
The VLDB Journal (1996) 5: 48–63 The VLDB Journal
c© Springer-Verlag 1996

Mariposa: a wide-area distributed database system

Michael Stonebraker, Paul M. Aoki, Witold Litwin 1, Avi Pfeffer2, Adam Sah, Jeff Sidell, Carl Staelin3, Andrew Yu4

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720-1776, USA

Edited by Henry F. Korth and Amit Sheth. Received November 1994 / Revised June 1995 / Accepted September 14, 1995

Abstract. The requirements of wide-area distributed data-
base systems differ dramatically from those of local-area
network systems. In a wide-area network (WAN) configura-
tion, individual sites usually report to different system ad-
ministrators, have different access and charging algorithms,
install site-specific data type extensions, and have differ-
ent constraints on servicing remote requests. Typical of the
last point are production transaction environments, which
are fully engaged during normal business hours, and cannot
take on additional load. Finally, there may be many sites
participating in a WAN distributed DBMS.

In this world, a single program performing global query
optimization using a cost-based optimizer will not work
well. Cost-based optimization does not respond well to site-
specific type extension, access constraints, charging algo-
rithms, and time-of-day constraints. Furthermore, traditional
cost-based distributed optimizers do not scale well to a large
number of possible processing sites. Since traditional dis-
tributed DBMSs have all used cost-based optimizers, they
are not appropriate in a WAN environment, and a new ar-
chitecture is required.

We have proposed and implemented an economic para-
digm as the solution to these issues in a new distributed
DBMS called Mariposa. In this paper, we present the archi-
tecture and implementation of Mariposa and discuss early
feedback on its operating characteristics.

Key words: Databases – Distributed systems – Economic
site – Autonomy – Wide-area network – Name service

1 Present address: Universit́e Paris IX Dauphine, Section MIAGE, Place
de Lattre de Tassigny, 75775 Paris Cedex 16, France
2 Present address: Department of Computer Science, Stanford University,
Stanford, CA 94305, USA
3 Present address: Hewlett-Packard Laboratories, M/S 1U-13 P.O. Box
10490, Palo Alto, CA 94303, USA
4 Present address: Illustra Information Technologies, Inc., 1111 Broadway,
Suite 2000, Oakland, CA 94607, USA
e-mail: mariposa@postgres.Berkeley.edu
Correspondence to: M. Stonebraker

1 Introduction

The Mariposa distributed database system addresses a fun-
damental problem in the standard approach to distributed
data management. We argue that the underlying assumptions
traditionally made while implementing distributed data man-
agers do not apply to today’s wide-area network (WAN) en-
vironments. We present a set of guiding principles that must
apply to a system designed for modern WAN environments.
We then demonstrate that existing architectures cannot ad-
here to these principles because of the invalid assumptions
just mentioned. Finally, we show how Mariposa can success-
fully apply the principles through its adoption of an entirely
different paradigm for query and storage optimization.

Traditional distributed relational database systems that
offer location-transparent query languages, such as Dis-
tributed INGRES (Stonebraker 1986), R* (Williams et al.
1981), SIRIUS (Litwin 1982) and SDD-1 (Bernstein 1981),
all make a collection of underlying assumptions. These as-
sumptions include:

– Static data allocation: In a traditional distributed DBMS,
there is no mechanism whereby objects can quickly and eas-
ily change sites to reflect changing access patterns. Moving
an object from one site to another is done manually by a da-
tabase administrator, and all secondary access paths to the
data are lost in the process. Hence, object movement is a
very “heavyweight” operation and should not be done fre-
quently.
– Single administrative structure: Traditional distributed da-
tabase systems have assumed a query optimizer which de-
composes a query into “pieces” and then decides where to
execute each of these pieces. As a result, site selection for
query fragments is done by the optimizer. Hence, there is
no mechanism in traditional systems for a site to refuse to
execute a query, for example because it is overloaded or oth-
erwise indisposed. Such “good neighbor” assumptions are
only valid if all machines in the distributed system are con-
trolled by the same administration.
– Uniformity: Traditional distributed query optimizers gener-
ally assume that all processors and network connections are
the same speed. Moreover, the optimizer assumes that any
join can be done at any site, e.g., all sites have ample disk



49

space to store intermediate results. They further assume that
every site has the same collection of data types, functions
and operators, so that any subquery can be performed at any
site.

These assumptions are often plausible in local-area net-
work (LAN) environments. In LAN worlds, environment
uniformity and a single administrative structure are com-
mon. Moreover, a high-speed, reasonably uniform intercon-
nect tends to mask performance problems caused by subop-
timal data allocation.

In a WAN environment, these assumptions are much less
plausible. For example, the Sequoia 2000 project (Stone-
braker 1991) spans six sites around the state of California
with a wide variety of hardware and storage capacities. Each
site has its own database administrator, and the willingness
of any site to perform work on behalf of users at another
site varies widely. Furthermore, network connectivity is not
uniform. Lastly, type extension often is available only on se-
lected machines, because of licensing restrictions on propri-
etary software or because the type extension uses the unique
features of a particular hardware architecture. As a result,
traditional distributed DBMSs do not work well in the non-
uniform, multi-administrator WAN environments of which
Sequoia 2000 is typical. We expect an explosion of configu-
rations like Sequoia 2000 as multiple companies coordinate
tasks, such as distributed manufacturing, or share data in so-
phisticated ways, for example through a yet-to-be-built query
optimizer for the World Wide Web.

As a result, the goal of the Mariposa project is to design
a WAN distributed DBMS. Specifically, we are guided by
the following principles, which we assert are requirements
for non-uniform, multi-administrator WAN environments:

– Scalability to a large number of cooperating sites: In a
WAN environment, there may be a large number of sites
which wish to share data. A distributed DBMS should not
contain assumptions that will limit its ability to scale to 1000
sites or more.
– Data mobility: It should be easy and efficient to change the
“home” of an object. Preferably, the object should remain
available during movement.
– No global synchronization: Schema changes should not
force a site to synchronize with all other sites. Otherwise,
some operations will have exceptionally poor response time.
– Total local autonomy: Each site must have complete con-
trol over its own resources. This includes what objects to
store and what queries to run. Query allocation cannot be
done by a central, authoritarian query optimizer.
– Easily configurable policies: It should be easy for a local
database administrator to change the behavior of a Mariposa
site.

