these In the pioneering work of Francis et al [5], the authors ex-
approaches allow end hosts to compute their inter-host distances amined the network distance prediction problem in detail from
as soon as they discover each other. Moreover coordinates areg topological point of view and proposed the first complete so-

very efficient in summarizing inter-host distances, making these |, ion called IDMaps. IDMaps is an infrastructural service in
approaches very scalable. By performing experiments using mea- '

sured Internet distance data, we show that both coordinates-based Which special HOPS servers maintain a virtual topology map
schemes are more accurate than the existing state of the art systemOf the Internet consisting of end hosts and special hosts called
IDMaps, and the GNP approach achieves the highest accuracy and Tracers. The distance between hadtsind B is estimated as
robustness among them. the distance betweed and its nearest Tracéi, plus the dis-
tance betweef§ and its nearest Trac#g, plus the shortest path
distance froni/; to 7, over the Tracer virtual topology. As the
number of Tracers grow, the prediction accuracy of IDMaps
As innovative ways are being developed to harvest thends to improve. Designed as a client-server architecture solu-
enormous potential of the Internet infrastructure, a new clagen, end hosts can query HOPS servers to obtain network dis-
of large-scale globally-distributed network services and afance predictions. An experimental IDMaps system has been
plications such as distributed content hosting services, oveeployed.
lay network multicast [1][2], content addressable overlay net-

works [3][4], and peer-to-peer file sharing such as Napsterln this paper, we explore an alternative architecture for net-

and Gnutella have emerged. Because these systems haylo distance prediction that is based on peer-to-peer. Com-

lot of flexibility in choosing their communication paths, the ared with client-server based solutions, peer-to-peer systems

) . . . Vi tential advant in ling. Since there is non
can greatly benefit from intelligent path selection based on n?ﬁep"e al advantages in scaling. Since there is no need

: . or shared servers, potential performance bottlenecks are elim-
work performance. For example, in a peer-to-peer file sharin

application, a client ideally wants to know the available ban Tated, especially when the system size scales up. Performance
PP ' y ay also improve as there is no need to endure the latency

width between itself and all the peers that have the wanted ﬁg%'communicating with remote servers. In addition. this ar-
Unfortunately, although dynamic network performance Chara@ﬁ'&tecture is consistent with emerging peer-to-peer applications

teristics such as available bandwidth and latency are the mgs N .
L such as media files sharing, content addressable overlay net-
relevant to applications and can be accurately _measured Qs [3][4], and overlay network multicast [1][2] which can
demand, the huge number of wide-area-spanning end'to'err]gatly benefit from network distance information.
paths that need to be considered in these distributed systems™ ~ _
makes performing on-demand network measurements impracSpecifically, we propose coordinates-based approaches for
tical because it is too costly and time-consuming. network_ d_istanpe prediction in the peer-to-_pee_r archi_tecture.
To bridge the gap between the contradicting goals of perforhe main idea is to ask end hosts to maintordinates(i.e.
mance optimization and scalability, we believe a promising ap-set of numbers) that characterize their locations in the Inter-
i o 4 by DARPA und ract number F30602 net such that network distances can be predicted by evaluating
IS research was sponsored by under contract numboer - H : ’ H : _
1-0518, and by NSF under grant numbers Career Award NCR-9624979, Aléﬁd'Stance fur?ctlormver hosts’ coordinates. Coo_rdmates based
9730105, ITR Award ANI-0085920, and ANI-9814929. Additional suppor@pproaches fit well with the peer-to-peer architecture because
was provided by Intel. Views and conclusions contained in this document aithen an end host discovers the identities of other end hosts in
those of the authors and should not be interpreted as representing the officia s . .
policies, either expressed or implied, of DARPA, NSF, Intel, or the U.S. goé 6e_er't0'peer application, the'r_ pre-computed coordmates can
ernment. be piggybacked, thus network distances can essentially be com-

I. INTRODUCTION



(X2:Y2:25) heuristic, GNP and IDMaps. Finally, we summarize in Sec-

| tion VII.
(X.Y1,2)
E Il. TRIANGULATED HEURISTIC
==~ ' - The triangulated heuristic is a very interesting way to bound
'/‘\ X network distance assuming shortest path routing is enforced.
’ ] The key idea is to seleé{ nodes in a network to bigase nodes
z [ ] B;. Then, a node/ is assigned coordinates which are sim-
(X3.Y3:Z3) (X4Ya:24) ply given by theN-tuple of distances betweet and the N
base nodes, i.€dys,,dus,, -, dus, ). HOtz's coordinates are
Fig. 1. Geometric space model of the Internet thereforerelativeto the set of base nodes. Given two noégs

and?., assuming the triangular inequality holds, the triangu-
lated heuristic states that the distance betwHerand Hs is

puted instantane_ously by the end hbst. ' bounded below by, = maxic (1 ..} (|d3, 5, — da,s,|) and

Another benefit of coordinates-based approaches is that ggynded above by = min;e(y o, Ny (da, B, + da,,)- Vari-
ordinates are highly efficient in summarizing a large amount gf;5 weighted averages bfandU can then be used as distance
distance information. For example, in a multi-party applicatiofynctions to estimate the distance betwégnandH..
the distances of all paths betwe&hhosts can be efficiently  Hotz's simulation study focused on tuning this heuristic to
communicated by sets of coordinates ab numbers each explore the trade-off between path optimality and computation
(i.e. O(K - D) of data), as opposed #§ (K — 1)/2 individual oyerhead ind* heuristic shortest path search problems and did
distances (i.eQ(K?) of data). Thus, this approach is able tGot consider the prediction accuracy of the heuristieias sug-
trade local computations for significantly reduced communicgested as the preferred metric to uselinbecause it igdmis-
tion overhead, achieving higher scalability. sibleand therefore optimality and completeness are guaranteed.