Traditional distributed DBMSs do not meet these re-
quirements. Use of an authoritarian, centralized query opti-
mizer does not scale well; the high cost of moving an object
between sites restricts data mobility, schema changes typ-
ically require global synchronization, and centralized man-
agement designs inhibit local autonomy and flexible policy
configuration.

One could claim that these are implementation issues,
but we argue that traditional distributed DBMSscannotmeet

the requirements defined above for fundamental architectural
reasons. For example, any distributed DBMS must address
distributed query optimization and placement of DBMS ob-
jects. However, if sites can refuse to process subqueries, then
it is difficult to perform cost-based global optimization. In
addition, cost-based global optimization is “brittle” in that it
does not scale well to a large number of participating sites.
As another example, consider the requirement that objects
must be able to move freely between sites. Movement is
complicated by the fact that the sending site and receiving
site have total local autonomy. Hence the sender can refuse
to relinquish the object, and the recipient can refuse to ac-
cept it. As a result, allocation of objects to sites cannot be
done by a central database administrator.

Because of these inherent problems, the Mariposa de-
sign rejects the conventional distributed DBMS architecture
in favor of one that supports a microeconomic paradigm for
query and storage optimization. All distributed DBMS is-
sues (multiple copies of objects, naming service, etc.) are
reformulated in microeconomic terms. Briefly, implementa-
tion of an economic paradigm requires a number of entities
and mechanisms. All Mariposa clients and servers have an
account with a network bank. A user allocates abudgetin
the currency of this bank to each query. The goal of the
query processing system is to solve the query within the
allotted budget by contracting with various Mariposa pro-
cessing sites to perform portions of the query. Each query
is administered by abroker, which obtains bids for pieces
of a query from various sites. The remainder of this section
shows how use of these economic entities and mechanisms
allows Mariposa to meet the requirements set out above.

The implementation of the economic infrastructure sup-
ports a large number of sites. For example, instead of using
centralized metadata to determine where to run a query, the
broker makes use of a distributed advertising service to find
sites that might want to bid on portions of the query. More-
over, the broker is specifically designed to cope success-
fully with very large Mariposa networks. Similarly, a server
can join a Mariposa system at any time by buying objects
from other sites, advertising its services and then bidding
on queries. It can leave Mariposa by selling its objects and
ceasing to bid. As a result, we can achieve a highly scalable
system using our economic paradigm.

Each Mariposa site makes storage decisions to buy and
sell fragments, based on optimizing the revenue it expects to
collect. Mariposa objects have no notion of a home, merely
that of a current owner. The current owner may change
rapidly as objects are moved. Object movement preserves
all secondary indexes, and is coded to offer as high per-
formance as possible. Consequently, Mariposa fosters data
mobility and the free trade of objects.

Avoidance of global synchronization is simplified in
many places by an economic paradigm. Replication is one
such area. The details of the Mariposa replication system are
contained in a separate paper (Sidell 1995). In short, copy
holders maintain the currency of their copies by contract-
ing with other copy holders to deliver their updates. This
contract specifies a payment stream for update information
delivered within a specified time bound. Each site then runs
a “zippering” system to merge update streams in a consistent
way. As a result, copy holders serve data which is out of



50

date by varying degrees. Query processing on these divergent
copies is resolved using the bidding process. Metadata man-
agement is another, related area that benefits from economic
processes. Parsing an incoming query requires Mariposa to
interact with one or morename servicesto identify relevant
metadata about objects referenced in a query, including their
location. The copy mechanism described above is designed
so that name servers are just like other servers of replicated
data. The name servers contract with other Mariposa sites
to receive updates to the system catalogs. As a result of this
architecture, schema changes do not entail any synchroniza-
tion; rather, such changes are “percolated” to name services
asynchronously.

Since each Mariposa site is free to bid on any business of
interest, it has total local autonomy. Each site is expected to
maximize its individual profit per unit of operating time and
to bid on those queries that it feels will accomplish this goal.
Of course, the net effect of this freedom is that some queries
may not be solvable, either because nobody will bid on them
or because the aggregate of the minimum bids exceeds what
the client is willing to pay. In addition, a site can buy and
sell objects at will. It can refuse to give up objects, or it may
not find buyers for an object it does not want.

Finally, Mariposa provides powerful mechanisms for
specifying the behavior of each site. Sites must decide which
objects to buy and sell and which queries to bid on. Each
site has abidder and astorage managerthat make these
decisions. However, as conditions change over time, pol-
icy decisions must also change. Although the bidder and
storage manager modules may be coded in any language
desired, Mariposa provides a low level, very efficient em-
bedded scripting language andrule systemcalled Rush (Sah
et al. 1994). Using Rush, it is straightforward to change pol-
icy decisions; one simply modifies the rules by which these
modules are implemented.

The purpose of this paper is to report on the architec-
ture, implementation, and operation of our current prototype.
Preliminary discussions of Mariposa ideas have been previ-
ously reported (Stonebraker et al. 1994a, 19994b). At this
time (June 1995), we have a complete optimization and ex-
ecution system running, and we will present performance
results of some initial experiments.

In Sect. 2, we present the three major components of our
economic system. Section 3 describes the bidding process by
which a broker contracts for service with processing sites,
the mechanisms that make the bidding process efficient, and
the methods by which network utilization is integrated into
the economic model. Section 4 describes Mariposa storage
management. Section 5 describes naming and name service
in Mariposa. Section 6 presents some initial experiments
using the Mariposa prototype. Section 7 discusses previous
applications of the economic model in computing. Finally,
Sect. 8 summarizes the work completed to date and the future
directions of the project.

2 Architecture

Mariposa supports transparent fragmentation of tables across
sites. That is, Mariposa clients submit queries in a dialect
of SQL3; each table referenced in the FROM clause of a

SQL Parser

Single-Site Optimizer

Client Application

Query Fragmenter

Broker

Coordinator

Bidder

Executor

Storage Manager

Layer
Middleware

Component
Execution

Local

Fig. 1. Mariposa architecture

query could potentially be decomposed into a collection of
table fragments. Fragments can obey range- or hash-based
distribution criteria which logically partition the table. Alter-
nately, fragments can be unstructured, in which case records
are allocated to any convenient fragment.

Mariposa provides a variety of fragment operations.
Fragments are the units of storage that are bought and sold
by sites. In addition, the total number of fragments in a ta-
ble can be changed dynamically, perhaps quite rapidly. The
current owner of a fragment cansplit it into two storage
fragments whenever it is deemed desirable. Conversely, the
owner of two fragments of a table cancoalescethem into a
single fragment at any time.

To process queries on fragmented tables and support buy-
ing, selling, splitting, and coalescing fragments, Mariposa is
divided into three kinds of modules as noted in Fig. 1. There
is aclient programwhich issues queries, complete with bid-
ding instructions, to the Mariposa system. In turn, Mariposa
contains amiddlewarelayer and alocal executioncompo-
nent. The middleware layer contains several query prepara-
tion modules, and aquery broker. Lastly, local execution
is composed of abidder, a storage manager, and a local
execution engine.

In addition, the broker, bidder and storage manager can
be tailored at each site. We have provided a high perfor-
mance rule system, Rush, in which we have coded initial
Mariposa implementations of these modules. We expect site
administrators to tailor the behavior of our implementations
by altering the rules present at a site. Lastly, there is a low-
level utility layer that implements essential Mariposa primi-
tives for communication between sites. The various modules
are shown in Fig. 1. Notice that the client module can run
anywhere in a Mariposa network. It communicates with a
middleware process running at the same or a different site.
In turn, Mariposa middleware communicates with local ex-
ecution systems at various sites.

This section describes the role that each module plays
in the Mariposa economy. In the process of describing the
modules, we also give an overview of how query processing



51

SS(EMP)

Broker

Bidder
select

Plan Tree

SS(EMP1)

For Bid

EMP*

($$$, DELAY)

Bid

select

select

Parse Tree

Request

Query
Execute

Executor

Jeff, 100K,...

Paul, 100K,...

Mike, 10K,...
Answer

Single-Site Optimizer

Bid Curve $ Answer

Coordinator

Delay

SQL Parser

Query select * from EMP;

SS(EMP1)

YOU WIN!!!

Bid Acceptance

select

Query Fragmenter

Client Application

Component
Execution

Local

Layer
Middleware

Paul, 100K,...

Jeff, 100K,...

select

SS(EMP1)

MERGE

SS(EMP2)

SS(EMP3)

Mike, 10K,...

Plan

Fragmented

Fig. 2. Mariposa communication

works in an economic framework. Section 3 will explain this
process in more detail.

Queries are submitted by the client application. Each
query starts with a budgetB(t) expressed as abid curve.
The budget indicates how much the user is willing to pay to
have the query executed within timet. Query budgets form
the basis of the Mariposa economy. Figure 2 includes a bid
curve indicating that the user is willing to sacrifice perfor-
mance for a lower price. Once a budget has been assigned
(through administrative means not discussed here), the client
software hands the query to Mariposa middleware. Mariposa
middleware contains an SQL parser, single-site optimizer,
query fragmenter, broker, and coordinator module. The bro-
ker is primarily coded in Rush. Each of these modules is
described below. The communication between modules is
shown in Fig. 2.

The parser parses the incoming query, performing name
resolution and authorization. The parser first requestsmeta-
data for each table referenced in the query from some name
server. This metadata contains information including the
name and type of each attribute in the table, the location of

each fragment of the table, and an indicator of the staleness
of the information. Metadata is itself part of the economy and
has a price. The choice of name server is determined by the
desired quality of metadata, the prices offered by the name
servers, the available budget, and any local Rush rules de-
fined to prioritize these factors. The parser hands the query,
in the form of a parse tree, to thesingle-site optimizer. This
is a conventional query optimizer along the lines of Selinger
et al. (1979). The single-site optimizer generates a single-site
query execution plan. The optimizer ignores data distribu-
tion and prepares a plan as if all the fragments were located
at a single server site.

The fragmenteraccepts the plan produced by the single-
site optimizer. It uses location information previously ob-
tained from the name server, to decompose the single site
plan into afragmented query plan. The fragmenter decom-
poses each restriction node in the single site plan into sub-
queries, one per fragment in the referenced table. Joins are
decomposed into one join subquery for each pair of frag-
ment joins. Lastly, the fragmenter groups the operations that
can proceed in parallel into querystrides. All subqueries in



52

a stride must be completed before any subqueries in the next
stride can begin. As a result, strides form the basis for intra-
query synchronization. Notice that our notion of strides does
not supportpipelining the result of one subquery into the ex-
ecution of a subsequent subquery. This complication would
introduce sequentiality within a query stride and complicate
the bidding process to be described. Inclusion of pipelining
into our economic system is a task for future research.

The broker takes the collection of fragmented query
plans prepared by the fragmenter and sends out requests for
bids to various sites. After assembling a collection of bids,
the broker decides which ones to accept and notifies the
winning sites by sending out abid acceptance. The bidding
process will be described in more detail in Sect. 3.

The broker hands off the task of coordinating the exe-
cution of the resulting query strides to acoordinator. The
coordinator assembles the partial results and returns the final
answer to the user process.

At each Mariposa server site there is a local execution
module containing abidder, a storage manager, and a lo-
cal execution engine. Thebidder responds to requests for
bids and formulates its bid price and the speed with which
the site will agree to process a subquery based on local re-
sources such as CPU time, disk I/O bandwidth, storage, etc.
If the bidder site does not have the data fragments speci-
fied in the subquery, it may refuse to bid or it may attempt
to buy the data from another site by contacting its storage
manager. Winning bids must sooner or later be processed.
To execute local queries, a Mariposa site contains a number
of local execution engines. An idle one is allocated to each
incoming subquery to perform the task at hand. The number
of executors controls the multiprocessing level at each site,
and may be adjusted as conditions warrant. The local execu-
tor sends the results of the subquery to the site executing the
next part of the query or back to the coordinator process. At
each Mariposa site there is also astorage manager, which
watches the revenue stream generated by stored fragments.
Based on space and revenue considerations, it engages in
buying and selling fragments with storage managers at other
Mariposa sites.

The storage managers, bidders and brokers in our proto-
type are primarily coded in the rule language Rush. Rush is
an embeddable programming language with syntax similar
to Tcl (Ousterhout 1994) that also includes rules of the form:

on <condition> do <action> Every Mariposa

entity embeds a Rush interpreter, calling it to execute code
to determine the behavior of Mariposa.