We study two types of coordinates for distance predictiofh a later study, Guyton and Schwartz [7] applidd+ U)/2
The first is a kind ofrelative coordinates, originally proposedas the distance estimate in their simulation study of the nearest
by Hotz [6] to construct th&riangulated heuristicHotz’s goal server selection problem with only limited success. In this pa-
was to apply this heuristic in thé* heuristic search algorithm per, we apply this heuristic to the Internet distance prediction
to reduce the computation overhead of shortest-path searchgsriblem and conduct a detailed study using measured Internet
interdomain graphs. The potential of this heuristic for netwoidistance data to evaluate its effectiveness. We discover that the
distance prediction has not been previously studied. The s@gper bound heuristit/ actually achieves very good accuracy
ond is a kind ofabsolutecoordinates obtained using a new apand performs far better than the lower bound heuribtar the
proach we propose called Global Network Positioning (GNP)L, + 17) /2 metric in the Internet.
As illustrated in Figure 1, the key idea of GNP is to model the To use the triangulated heuristic for network distance pre-
Internet as a geometric space (e.g. a 3-dimensional Euclidefiction in the Internet, we propose the following simple peer-
space) and characterize the position of any host in the Interegpeer architecture. First, a small number of distributed base
by a point in this space. The network distance between anydes are deployed over the Internet. The only requirement of
two hosts is then predicted by the modelled geometric distang@se base nodes is that they must reply to in-coming ICMP
between them. ping messages. Each end host that wants to participate mea-

As we will show in Section VI, the two coordinates-based agures the round-trip times between itself and the base nodes
proaches are both more accurate than the virtual topology maging ICMP ping messages and takes the minimum of several
model used in IDMaps. Furthermore, GNP is the most accmeasurements as the distances. These distances are used as the
rate and robust of all three approaches. Because GNP is venyl host's coordinates. When end hosts discover each other,
general, it leads to many research issues. In this study, we whky piggyback their coordinates and subsequently host-to-host
focus on characterizing its performance and provide insights distances can be predicted by the triangulated heuristic without
what geometric space should be used to model the Internet, @edforming any on-demand measurement.
how to fine tune it to achieve the highest prediction accuracy.

The rest of this paper is organized as follows. In the next I1l. GLOBAL NETWORK POSITIONING
section, we explain the triangulated heuristic and discuss itsTo enable the scalable computation of geometric host coordi-
use in a peer-to-peer architecture for Internet distance predietes in the Internet, we propose a two-part architecture. In the
tion. In Section Ill, we describe the GNP approach and its peirst part, a small distributed set of hosts called Landmarks first
to-peer realization in the Internet. In Section IV, we compatbmpute their own coordinates in a chosen geometric space.
the properties of GNP, the triangulated heuristic, and IDMapBhe Landmarks’ coordinates serve as a frame of reference and
In Section V, we describe the methodology we use to evaluatee disseminated to any host who wants to participate. In the
the accuracy of network distance prediction mechanisms andicond part, equipped with the Landmarks’ coordinates, any
Section VI, we present experimental results based on Intere@d host can compute its own coordinates relative to those of
measurements to compare the performance of the trianguladesiLandmarks. In the following sections, we describe this two-

L _ _ _ epart architecture in detail. The properties of this architecture is

Note that while we focus on the peer-to-peer architecture for coordinates-

based approaches in this paper, nothing prevents coordinates-based approwar'z_eqand com.pared to those of IDMaps and the triangu-
to be used in a client-server architecture when it is deemed more appropriatated heuristic in Section IV.
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A. Part 1: Landmark Operations

Suppose we want to model the Internet as a particular g
metric spaceS. Let us denote the coordinates of a hilsin S
ascy,, the distance function that operates on these coordin

& :
asf°(-), and the computed distance between htand?s, o “honee any solution will suffice. When a re-computation

H S(,.S S 7S
.e. {1 (fc_Hl ) CHz)’fanHﬂ'lzh'. _ I distributS Landmarks’ coordinates is needed over time, we can ensure
The first part of our architecture is to use a small distributefly -4 dinates are not drastically changed if we simply input

set of hosts known as Landmarks to provide a set of referengg 4 coordinates instead of random numbers as the start state
coordinates necessary to orient other hosts.inHow to 0p- ¢ tha minimization problem

timally choose the locations and the number of Landmarks re-q.e the Landmarks’ coordinates? "'7CEN’ are corm-

mains an open question, although we will provide some insighf§ieq they are disseminated, along with the identifier for the
in Seqtlon _VI. However, note that for a geometric space of diwometric spaces used and (perhaps implicitly) the corre-
menspnahtyD: we must use at Ieaz?+1 Landmark; be‘?a,us,esponding distance functiofiS(-), to any ordinary host that
otherwise, as it will become clear in the next section, it is iMy4nts to participate in GNP. In this discussion, we leave the

possible to uniquely compute host coordinates. dissemination mechanism (e.g. unicast vs. multicast, push vs.
Suppose there ar& Landmarks,£; to Ly. The Land- pull, etc) and protocol unspecified.

marks simply measure the inter-Landmark round-trip times us-
ing ICMP ping messages and take the minimum of severgl p, o. Ordinary Host Operations
measurements for each path to produce the bottom half of th . .

N x N distance matrix (the matrix is assumed to be symmet- n _the secon_d part Of_ our archngcture, Ofd'”"’W hosts are
ric along the diagonal). We denote the measured distance guired to gcnvely partlcu_)ate. Using the cpordmates of the
tween hostH, and #H, asdy,w,. Using the measured dis- aqdmgrks in the gepmetnc spabe each ord!nary hast now
tancesz,c,,i > j, a host, perhaps one of the Landmarks, derives its own coordinates. To do so, an ordinary bshea-

computes the coordinates of the Landmarks§inThe goal is sures its round-irip imes to thé Landmarks using ICMP ping
S messages and takes the minimum of several measurements for

to find a set of coordinates? ,..,c2 , for the N Landmarks ; ;
such that the overall error beltweenNthe measured distances ‘Sﬁﬁh path as the distance. In this phase, the Landmarks are

the computed distances &is minimized. Formally, we seek completely pa;sive and simply reply to incoming ICMP ping
to minimize the following objective functioi,s,i (-): messages. Using th€ measured host-to-Landmark distances,

R dyr;, hostH can compute its own coordinatmé that mini-
fobj1 (€2, ¢2,) = Z E(de,c;,dZ,c,)  mize the overall error between the measured and the computed
Li,Li€{Ly,..,LN} | i>] host-to-Landmark distances. Formally, we seek to minimize the
(1) following objective functionf,sja(-):

because any rotation and/or additive translation of a set of so-
O-. . . . .

§®ion coordinates will preserve the inter-Landmark distances.

aEUt since the Landmarks’ coordinates are only used as a frame

Yeference in GNP, only their relative locations are impor-

where€(-) is an error measurement function, which can be the S\ S
simple squared error Fonja(cz,) = . {; . }5(dH£udmi) 3)
~ ~ i€1L1,- LN
g(dH1H27 d%ﬂ{g) = (dH1H2 - df{ﬂ{g)z (2)

wheref(-) is again an error measurement function as discussed
or some other more sophisticated error measures. To be iexthe previous section. Like deriving the Landmarks’ coor-
pected, the way error is measured in the objective functidimates, this computation can also be cast as a generic multi-
will critically affect the eventual distance prediction accuracgdimensional global minimization problem. Figure 3 illustrates
In Section VI, we will compare the performance of severahese operations for an ordinary host in the 2-dimensional Eu-
straight-forward error measurement functions. With this foelidean space with 3 Landmarks.

mulation, the computation of the coordinates can be cast adt should now become clear why the number of Landmarks
a generic multi-dimensional global minimization problem thaV must be greater than the dimensionalityof the geometric
can be approximately solved by many available methods suspaceS. If N is not greater tha®, the Landmarks’ coordinates
as the Simplex Downhill method [8], which we use in this paare guaranteed to lie on a hyperplane of at ni#st 1 dimen-

per. Figure 2 illustrates these Landmark operations for 3 Larglens. Consequently, a point in t2-dimensional space and
marks in the 2-dimensional Euclidean space. Note that thét®reflection across the Landmarks’ hyperplane cannot be dis-
are infinitely many solutions for the Landmarks’ coordinatetinguished by the objective function, leading to ambiguous host



IDMaps Trangulated GNP time. In our experiments, on a 866 MHz Pentium Ill, com-
#Eethe messuted oot o e T s e puting all 15 Landmarks’ coordinates takes on the order of a
Commuricaion | ™" tSHOPSseners | N | LnGERERNCR e second, and computing an ordinary host's coordinates takes on
cost Gn-fine (K hosts) RI) OKN) O(K'D) th d ! ft il d
Server latenc: Yes No No e ordaer of ten milliseconas.
. O(N**D) per foy1() at one . .
o oftine OO T O | Mot | opynmark Since the measurement overhead and the off-line costs of all
omputation 2 . . .
cost @) with O(N + AP) hests three schemes are acceptable, what differentiate them are their
On-line storage at S HOPS O(N) 0O(D) . e . . . .
- S on-line scalability, their prediction accuracy (which we shall
erform etrieve Landmarks’ . . . . . .
meastrements, | _coordinates, perform discuss in Section VI) and other qualitative differences. The
End hosts Implement query/reply exch_ange measurement;, compute . . R . . . .
protocol Coordnales, | dun coodinates, main difference between the distance prediction techniques is
beptoyment e g ances ﬁ% scaling. The coordinates-based approaches have higher scala-
R Szigéeig&”‘e{;?ﬂ'éié‘é Basenodes | | compuconn bility because the communication cost of exchanging coordi-
rvers implement reply to pings coordinates and send . . .
querylreply protocol them to end hosis; reply nates to convey distance information among a groul dfosts
compute distances to pings . . . -
el No ves ves grows linearly withK as opposed to quadratically. In addition,
the peer-to-peer architecture also helps to achieve higher scal-
Fig. 4. Properties of distance prediction schemes ability because on-line computations of network distances are

not performed by shared servers. Since end hosts coordinates
coordinates. Note that in general there is no guarantee that 1RE be p|g_gy_back_ed when end hosts dls_cover each other, _d's'
. . ) : ! . tance predictions in the peer-to-peer architecture are essentially
host coordinates will be unigue. Using fewer dimensions than : : o
L . . instantaneous and will not be subjected to the additional com-
the number of Landmarks is simply to avoid obvious problems,™ ~. . .
mMunication latency required to contact a server or delays due to
server overload. Finally, the peer-to-peer architecture is easier
IV. IDM APS, TRIANGULATED HEURISTIC AND GNP to deploy because the i-nodes are passive and therefore do not
COMPARISON require detailed knowledge of the Internetin order to choose IP
addresses to probe. An added benefit is that end hosts behind
In this section, we discuss the differences between IDMagigewalls can still participate in the peer-to-peer architecture.
the triangulated heuristic, and GNP and illustrate the benefitsThe peer-to-peer architecture however does have several dis-
of each approach and the trade-offs. First, let us briefly dgdvantages. First, there is nothing to prevent an end host from
scribe IDMaps’ architecture. IDMaps is an infrastructural selying about its coordinates in order to avoid being selected by
vice in which hosts called Tracers are deployed to measure giRer end hosts. Thus, this architecture may not be suitable in
distances between themselves, possibly not the full mesh to4@-uncooperative environment. In contrast, in the client-server
duce cost, and each Tracer is responsible for measuring the gighitecture, an i-node can verify an end host’s ping response
tances between itself and the set of IP addresses or IP addtisé against the response time of its neighbors. Another poten-
prefixes in the world that are closest to it. These raw distanggl issue is that because the i-nodes in the peer-to-peer architec-
measurements are broadcasted over IP multicast to hosts €&# do not control the arrival of round-trip time measurements
HOPS servers which use the raw distances to build a virtiigdm end hosts, they can potentially be overloaded if the arrival
topology consisting of Tracers and end hosts to model the sattern is bursty.
ternet. HOPS servers perform distance prediction computation@ common concern that affects all three approaches is that if
and interact with client hosts via a query/reply protocol. the fundamental assumption about the stability of network dis-
Common to all three approaches is the need for some tance (i.e. round-trip propagation delay) does not hold due to
frastructure nodes (i-nodes), i.e. the Tracers of IDMaps, thequent network topology changes, all three distance predic-
base nodes of the triangulated heuristic, or the Landmarksti@fn approaches would suffer badly in prediction accuracy. The
GNP. Thus, a key parameter of these architectures is the nusvel of impact such problem has on each distance prediction
ber of these i-nodesy. In addition to/V Tracers, the IDMaps technique is out of the scope of this paper. However, we do
architecture is further characterized by the number of HORBlieve that Internet paths are fairly stable as Zhang et al’'s In-
serversS, and the number of address prefixds?, for Tracers ternet path study in 2000 reported that roughly 80% of Internet
to probe. For GNP and the triangulated heuristic, in additiooutes studied were stable for longer than a day [9]. In addition,
to N base nodes or Landmarks, they are characterized by Betause propagation delay is somewhat related to geography, a
number of end hosté], that need distance predictions. GNP igoute change need not directly imply a large change in propa-
further characterized by the dimensionalify, of the geometric gation delay excepting for pathological cases.
space used in computing host coordinates. Figure 4 summarizes
the differences between the three schemes in terms of measure- L
ment cost, communication cost, computation cost, and depldy- Other Applications of GNP
ment. To clarify, the off-line computation cost of IDMaps is We want to point out that using GNP for network distance
O(AP - N -log N) + O(N3) because thel P address prefixes predictions is only one particular application. The fundamen-
need to be associated with their nearest Tracers and the all-palidifference between GNP and other approaches is that GNP
shortest path distances between Mdracers need to be com-computesabsolutegeometric coordinates to characterize posi-
puted. For GNP, in computing Landmarks’ coordinates, eatihns of end hosts. In other words, GNP is able to generate a
evaluation off,;1 () takesO(N? - D) time. In computing end simple mathematical structure that maps extremely well onto
host coordinates, each evaluationfaf;»(-) takesO(N - D) the Internet in terms of distances. This structure can greatly