Rush conditions can involve any combination of prim-
itive Mariposa events, described below, and computations
on Rush variables. Actions in Rush can trigger Mariposa
primitives and modify Rush variables. As a result, Rush can
be thought of as a fairly conventional forward-chaining rule
system. We chose to implement our own system, rather than
use one of the packages available from the AI community,
primarily for performance reasons. Rush rules are in the “in-
ner loop” of many Mariposa activities, and as a result, rule
interpretation must be very fast. A separate paper (Sah and
Blow 1994) discusses how we have achieved this goal.

Mariposa contains a specific inter-site protocol by which
Mariposa entities communicate. Requests for bids to execute

Table 1. The main Mariposa primitives

Actions Events
(messages) (received messages)
Requestbid Receivebid request
Bid Receivebid
Award contract Contractwon
Notify loser Contractlost
Sendquery Receivequery
Senddata Receivedata

subqueries and to buy and sell fragments can be sent between
sites. Additionally, queries and data must be passed around.
The main messages are indicated in Table 1. Typically, the
outgoing message is the action part of a Rush rule, and
the corresponding incoming message is a Rush event at the
recipient site.

3 The bidding process

Each queryQ has abudgetB(t) that can be used to solve
the query. The budget is a non-increasing function of time
that represents the value the user gives to the answer to his
query at a particular timet. Constant functions represent a
willingness to pay the same amount of money for a slow
answer as for a quick one, while steeply declining functions
indicate that the user will pay more for a fast answer.

The broker handling a queryQ receives a query plan
containing a collection of subqueries,Q1, . . . , Qn, andB(t).
Each subquery is a one-variable restriction on a fragmentF
of a table, or a join between two fragments of two tables.
The broker tries to solve each subquery,Qi, using either an
expensive bid protocolor a cheaperpurchase order protocol.

The expensive bid protocol involves two phases: in the
first phase, the broker sends out requests for bids to bidder
sites. A bid request includes the portion of the query execu-
tion plan being bid on. The bidders send back bids that are
represented as triples: (Ci, Di, Ei). The triple indicates that
the bidder will solve the subqueryQi for a costCi within a
delayDsubi after receipt of the subquery, and that this bid
is only valid until the expiration date,Ei.

In the second phase of the bid protocol, the broker no-
tifies the winning bidders that they have been selected. The
broker may also notify the losing sites. If it does not, then
the bids will expire and can be deleted by the bidders. This
process requires many (expensive) messages. Most queries
will not be computationally demanding enough to justify
this level of overhead. These queries will use the simpler
purchase orderprotocol.

The purchase order protocol sends each subquery to the
processing site that would be most likely to win the bidding
process if there were one; for example, one of the storage
sites of a fragment for a sequential scan. This site receives
the query and processes it, returning the answer with abill
for services. If the site refuses the subquery, it can either
return it to the broker or pass it on to a third processing
site. If a broker uses the cheaper purchase order protocol,
there is some danger of failing to solve the query within the
allotted budget. The broker does not always know the cost
and delay which will be charged by the chosen processing



53

site. However, this is the risk that must be taken to use this
faster protocol.

3.1 Bid acceptance

All subqueries in each stride are processed in parallel, and
the next stride cannot begin until the previous one has been
completed. Rather than consider bids for individual sub-
queries, we consider collections of bids for the subqueries
in each stride.

When using the bidding protocol, brokers must choose
a winning bid for each subquery with aggregate costC and
aggregate delayD such that the aggregate cost is less than or
equal to the cost requirementB(D). There are two problems
that make finding the best bid collection difficult: subquery
parallelism and the combinatorial search space. The aggre-
gate delay is not the sum of the delaysDi for each subquery
Qi, since there is parallelism within each stride of the query
plan. Also, the number of possible bid collections grows ex-
ponentially with the number of strides in the query plan.
For example, if there are ten strides and three viable bids
for each one, then the broker can evaluate each of the 310

bid possibilities.
The estimated delay to process the collection of sub-

queries in a stride is equal to the highest bid time in the
collection. The number of different delay values can be no
more than the total number of bids on subqueries in the col-
lection. For each delay value, the optimal bid collection is the
least expensive bid for each subquery that can be processed
within the given delay. By coalescing the bid collections in
a stride and considering them as a single (aggregate) bid,
the broker may reduce the bid acceptance problem to the
simpler problem of choosing one bid from among a set of
aggregated bids for each query stride.

With the expensive bid protocol, the broker receives a
collection of zero or more bids for each subquery. If there
is no bid for some subquery, or no collection of bids meets
the client’s minimum price and performance requirements
(B(D)), then the broker must solicit additional bids, agree
to perform the subquery itself, or notify the user that the
query cannot be run. It is possible that several collections
of bids meet the minimum requirements, so the broker must
choose the best collection of bids. In order to compare the
bid collections, we define adifference function on the
collection of bids:difference = B(D)− C. Note that this
can have a negative value, if the cost is above the bid curve.

For all but the simplest queries referencing tables with a
minimal number of fragments, exhaustive search for the best
bid collection will be combinatorially prohibitive. The crux
of the problem is in determining the relative amounts of the
time and cost resources that should be allocated to each sub-
query. We offer a heuristic algorithm that determines how
to do this. Although it cannot be shown to be optimal, we
believe in practice it will demonstrate good results. Prelim-
inary performance numbers for Mariposa are included later
in this paper which support this supposition. A more detailed
evaluation and comparison against more complex algorithms
is planned in the future.

The algorithm is a “greedy” one. It produces a trial so-
lution in which the total delay is the smallest possible, and

then makes the greediest substitution until there are no more
profitable ones to make. Thus a series of solutions are pro-
posed with steadily increasing delay values for each pro-
cessing step. On any iteration of the algorithm, the proposed
solution contains a collection of bids with a certain delay
for each processing step. For every collection of bids with
greater delay acost gradientis computed. This cost gradient
is the cost decrease that would result for the processing step
by replacing the collection in the solution by the collection
being considered, divided by the time increase that would
result from the substitution.

The algorithm begins by considering the bid collection
with the smallest delay for each processing step and comput-
ing the total costC and the total delayD. Compute the cost
gradient for each unused bid. Now, consider the processing
step that contains the unused bid with the maximum cost gra-
dient,B′. If this bid replaces the current one used in the pro-
cessing step, then cost will becomeC ′ and delayD′. If the
resultingdifference is greater atD′ than atD, then make
the bid substitution. That is, ifB(D′)−C ′ > B(D)−C, then
replaceB with B′. Recalculate all the cost gradients for the
processing step that includesB′, and continue making sub-
stitutions until there are none that increase thedifference.