benefit a variety of applications. For example, many scalallBobal data set allows us to evaluate the global applicability of
overlay routing schemes such as CAN [3] and Delaunay tthe different distance prediction mechanisms.

angulation based overlay [2] achieve scalability by organizingOur second data set, collected over an 8-hour period in the
end hosts into a simple abstract structure. The problem is tfiegt week of June 2001, is based on a set of 164 targets that are
it is not easy to build such an abstract structure that simultarveeb servers of institutions connected to the Abilene backbone
ously reflects the underlying network topology so as to increasetwork. After post-processing, we are left with 127 targets
performance [10]. GNP coordinates can diieectly used in that are reachable from all probes. The vast majority of these
these overlay structures and can potentially improve their pésrgets are located in universities in the United States. Note that
formance significantly. Another interesting application of GNRO of our 19 probes are also connected to Abilene. Abitene

is to build a proxy location service. For example, the GNP coadlata set allows us to examine the performance of the different
dinates of a large number of network proxies can be organizegchanisms in a more homogeneous environment.

as a kd-tree data structure. Then, to locate a proxy that is near-

est to an end host at a particular set of coordinates, only gn Experiment Methodology

efficient lookup operation in this data structure is required. No

. : . ; All three distance prediction mechanisms considered in this
expensive sorting of distances is needed.

paper require the use of some special infrastructure nodes (i-
nodes). To perform an experiment using a data set, we first
V. EVALUATION METHODOLOGY select a subset of the 19 probes to use as i-nodes, and use the

In this section, we describe the methodology we use to evahemaining probes and the targets as ordinary hosts. This way,
ate the accuracy of GNP, the triangulated heuristic, and IDMaye can evaluate the performance of a mechanism by directly
using measured Internet distance data. comparing the predicted distances and the measured distances
from the remaining probes to the targets. Because the particular
choice of i-nodes can potentially affect the resulting prediction
. _ accuracy, in Section V-C, we propose 3 strawman selection cri-
_ We have Io_gln_ access to 19 hosts we padlbesin research teria to consider in this study.
Institutions _dlstrlbuted arqund the vyOﬁd._TweIV(_a_of these There is however an important and subtle issue that we must
probes are in No.rt.h America, 5 are In Asla Paplflc, and 2 address. Suppose we want to compare GNP to IDMaps. We can
in Europe. In addition to probes, we have compiled several sgﬁf a selection criterion to seledf i-nodes and conduct one

e

A. Data Collection

of IP addresses that respond to ICMP ping messages. We tgllqriment using GNP and one using IDMaps. Unfortunately,

these IP addresseargets when we compare the results, it is difficult to conclude whether

To collect a data set, we measure the distances betweentﬂydiﬁerence is due to the inherent difference in these mecha-

19 probes and the distances from each probe to a set of targg@ns, or simply due to the fact that the particular set of i-nodes

To measure the distance between two hosts, we send 220 .é‘ﬁpens to work better with one mechanism. To increase the

byte ICMP ping packets at one second apart and take the g
imum round-trip time estimate from all replies as the distanc%_.fold validation in machine learning. Instead of choosiNg

This raw data is then post-processed to retain only the targels des based on a criterion. we chodée- 1 i-nodes. Then by
that are reachable from all probes. Correspondingly, there i%l?minating one of theV + 1 i—,nodes at a time, we can generate
bias against having targets that are not always-on (e.g. modgmr 1 different sets ofV i-nodes that are fairl)’/ close to satisfy-
hosts) or do not have global connectivity in our final targets sef. .+« «riterion forV. We then compare different mechanisms

We have collected two data sets. The first set, collected O\fﬁ?using the overall result from al + 1 sets ofV i-nodes
a two-day period in the last week of May 2001, is based on To solve the multi-dimensional global minimization prob-

set of targets that contains 2000 "ping-able” IP addresses gs,¢ i, computing GNP coordinates, we use the Simplex
tamed at an garher time. These IP addresses were chosen Anhill method [8]. In our experience, this method is highly

uniform probing over the IP address space such that any vajiffy ¢ ang quite efficient. To ensure a high quality solution,
IP address has an equal chance of being selected. After p “repeat the minimization procedure for 300 iterations when

processing, we are left with 869 targets that are reachable fr%}nputing Landmarks’ coordinates, and for 30 iterations when

all probes. The relatively low yield is partially due to the Cas@omputing an ordinary host's coordinates. In practice, 3 itera-

where some targets are not on the Internet during our measyi€ss is enough to obtain a fairly robust estimate
ments, and partially due to the possibility that some targets are '

not globally reachable due to partial failures of the Internet. Us- ,
ing the NetGeo [11] tool from CAIDA, we have found that thé>- nfrastructure Node Selection
869 targets span 44 different countries. 467 targets are in théntuitively, we would like the i-nodes to be well distributed
United States, and each of the remaining countries contribus@shat the useful information they provide is maximized. Based
fewer than 40 targets. In summary, 506 targets are in No®@h this intuition, we propose three strawman criteria to choose
America, 30 targets are in South America, 138 targets areMi-nodes from the 19 probes. The first criterion, called max-
Europe, 94 targets are in Asia, 24 targets are in Oceania, 12 tarum separation, is to choose theprobes that maximize the
gets are in Africa, and 65 targets have unknown locations. THgal inter-chosen-probe distances. The second criterion, called
9 _ , o . N-medians, is to choose th¥ probes that minimize the to-
We would like to thank our colleagues in these institutions for granting