Notice that our current Mariposa algorithm decomposes
the query into executable pieces, and then the broker tries to
solve the individual pieces in a heuristically optimal way. We
are planning to extend Mariposa to contain a second bidding
strategy. Using this strategy, the single-site optimizer and
fragmenter would be bypassed. Instead, the broker would
get the entire query directly. It would then decide whether
to decompose it into a collection of two or more “hunks”
using heuristics yet to be developed. Then, it would try to
find contractors for the hunks, each of which could freely
subdivide the hunks and subcontract them. In contrast to
our current query processing system which is a “bottom up”
algorithm, this alternative would be a “top down” decom-
position strategy. We hope to implement this alternative and
test it against our current system.

3.2 Finding bidders

Using either the expensive bid or the purchase order pro-
tocol from the previous section, a broker must be able to
identify one or more sites to process each subquery. Mari-
posa achieves this through an advertising system. Servers
announce their willingness to perform various services by
postingadvertisements. Name servers keep a record of these
advertisements in anAd Table. Brokers examine the Ad Ta-
ble to find out which servers might be willing to perform the
tasks they need. Table 2 shows the fields of the Ad Table.
In practice, not all these fields will be used in each adver-
tisement. The most general advertisements will specify the
fewest number of fields. Table 3 summarizes the valid fields
for some types of advertisement.

Using yellow pages, a server advertises that it offers a
specific service (e.g., processing queries that reference a spe-
cific fragment). The date of the advertisement helps a broker
decide how timely the yellow pages entry is, and therefore
how much faith to put in the information. A server can is-
sue a new yellow pages advertisement at any time without



54

Table 2. Fields in the Ad Table

Ad Table field Description
query-templateA description of the service being offered. The query tem-

plate is a query with parameters left unspecified. For ex-
ample,
SELECT param-1
FROM EMP
indicates a willingness to perform any SELECT query on
the EMP table, while
SELECT param-1
FROM EMP
WHERE NAME = param-2
indicates that the server wants to perform queries that per-
form an equality restriction on the NAME column.

server-id The server offering the service.
start-time The time at which the service is first offered. This may

be a future time, if the server expects to begin performing
certain tasks at a specific point in time.

expiration-time The time at which the advertisement ceases to be valid.
price The price charged by the server for the service.
delay The time in which the server expects to complete the task.
limit-quantity The maximum number of times the server will perform a

service at the given cost and delay.
bulk-quantity The number of orders needed to obtain the advertised price

and delay.
to-whom The set of brokers to whom the advertised services are

available.
other-fields Comments and other information specific to a particular

advertisement.

explicitly revoking a previous one. In addition, a server may
indicate the price and delay of a service. This is aposted
price and becomes current on the start-date indicated. There
is no guarantee that the price will hold beyond that time and,
as with yellow pages, the server may issue a new posted
price without revoking the old one.

Several more specific types of advertisements are avail-
able. If the expiration-date field is set, then the details of the
offer are known to be valid for a certain period of time. Post-
ing a sale price in this manner involves some risk, as the
advertisement may generate more demand than the server
can meet, forcing it to pay heavy penalties. This risk can be
offset by issuingcoupons, which, like supermarket coupons,
place a limit on the number of queries that can be executed
under the terms of the advertisement. Coupons may also
limit the brokers who are eligible to redeem them. These
are similar to the coupons issued by the Nevada gambling
establishments, which require the client to be over 21 years
of age and possess a valid California driver’s license.

Finally, bulk purchase contractsare renewable coupons
that allow a broker to negotiate cheaper prices with a server
in exchange for guaranteed, pre-paid service. This is analo-
gous to a travel agent who books ten seats on each sailing
of a cruise ship. We allow the option of guaranteeing bulk
purchases, in which case the broker must pay for the speci-
fied queries whether it uses them or not. Bulk purchases are
especially advantageous in transaction processing environ-
ments, where the workload is predictable, and brokers solve
large numbers of similar queries.

Besides referring to the Ad Table, we expect a broker
to remember sites that have bid successfully for previous

queries. Presumably the broker will include such sites in
the bidding process, thereby generating a system that learns
over time which processing sites are appropriate for various
queries. Lastly, the broker also knows the likely location of
each fragment, which was returned previously to the query
preparation module by the name server. The site most likely
to have the data is automatically a likely bidder.

3.3 Setting the bid price for subqueries

When a site is asked to bid on a subquery, it must respond
with a triple (C,D,E) as noted earlier. This section dis-
cusses our current bidder module and some of the exten-
sions that we expect to make. As noted earlier, it is coded
primarily as Rush rules and can be changed easily.

The naivestrategy is to maintain abilling rate for CPU
and I/O resources for each site. These constants are to be
set by a site administrator based on local conditions. The
bidder constructs an estimate of the amount of each resource
required to process a subquery for objects that exist at the
local site. A simple computation then yields the required bid.
If the referenced object is not present at the site, then the
site declines to bid. For join queries, the site declines to bid
unless one of the following two conditions are satisfied:

– It possesses one of the two referenced objects.
– It had already bid on a query, whose answer formed one

of the two referenced objects.

The time in which the site promises to process the query
is calculated with an estimate of the resources required. Un-
der zero load, it is an estimate of the elapsed time to perform
the query. By adjusting for the current load on the site, the
bidder can estimate the expected delay. Finally, it multiplies
by a site-specific safety factor to arrive at a promised delay
(theD in the bid). The expiration date on a bid is currently
assigned arbitrarily as the promised delay plus a site-specific
constant.

This naive strategy is consistent with the behavior as-
sumed of a local site by a traditional global query optimizer.
However, our current prototype improves on the naive strat-
egy in three ways. First, each site maintains a billing rate on
a per-fragment basis. In this way, the site administrator can
bias his bids toward fragments whose business he wants and
away from those whose business he does not want. The bid-
der also automatically declines to bid on queries referencing
fragments with billing rates below a site-specific threshold.
In this case, the query will have to be processed elsewhere,
and another site will have to buy or copy the indicated frag-
ment in order to solve the user query. Hence, this tactic will
hasten the sale of low value fragments to somebody else. Our
second improvement concerns adjusting bids based on the
current site load. Specifically, each site maintains its current
load average by periodically running a UNIX utility. It then
adjusts its bid, based on its current load average as follows:

actual bid = computed bid× load average

In this way, if it is nearly idle (i.e., its load average is near
zero), it will bid very low prices. Conversely, it will bid
higher and higher prices as its load increases. Notice that this
simple formula will ensure a crude form of load balancing



55

Table 3. Ad Table fields applicable to each type of advertisement

Ad Table field Type of advertisement
Yellow pages Posted price Sale price Coupon Bulk purchase

query-template √ √ √ √ √
server-id √ √ √ √ √
start-date √ √ √ √ √
expiration-date – – √ √ √
price – √ √ √ √
delay – √ √ √ √
limit-quantity – – – √ –
bulk-quantity – – – – √
to-whom – – – * *
other-fields * * * * *

–, null; √, valid; *, optional

among a collection of Mariposa sites. Our third improvement
concerns bidding on subqueries when the site does not pos-
sess any of the data. As will be seen in the next section, the
storage manager buys and sells fragments to try to maximize
site revenue. In addition, it keeps ahot list of fragments it
would like to acquire but has not yet done so. The bidder
automatically bids on any query which references a hot list
fragment. In this way, if it gets a contract for the query, it
will instruct the storage manager to accelerate the purchase
of the fragment, which is in line with the goals of the storage
manager.

In the future we expect to increase the sophistication of
the bidder substantially. We plan more sophisticated integra-
tion between the bidder and the storage manager. We view
hot lists as merely the first primitive step in this direction.
Furthermore, we expect to adjust the billing rate for each
fragment automatically, based on the amount of business for
the fragment. Finally, we hope to increase the sophistication
of our choice of expiration dates. Choosing an expiration
date far in the future incurs the risk of honoring lower out-
of-date prices. Specifying an expiration date that is too close
means running the risk of the broker not being able to use
the bid because of inherent delays in the processing engine.
Lastly, we expect to consider network resources in the bid-
ding process. Our proposed algorithms are discussed in the
next subsection.

3.4 The network bidder

In addition to producing bids based on CPU and disk us-
age, the processing sites need to take the available network
bandwidth into account. The network bidder will be a sepa-
rate module in Mariposa. Since network bandwidth is a dis-
tributed resource, the network bidders along the path from
source to destination must calculate an aggregate bid for the
entire path and must reserve network resources as a group.
Mariposa will use a version of the Tenet network proto-
cols RTIP (Zhang and Fisher 1992) and RCAP (Banerjea
and Mah 1991) to perform bandwidth queries and network
resource reservation.

A network bid request will be made by the broker to
transfer data between source/destination pairs in the query
plan. The network bid request is sent to the destination
node. The request is of the form:(transaction-id, request-
id, data size, from-node, to-node). The broker receives a bid

from the network bidder at the destination node of the form:
(transaction-id, request-id, price, time). In order to determine
the price and time, the network bidder at the destination node
must contact each of the intermediate nodes between itself
and the source node.

For convenience, call the destination noden0 and the
source nodenk (see Fig. 3.) Call the first intermediate node
on the path from the destination to the sourcen1, the second
such noden2, etc. Available bandwidth between two adja-
cent nodes as a function of time is represented as aband-
width profile. The bandwidth profile contains entries of the
form (available bandwidth, t1, t2) indicating the available
bandwidth between timet1 and timet2. If ni andni−1 are
directly-connected nodes on the path from the source to the
destination, and data is flowing fromni to ni−1, then node
ni is responsible for keeping track of (and charging for)
available bandwidth between itself andni−1 and therefore
maintains the bandwidth profile. Call the bandwidth profile
between nodeni and nodeni−1 Bi and the priceni charges
for a bandwidth reservationPi.

The available bandwidth on the entire path from source
to destination is calculated step by step starting at the des-
tination node,n0. Noden0 contactsn1 which hasB1, the
bandwidth profile for the network link between itself and
n0. It sends this profile to noden2, which has the band-
width profileB2. Noden2 calculates min(B1, B2), producing
a bandwidth profile that represents the available bandwidth
along the path fromn2 to n0. This process continues along
each intermediate link, ultimately reaching the source node.

When the bandwidth profile reaches the source node, it
is equal to the minimum available bandwidth over all links
on the path between the source and destination, and repre-
sents the amount of bandwidth available as a function of
time on the entire path. The source node,nk, then initiates
a backward pass to calculate the price for this bandwidth
along the entire path. Nodenk sends its price to reserve the
bandwidth,Pk, to nodenk−1, which adds its price, and so
on, until the aggregate price arrives at the destination,n0.
Bandwidth could also be reserved at this time. If bandwidth
is reserved at bidding time, there is a chance that it will not
be used (if the source or destination is not chosen by the
broker). If bandwidth is not reserved at this time, then there
will be a window of time between bidding and bid award
when the available bandwidth may have changed. We are
investigating approaches to this problem.



56

BW

Time

BW

Time

BW

Time

BW

Time

BW

Time

BW

Time

BW

Time

BW

Time

Bandwidth Profile

0%

100%

0%

100%

0%

100%

0%

100%

0%

100%

0%

100%

0%

100%

0%

100%

t1 t2 t3t0

B1 B2

MIN(B1,B2)

MIN(B1,B2) B3

MIN(MIN(B1,B2), B3)

MIN(MIN(B1,B2), B3)

n   (Destination)
0

n
1

n
2

n   (Source)3

Fig. 3. Calculating a bandwidth profile

In addition to the choice of when to reserve network
resources, there are two choices for when the broker sends
out network bid requests during the bidding process. The
broker could send out requests for network bids at the same
time that it sends out other bid requests, or it could wait until
the single-site bids have been returned and then send out
requests for network bids to the winners of the first phase.
In the first case, the broker would have to request a bid from
every pair of sites that could potentially communicate with
one another. IfP is the number of parallelized phases of the
query plan, andSi is the number of sites in phasei, then
this approach would produce a total of

∑P
i=2SiSi−1 bids. In

the second case, the broker only has to request bids between
the winners of each phase of the query plan. Ifwinneri is
the winning group of sites for phasei, then the number of
network bid requests sent out is

∑P
i=2SwinneriSwinneri−1.