host access. We especially thank ETH, HKUST, KAIST, NUS, and PolitecniglI distance fr.om Qach not-chosen probe to !ts ne.areSt chosen
di Torino for their generous support for this study. probe. The third criterion, callel -cluster-medians, is to form

nfidence in our results, we use a technigue that is similar to



1 #1-Nodes | 15 12 9 6
GNP 0.5/7D | 0.59/7D | 0.69/5D | 0.74/5D
09 - Tri./U 0.59 0.69 0.8 1.05
o8 | IDMaps 0.97 1.09 1.16 1.39
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In addition, to observe how each prediction mechanism re-
acts to a wide range of unintelligent i-node choices, we will

also use random combinations of i-nodes in this study. validation) for each mechanism, we present results to compare
_ the accuracy of GNP, the triangulated heuristic, and IDMaps.
D. Performance metrics Then we compare the effectiveness of the three i-node selection

To measure how well a predicted distance matches the corggteria under each mechanism. After that, we present a series
sponding measured distance, we use a metric cditedtional  of results that are aimed to highlight several interesting aspects

relative error that is defined as: of GNP.
predicted distance — measured distance )
min(measured distance, predicted distance) A. Comparisons Using the Global Data Set

Thus, a value of zero implies a perfect prediction, a value of We have conducted a set of experiments using the Global
one implies the predicted distance is larger by a factor of twdata set to compare the three mechanisms. Figure 5 compares
and a value of negative one implies the predicted distanceth® three mechanisms using the relative error metric when 6 and
smaller by a factor of two. Compared to simple percentage @5 i-nodes are used. For GNP, the best results are achieved with
ror, this metric can guard against the “always predict zero” pake Euclidean space model of 5 and 7 dimensions respectively;
icy. When considering the general prediction accuracy, we wibir the triangulated heuristic, the upper bound heurigficder-
also use theelative error metric, which is simply the absoluteforms by far the best. Note that is simply the shortest dis-
value of the directional relative error. tance between two end hosts via one i-node. Both coordinates-
To measure the effectiveness of using predicted distancespaged mechanisms perform significantly better than IDMaps,
server-selection type of applications, we use a metric call@ggth GNP achieving the highest overall accuracy in all cases.
rank accuracy. The idea is that, after each experiment, Wgyith 15 Landmarks, GNP can predict 90% of all paths with rel-
have the predicted distances and measured distances foratig error of 0.5 or less. We will defer the explanation for the
paths between the non-i-node probes and the targets. We th##ferences in accuracy of the three schemes until Section VI-E.
sort these paths based on the predicted distances to generataige have also conducted experiments when 9 and 12 i-nodes
predicted ranked list, and also generate a measured rankeddigt used. To summarize all the results, we report the 90 per-
based on the measured distances. The rank accuracy is thercégtile relative error value for all three mechanisms at 6, 9, 12
fined as the percentage of paths correctly selected when we g8 15 i-nodes in Table I. Clearly as the number of i-nodes in-
the predicted ranked list to select some number of the shortesfase, all three mechanisms benefit, with GNP being the most
paths. If the predicted ranking is perfect, then the rank accaecurate in all cases. However, the accuracy of IDMaps and tri-
racy is 100% regardless of the number of shortest paths we afgyulated heuristic will eventually become higher than that of
selecting. Note that a prediction mechanism can potentially GNP as the number of i-nodes increases. Without larger data
extremely inaccurate with respect to the directional relative &fets, it will be difficult to understand the asymptotic behavior
ror metric but still have high rank accuracy because the rankiggleach scheme. Nevertheless, it is safe to conclude that with a

of the paths may still be preserved. small number of Landmarks, these differences will be observed.
Figure 6 compares the three mechanisms in terms of the rank
VI. EXPERIMENTAL RESULTS accuracy metric when 15 i-nodes are used. The ability to rank

In this section, we present our experimental results. First, Hye shortest paths correctly is desirable because it is important
using the same set of i-nodes (unless otherwise noted, wetal-server-selection problems. Overall, GNP is most accurate
ways use theéV-cluster-medians selection criterion withfold  at ranking the paths. In particular, GNP is significantly more
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Fig. 7. Directional relative error comparison (Global) Fig. 8. Relative error comparison (Abilene)

100

accurate at ranking the shortest 5% of the paths than the tri-
angulated heuristic even though their difference by the relative
error measure is small. In fact, even though IDMaps has poor
performance in terms of relative error, it is better at ranking the
shortest paths than the triangulated heuristic.

The explanation to this seemingly contradictory result can
be found in Figure 7. In this figure, we classify the evalu-
ated paths into groups of 50ms each (i.e. (Oms, 50ms], (50ms,

80 -

60 -

Rank Accuracy (%)

40 -

100ms],...,(1000mse]), and plot the summary statistics that o

describe the distribution of the directional relative error of each Trangemy) andmarks, 80 ——
mechanism in each group. Each set of statistics is plotted ona ~ o—= ST
vertical line. The mean directional relative error of each mech- Fraction of Shortest Paths to Predict (Log Scale)

anism is indicated by the squares (GNP), circles (triangulateg 9. Rank accuracy comparison (Abilene)
heuristic) and triangles (IDMaps). The 5th percentile and 95th
percentile are indicated by the outer whiskers of the line, the
25th percentile and 75th percentile are indicated by the inrde 10 Abilene-attached probes at a time, providing 10 differ-
whiskers. Note that in some cases these whiskers are off #r& combinations of 9 i-nodes. For GNP, the best performance
chart. Finally, the asterisk (*) on the line indicates the mediars achieved with the Euclidean space model of 5 and 8 dimen-