The first approach has the advantage of parallelizing the
bidding phase itself and thereby reducing the optimization
time. However, the sites that are asked to reserve bandwidth
are not guaranteed to win the bid. If they reserve all the band-
width for each bid request they receive, this approach will
result in reserving more bandwidth than is actually needed.
This difficulty may be overcome by reserving less bandwidth
than is specified in bids, essentially “overbooking the flight.”

4 Storage management

Each site manages a certain amount of storage, which it
can fill with fragments or copies of fragments. The basic
objective of a site is to allocate its CPU, I/O and storage
resources so as to maximize its revenue income per unit time.
This topic is the subject of the first part of this section. After

that, we turn to the splitting and coalescing of fragments into
smaller or bigger storage units.

4.1 Buying and selling fragments

In order for sites to trade fragments, they must have some
means of calculating the (expected) value of the fragment for
each site. Some access history is kept with each fragment so
sites can make predictions of future activity. Specifically, a
site maintains thesizeof the fragment as well as itsrevenue
history. Each record of the history contains the query, num-
ber of records which qualified, time-since-last-query, rev-
enue, delay, I/O-used, and CPU-used. The CPU and I/O in-
formation is normalized and stored in site-independent units.

To estimate the revenue that a site would receive if it
owned a particular fragment, the site must assume that access
rates are stable and that the revenue history is therefore a
good predictor of future revenue. Moreover, it must convert
site-independent resource usage numbers into ones specific
to its site through a weighting function, as in Mackert and
Lohman (1986). In addition, it must assume that it would
have successfully bid on the same set of queries as appeared
in the revenue history. Since it will be faster or slower than
the site from which the revenue history was collected, it must
adjust the revenue collected for each query. This calculation
requires the site to assume a shape for the average bid curve.
Lastly, it must convert the adjusted revenue stream into a
cash value, by computing the net present value of the stream.

If a site wants to bid on a subquery, then it must either
buy any fragment(s) referenced by the subquery or subcon-
tract out the work to another site. If the site wishes to buy a
fragment, it can do so either when the query comes in (on
demand) or in advance (prefetch). To purchase a fragment,
a buyer locates the owner of the fragment and requests the
revenue history of the fragment, and then places a value
on the fragment. Moreover, if it buys the fragment, then it
will have to evict a collection of fragments to free up space,
adding to the cost of the fragment to be purchased. To the
extent that storage is not full, then fewer (or no) evictions
will be required. In any case, this collection is called the
alternate fragmentsin the formula below. Hence, the buyer
will be willing to bid the following price for the fragment:

offer price= value of fragment

−value of alternate fragments

+price received

In this calculation, the buyer will obtain the value of the
new fragment but lose the value of the fragments that it
must evict. Moreover, it willsell the evicted fragments, and
receive some price for them. The latter item is problematic
to compute. A plausible assumption is thatprice received
is equal to the value of the alternate fragments. A more
conservative assumption is that the price obtained is zero.
Note that in this case the offer price need not be positive.

The potential seller of the fragment performs the follow-
ing calculation: the site will receive the offered price and
will lose the value of the fragment which is being evicted.
However, if the fragment is not evicted, then a collection of
alternate fragments summing in size to the indicated frag-
ment must be evicted. In this case, the site will lose the



57

value of these (more desirable) fragments, but will receive
the expectedprice received. Hence, it will be willing to
sell the fragment, transferring it to the buyer:

offer price> value of fragment

−value of alternate fragments

+price received

Again,price receivedis problematic, and subject to the same
plausible assumptions noted above.

Sites may sell fragments at any time, for any reason. For
example, decommissioning a server implies that the server
will sell all of its fragments. To sell a fragment, the site
conducts a bidding process, essentially identical to the one
used for subqueries above. Specifically, it sends the revenue
history to a collection ofpotential biddersand asks them
what they will offer for the fragment. The seller considers
the highest bid and willacceptthe bid under the same con-
siderations that applied when selling fragments on request,
namely if:

offered price> value of fragment

−value of alternate fragments

+price received

If no bid is acceptable, then the seller must try to evict
another (higher value) fragment until one is found that can
be sold. If no fragments are sellable, then the site must lower
the value of its fragments until a sale can be made. In fact,
if a site wishes to go out of business, then it must find a site
to accept its fragments and lower their internal value until a
buyer can be found for all of them.

The storage manager is an asynchronous process running
in the background, continually buying and selling fragments.
Obviously, it should work in harmony with the bidder men-
tioned in the previous section. Specifically, the bidder should
bid on queries for remote fragments that the storage manager
would like to buy, but has not yet done so. In contrast, it
should decline to bid on queries to remote objects in which
the storage manager has no interest. The first primitive ver-
sion of this interface is the “hot list” mentioned in the the
previous section.

4.2 Splitting and coalescing

Mariposa sites must also decide when to split and coalesce
fragments. Clearly, if there are too few fragments in a class,
then parallel execution of Mariposa queries will be hindered.
On the other hand, if there are too many fragments, then the
overhead of dealing with all the fragments will increase and
response time will suffer, as noted in Copeland et al. (1988).
The algorithms for splitting and coalescing fragments must
strike the correct balance between these two effects.

At the current time, our storage manager does not have
general Rush rules to deal with splitting and coalescing frag-
ments. Hence, this section indicates our current plans for the
future.

One strategy is to let market pressure correct inappropri-
ate fragment sizes. Large fragments have high revenue and
attract many bidders for copies, thereby diverting some of
the revenue away from the owner. If the owner site wants to

keep the number of copies low, it has to break up the frag-
ment into smaller fragments, which have less revenue and
are less attractive for copies. On the other hand, a small frag-
ment has high processing overhead for queries. Economies
of scale could be realized by coalescing it with another frag-
ment in the same class into a single larger fragment.

If more direct intervention is required, then Mariposa
might resort to the following tactic. Consider the execution
of queries referencing only a single class. The broker can
fetch the number of fragments,NumC , in that class from a
name server and, assuming that all fragments are the same
size, can compute the expected delay (ED) of a given query
on the class if run on all fragments in parallel. The budget
function tells the broker the total amount that is available
for the entire query under that delay. The amount of the
expected feasible bid per site in this situation is:

expected feasible site bid=
B(ED)
NumC

The broker can repeat those calculations for a variable num-
ber of fragments to arrive atNum∗, the number of fragments
to maximize the expected revenue per site.