We can see that GNP is more accurate in predicting sheibns respectively, and for the triangulated heuristic, again the
distances than the other mechanisms. Although the triangypper bound’ heuristic achieves better accuracy than the lower
lated heuristic is more accurate than IDMaps in predicting diseund or the average of the two. Notice that in the homoge-
tances of less than 50ms, IDMaps is vepnsistenin its over- neous environment of Abilene, the accuracy of all three mecha-
predictions for distances of up-to 350ms. This consistent oveisms barely improves from 6 to 9 i-nodes. We believe that the
prediction behavior causes IDMaps to rank the shortest patigditional i-nodes simply do not add much more information in
better than the triangulated heuristic. Beyond 800ms, we sech a homogeneous environment.
large under-predictions by all mechanisms. However, becaus&omparing to previous results based on the Global data set
these paths account for less than 0.7% of all evaluated patfigh 9 i-nodes, the 90 percentile relative error for GNP, the tri-
the result here is far from being representative. In the last grogpgulated heuristic and IDMaps are 0.69, 0.8 and 1.16 respec-
there are several outliers of distances of over 6000ms, contribiifely. Using the Abilene data set with 9 i-nodes, those figures
ing to the large under-predictions (the means are off the chark 0.56, 0.88 and 1.72 respectively. In other words, only GNP’s
between -5 and -6). Finally, notice that paths between 350&wturacy improves in the more homogeneous environment of
and 550ms appear to be much harder to predict than their ifbilene. We believe this is because the paths in Abilene are
mediate neighbors. We will conduct further investigations | very short, 90% of the paths are shorter than 70ms. As a
try to understand this behavior. result, the advantage GNP has in prediction short distances is
amplified.

Figure 9 compares how well each mechanism rank paths in
Abilene when 9 i-nodes are used. The advantage that GNP has

Now we turn our attention to experiments we have cotn predicting the shortest paths is clear. This is confirmed again
ducted with the Abilene data set usingly the subset of 10 in the directional relative error comparison shown in Figure 10.
Abilene-attached probes. Figure 8 compares the three mechgain, IDMaps’ consistent over-predictions for paths of up-to
nisms when 6 and 9 i-nodes are used. The 6 i-nodes are sele8@uis allow it to be better at ranking the shortest paths than the
using the N-cluster-medians criterion witk-fold validation, triangulated heuristic even though it is not accurate in terms of
but the 9 i-nodes are obtained simply from eliminating one oélative error.

B. Comparisons Using the Abilene Data Set



3 . . . N==6 N-cluster-medians| N-medians | Max sep.
Trianglﬁawgd/%}gr;;:sjzrh%diz —— GNP 0.74 0.78 1.04
25 L IDMaps, 9 Tracers —=— | Triangulated/U 1.05 1.08 4.64
Triangulated/L 1.85 1.53 1.93
2L J Triangulated/(L+U)/2 | 1.53 131 33
5 IDMaps 1.39 1.43 5.57
g 15 1 N=9 N-cluster-medians| N-medians | Max sep.
E GNP 0.68 0.7 0.83
g 1 1 Triangulated/U 0.8 0.77 1.19
g Triangulated/L 2.06 2.0 2.11
g 05 l® % 1 Triangulated/(L+U)/2 | 1.43 1.38 1.69
a IDM 1.16 1.09 1.74
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Fig. 10. Directional relative error comparison (Abilene) predictive power in general compared to the upper bolind
_ heuristic (the average @f and L always leads to accuracy in
Max | Min Mean Std Dev b h b d I itivel . thex fil :
NP 0.4 1065 T 07375 1 0.06908 etween the two boun s). ntuitively, since thex filter is
Triangulate/U | 1.37 | 0.66 | 0.8685 | 0.1686 used in thel, metric, it is more sensitive to large outliers in the
\DMaps 184 | 1.0 | 1.287 | 0.2308 data. The fact that’ works well implies that shortest path rout-
TABLE Il ing is still a reasonably close approximation for the majority of
STATISTICAL SUMMARY OF 90 PERCENTILE RELATIVE ERROR UNDER cases. There is however an exception. When 6 i-nodes cho-
RANDOM |-NODE PLACEMENT sen by the maximum separation criterion is used,thaetric
performs much better than tlié& metric. Looking at the set of
C. Sensitivity to Infrastructure Node Placement i-nodes, we discover that except for one i-node in Canada, all

other i-nodes are located in Asia and Europe. This is interesting

bustness because its accuracy is highly dependent on the nt fpause _smtc):etthe major|t¥ Olf tohur t_arg((ajts ar(_aan North ?}men(t:ﬁa,

ber and the locations of the base nodes in the network. €y are in between most of the I-nodes. us, we have the
%xact configuration where thlemetric is most accurate!

To study how sensitive are GNP, the triangulated heurist "We h Iso looked at th K fthe tri lated
and IDMaps to unintelligent placement of i-nodes, we conduct € have aiso jooked at e rank accuracy ot the trangulate

a set of experiments with 20 random combinations of 6 i_nodggunstt;]cs(;nﬁthese e'xperlrlrgents. For Gf;-ljszdes,dthLereUls 20 sur-
using the Global data set. For each mechanism and each offfg®: the dilferencein rank accuracy ot thel. an (L+U)/

20 random combinations, we compute the 90 percentile relatiigtrics agrees with their difference in relative error. However,

error value. Table Il shows the key statistics of the 90 percentf 9 i-nodes, under all three different i-node selection criteria,

relative error for each mechanism. Of the three mechanis ?L and(L +U)/2 metrics have higher rank accuracy by S to

GNP’s accuracy is the highest by all measures and also has]t é)erc(:jetr;]ts tf;}anttﬁsf rlr:)/etrltcr:] focrj%nly the s_horteskt 1% of paths. .
smallest spread. Because GNP does not use the virtual topolg ondthe shortest 17, the dilference in rank accuracy again

model, itis highly robust in producing accurate predictions ev ees with the difference in rglatlve error. Further studies need
under random i-nodes placement. to be conducted to analyze this anomaly.

Although the triangulated heuristic is very simple, it lacks r

D. Infrastructure Node Selection E. Sources of Inaccuracy

In the previous experiments we have been usingdhe  So far we have only shown the differences in accuracy of
cluster-medians i-node selection method whenever appropridite. three distance prediction schemes, but where the inaccuracy
In this section, we go back to examine the differences in theaBd differences originate is not clear. In this section, we discuss
proposed i-node selection criteria. Using the Global data segveral sources for the inaccuracy.
we conduct experiments using the 3 criteria under 6 and 9 i-1) Inefficient Routing: Since all three distance prediction
nodes (withk-fold validation) and compute the 90 percentilschemes rely in some degree on shortest (by propagation delay)
relative error for each set of experiments. We also take the ggath routing in the Internet, we believe the largest source for in-
portunity here to compare the different triangulated heuristicaccuracy is the inefficient routing behavior in the Internet stem-
Table Ill summarizes the results. ming from BGP policy routing and hop count based routing. To

The N-cluster-medians anfy-medians perform very simi- assess the level of inefficient routing in our global data set, we
larly. On the other hand, the Max separation criterion worknducted the same triangular inequality test as in [5]. That is
very poorly because this criterion tends to select probes orfigy all the triangular closed loop patfis, b), (b, ¢), and(a, ¢)
in Europe and Asia, and therefore they are not necessarily véimat we measured, we computed all taec)/((a,b) + (b, ¢))
well distributed. A comparison with the results reported in Taatios. We found that 7% of the ratios are greater than one,
ble 1l reveals that théV-cluster-medians criterion is not opti-which is consistent with the previous findings. To measure
mal because there exists some combinations of 6 infrastructtire impact of this on prediction accuracy, we performed the
nodes that can lead to relative error as low as 0.65, 0.66 and fbilowing experiment. For each targeétin the global data
for GNP, the triangulated heuristic, and IDMaps respectivelset, we remove from consideration if¢ is in {a,b,c} and
Note that the triangulated lower bound heuristichas poor (a,c)/((a,b) + (b,c)) > 1.5. After applying this filter, we are



# Landmarks 6 15
Normalized error 0.74 | 0.5
Logarithmic transform| 0.75 | 0.51

‘ ‘ Squared error 1.03 | 0.74
TABLE IV

Internet SUMMARY OF 90 PERCENTILE RELATIVE ERROR FOR DIFFERENT ERROR
MEASUREMENT FUNCTIONS

Fig. 11. Predicting short distances

left with 392 targets. We performed the 15 i-nodes experiments 08k
again, and found that all three distance prediction schemes’ per- arl
formance improves. For GNP, the 90 percentile relative error
is improved from 0.5 to 0.33; for the triangulated heuristic/U,
the relative error improved from 0.59 to 0.42; and finally for
IDMaps, the relative error improved from 0.97 to 0.89.
2) Predicting Short DistancesA major difference between

the performance of the three schemes lie in their ability to pre-
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dict short distances. As we have shown, GNP is the most accu- 01 %EEEW §§ .

H H . andmarks,
rate in this category and IDMaps is the least accurate and tend % o5 : e .
to heavily over-predict short distances. The difference is actu- Relative Error

ally easy to explain. Consider the example in Figure &l. Fig. 12. Convergence of GNP performance

andY are i-nodes, and andB are two end hosts that are very

nearby. Clearly, IDMaps gives the most pessimistic prediction

of (4, X) + (B,Y) + (X,Y). The triangulated heuristi’  (with k-fold validation) and compare the three error measures.
metric is slightly less pessimistic, since it predicts the distan@able 1V reports the 90 percentile relative error for each ex-
to be (4,Y) + (B,Y). In contrast, with a one-dimensionalperiment. The results confirm our intuition. The normalized
model, GNP will be able to perfectly predict the distance beseasure and the logarithmic measure are very similar because
tweenA and B. Although the triangulated heuristic metric they are both a form of relative error measure. It is clear that
would have given a perfect prediction in this example, in prathe squared error measure is not very suitable. Thus, through-
tice it is too easily influenced by a single large distance to @it this paper, to compute GNP coordinates, we have always
i-node, thus, as we have shown, it works very poorly in praased the normalized error measure.

tice. GNP is more robust against outliers in measurements sinc®) Choosing the Geometric Spacelthough in the previ-

it takes all measurements into account when computing coorgiss experiments we have always reported results with the Eu-
nates. In summary, GNP performs better because it exploits #ligean space model of various dimensions, we have also exper-
relationships between the positions of Landmarks and end hqgignted with the spherical surface and the cylindrical surface as
rather than depending on the exact topological locations of thétential models. The spherical surface makes sense because

i-nodes, thus it is highly accurate and robust. the Earth is roughly a sphere, and since almost certainly no ma-
jor communication paths pass through the two Poles, the cylin-
F. Exploring the GNP Framework drical surface may also be a good approximation. The GNP

1) Error Measurement Function: Recall that when com- framework is flexible enough to accommodate these models,

puting GNP coordinates, an error measurement funcfion the only change is that the distance functions are different. With
is used in the objective functions. Appropriately characterifi€ Global data set and 6 Landmarks chosen witithguster-

ing the goodness of a set of coordinates is key to the eventi#gdians criterion, we conduct experiments to examine the fit-
predictive power of those coordinates. In Section III, we mefiess of the spherical and cylindrical surface of various sizes.
tioned the squared error measure (Eq. 2). However, intuitivelyor the spherical surface, we specify the radius; for the cylin-
this error measure might not be very desirable because one @hig¢al surface, we specify the circumference and the height is
of error in a very short distance accounts for just as much @gen to be half the circumference. It turns out that both of
one unit of error in a very long distance. This leads us to ef?ese models’ performance increases as the size of their sur-
periment with two other relative error measures. The first of@ce increases, and in the limit approaches the performance of

is the normalized error measure: the 2-dimensional Euclidean space model. We believe this is a
R gy, — dS consequence of the fact that we have no probes in central Asia
E(dpyrty, Ay, 30,) = (02 )2 (5) or Africa, and there are also very few targets in those regions,
s hence a curved surface does not help.
and the second one is the logarithmic transformed error meagocusing on the Euclidean space models, we turn our atten-
sure: tion to the question of how many dimensions we should use in

&(d LS — (loe(d —loa(dS 2 6) GNP. To answer this question, we conduct experiments with the
(@ 1ta: D) = (0B{drana) ~ log(dzi1,)) ©) Global data set using 6, 9, 12, and 15 Landmarks chosen with

We perform experiments using the Global data set with 6 atite N-cluster-medians criterion (with-fold validation) under
15 Landmarks selected using thécluster-medians criterion various number of dimensions. Figure 12 shows the result for



A 5 c phisticated techniques than NetGeo have been proposed [12],

ISP 1>< the NetGeo tool is publicly available and so we use it as a

first approximation. We compute the linear correlation coef-

B D
AB eP 2-dimensional model ficient between geographical distances and measured distances,
N A 5 c and also between GNP computed distances and measured dis-
Al0 1 5 5 1 tances. Excluding the outliers of measured distances greater
ds o5 B b than 2500ms, the overall correlation between geographical dis-
b5 510 3-dimensional model tances and measured distances is 0.638, while the overall corre-

lation between GNP distances and measured distances is 0.915.
Knowing that the NetGeo tool is not 100% accurate, we note
with caution that the performance gap between GNP distances
the case of 15 Landmarks. Generally, as the number of dimemd the geographical distances led us to believe that GNP is
sions is increased, GNP’s accuracy improves, but the improwedeed discovering network specific relationships beyond geo-
ment diminishes with each successive dimension. To charactgaphical relationships.
ize this effect, consider the cumulative probability distribution
functions of the relative error under two different dimensions VII. SUMMARY
D andD + 1. Between the 70 and 90 percentile, if the perfor- In this paper, we have studied a new class of solutions to
mance ofD + 1 dimensions is not strictly greater than that ofhe Internet distance prediction problem that is based on end
D dimensions, or if the average improvement is less that 0.1%gsts-maintained coordinates, namely the previously proposed
then we say the results have convergedadimensions. Us- triangulated heuristic and our new approach called Global Net-
ing this criterion, for 6, 9, 12, and 15 Landmarks, the resultgork Positioning (GNP). We propose to apply these solutions
converge at 5, 5, 7, and 7 dimensions respectively. in the context of a peer-to-peer architecture. These solutions al-
Intuitively, adding more dimensions increases the modelsw end hosts to perform distance predictions in a timely fash-
flexibility and allows more accurate coordinates to be conpn and are highly scalable. Using measured Internet distance
puted. To illustrate, consider the situation shown in Figure Ihita, we have conducted a realistic Internet study of the dis-
where there are four hostd, B, C, andD, with A in the same tance prediction accuracy of the triangulated heuristic, GNP
network as3, andC in the same network &B. The hypotheti- and IDMaps. We have shown that both the triangulated heuris-
cal measured distances between them are shown in the matitxand GNP out-perform IDMaps significantly. In particular,
Clearly, in a 2-dimensional space, the distances cannot be ggNP is most accurate and robust.
fectly modeled. One possible approximation is the rectangleWe have also explored a number of key issues related to the
of width 5 and height 1, preserving most of the distances, €®NP approach to maximize performance. The main finding is
cept the diagonal distances are over-estimated. However, ithat a relative error measurement function combined with a Eu-
3-dimensional space, we can perfectly model all the distansgiglean space model of an appropriate number of dimensions
with a tetrahedron. Of course, any Euclidean space modepighieves good performance. We will continue to develop solu-
still constrained by the triangular inequality, which is generalfffons around the GNP framework in the future.
not satisfied by Internet distances. As a result, adding more
dimensions beyond a certain point does not help. ) o
3) Reducing Measurement Overhea®o far we have as- (1 Er&';‘gd%gﬁ?xg‘ﬁ Sngﬁheat‘HgmAe gggglfor end system multicast,” in
sumed that an end host must measure its distances to all Langl- J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicast with
mark hosts in order to compute its coordinates. However, onl delaunay triangulations,"'Tech. Rep., University of Virginia, Nov. 2001.“
. . cfé] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
D+1host-to-Landmark distances are really required for the co- scalable content-addressable network,” Firoceedings of ACM SIG-
ordinates computation in2-dimensional space. To exposethe = COMM01, San Diego, CA, Aug. 2001.
trade-offs, we conducted an experiment with 15 Landmarks ari§ !: Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
. . . Chord: A scalable peer-to-peer lookup service for Internet applications,
a 7-dimensional Euclidean space model, where we randomly in proceedings of ACM SIGCOMM0Ban Diego, CA, Aug. 2001.
chose 8 out of 15 Landmarks for each end host for the coofs] P. Francis, S. Jamin, V. Paxson, L. Zhang, D.F. Gryniewicz, and Y. Jin,
dinates computation. We found that the 90 percentile relative ngggg:fgcstugflg’ég ?,Lofgggfﬂrnge&l‘ﬁ;cgfga&? ,f,f;;mfég’g service,-n
error of GNP increases from 0.5 to 0.65. However, when wg] s.M. Hotz, “Routing information organization to support scalable in-

chose the 8 Landmarks that are nearest to each end host for the%?r:dom?én r%utlijlg Withthet]?éogetaeouE plith requirements,” 1994, Ph.D.
. o e . - esIs (drart), University o outhern Calitornia.
computations, the prediction accuracy is virtually unChangeqj'l] J.D. Guyton and M.F. Schwartz, “Locating nearby copies of replicated

While further study of this technique is needed, it seems feasi- Internet servers,” ifProceedings of ACM SIGCOMM'9%\ug. 1995.

ble to greatly reduce the measurement overhead without sadf! J.A.Nelder and R. Mead, “A simplex method for function minimization,”

- Computer Journalvol. 7, pp. 308-313, 1965.

ficing accuracy. _ ] . [9] Y. Zhang, V. Paxson, and S. Shenker, “The stationarity of internet path
4) Why Not Geographical Coordinates?Finally, we ask properties: Routing, loss, and throughput,” Tech. Rep., ACIRI, May 2000.

whether GNP is simply discovering the geographical relatioH®] S: Ratnasamy, M. Handley, R. Karp, and S. Shenker, *Topologically-
aware overlay construction and server selectionPrioceedings of IEEE

§hips between hosts. I_f SO, then_ a straight fprward aIterr_1ative INFOCOM'02, New York, NY, June 2002.

is to use the geographical coordinates (longitude and latitud&l) CAI/DA,I “/Nelt_C_%eO/ - The I/nternet geographic database,” http://www.caida.
i ; ; _ orgltools/utilities/netgeo/.

of er_]d hosts to perfqrm dIStan_Ce estimates. We obtain the B V.N. Padmanabhan and L. Subramanian, “An investigation of geographic

proximate geographical coordinates for our probes and targets mapping techniques for internet hosts,” Mioceedings of ACM SIG-

in the Global data set from NetGeo [11]. Although more so- COMM01, San Diego, CA, Aug. 2001.

Fig. 13. Benefit of extra dimensions
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