This value,Num∗, can be published by the broker, along
with its request for bids. If a site has a fragment that is too
large (or too small), then in steady state it will be able to
obtain a larger revenue per query if it splits (coalesces) the
fragment. Hence, if a site keeps track of the average value
of Num∗ for each class for which it stores a fragment,
then it can decide whether its fragments should be split or
coalesced.

Of course, a site must honor any outstanding contracts
that it has already made. If it discards or splits a fragment
for which there is an outstanding contract, then the site must
endure the consequences of its actions. This entails either
subcontracting to some other site a portion of the previously
committed work or buying back the missing data. In either
case, there are revenue consequences, and a site should take
its outstanding contracts into account when it makes frag-
ment allocation decisions. Moreover, a site should carefully
consider the desirable expiration time for contracts. Shorter
times will allow the site greater flexibility in allocation de-
cisions.

5 Names and name service

Current distributed systems use a rigid naming approach,
assume that all changes are globally synchronized, and often
have a structure that limits the scalability of the system. The
Mariposa goals of mobile fragments and avoidance of global
synchronization require that a more flexible naming service
be used. We have developed a decentralized naming facility
that does not depend on a centralized authority for name
registration or binding.

5.1 Names

Mariposa defines four structures used in object naming.
These structures (internal names, full names, common names
and name contexts) are defined below.



58

Internal namesare location-dependent names used to de-
termine the physical location of a fragment. Because these
are low-level names that are defined by the implementation,
they will not be described further.

Full namesare completely-specified names that uniquely
identify an object. A full name can be resolved to any object
regardless of location. Full names are not specific to the
querying user and site, and are location-independent, so that
when a query or fragment moves the full name is still valid.
A name consists of components describing attributes of the
containing table, and a full name has all components fully
specified.

In contrast,common names(sometimes known as syn-
onyms) are user-specific, partially specified names. Using
them avoids the tedium of using a full name. Simple rules
permit the translation of common names into full names by
supplying the missing name components. The binding op-
eration gathers the missing parts either from parameters di-
rectly supplied by the user or from the user’s environment as
stored in the system catalogs. Common names may be am-
biguous because different users may refer to different objects
using the same name. Because common names are context
dependent, they may even refer to different objects at dif-
ferent times. Translation of common names is performed by
functions written in the Mariposa rule/extension language,
stored in the system catalogs, and invoked by the mod-
ule (e.g., the parser) that requires the name to be resolved.
Translation functions may take several arguments and return
a string containing a Boolean expression that looks like a
query qualification. This string is then stored internally by
the invoking module when called by the name service mod-
ule. The user may invoke translation functions directly, e.g.,
my naming(EMP) . Since we expect most users to have a
“usual” set of name parameters, a user may specify one such
function (taking the name string as its only argument) as a
default in theUSERsystem catalog. When the user specifies
a simple string (e.g.,EMP) as a common name, the system
applies this default function.

Finally, a name contextis a set of affiliated names.
Names within a context are expected to share some feature.
For example, they may be often used together in an appli-
cation (e.g., a directory) or they may form part of a more
complex object (e.g., a class definition). A programmer can
define a name context for global use that everyone can ac-
cess, or a private name context that is visible only to a single
application. The advantage of a name context is that names
do not have to be globally registered, nor are the names tied
to a physical resource to make them unique, such as the birth
site used in Williams et al. (1981). Like other objects, a name
context can also be named. In addition, like data fragments,
it can be migrated between name servers, and there can be
multiple copies residing on different servers for better load
balancing and availability. This scheme differs from another
proposed decentralized name service (Cheriton and Mann
1989) that avoided a centralized name authority by relying
upon each type of server to manage their own names without
relying on a dedicated name service.

5.2 Name resolution

A name must be resolved to discover which object is bound
to the name. Every client and server has a name cache at
the site to support the local translation of common names
to full names and of full names to internal names. When a
broker wants to resolve a name, it first looks in the local
name cache to see if a translation exists. If the cache does
not yield a match, the broker uses a rule-driven search to
resolve ambiguous common names. If a broker still fails to
resolve a name using its local cache, it will query one or
more name servers for additional name information.

As previously discussed, names are unordered sets of at-
tributes. In addition, since the user may not know all of an
object’s attributes, it may be incomplete. Finally, common
names may be ambiguous (more than one match) or untrans-
latable (no matches). When the broker discovers that there
are multiple matches to the same common name, it tries to
pick one according to the policy specified in its rule base.
Some possible policies are “first match,” as exemplified by
the UNIX shell command search (path), or a policy of “best
match” that uses additional semantic criteria. Considerable
information may exist that the broker can apply to choose
the best match, such as data types, ownership, and protection
permissions.

5.3 Name discovery

In Mariposa, a name server responds to metadata queries in
the same way as data servers execute regular queries, except
that they translate common names into full names using a list
of name contexts provided by the client. The name service
process uses the bidding protocol of Sect. 3 to interact with a
collection of potential bidders. The name service chooses the
winning name server based on economic considerations of
cost and quality of service. Mariposa expects multiple name
servers, and this collection may be dynamic as name servers
are added to and removed from a Mariposa environment.
Name servers are expected to use advertising to find clients.

Each name server must make arrangements to read the
local system catalogs at the sites whose catalogs it serves
periodically and build a composite set of metadata. Since
there is no requirement for a processing site to notify a name
server when fragments change sites or are split or coalesced,
the name server metadata may be substantially out of date.

As a result, name servers are differentiated by theirqual-
ity of serviceregarding their price and the staleness of their
information. For example, a name server that is less than one
minute out of date generally has better quality information
than one which can be up to one day out of date. Quality
is best measured by the maximum staleness of the answer
to any name service query. Using this information, a bro-
ker can make an appropriate tradeoff between price, delay
and quality of answer among the various name services, and
select the one that best meets its needs.

Quality may be based on more than the name server’s
polling rate. An estimate of the real quality of the metadata
may be based on the observed rate of update. From this we
predict the chance that an invalidating update will occur for
a time period after fetching a copy of the data into the local



59

Table 4. Mariposa site configurations

WAN LAN

Site Host Location Model Memory Host Location Model Memory

1 huevos Santa Barbara 3000/600 96 MB arcadia Berkeley 3000/400 64 MB
2 triplerock Berkeley 2100/500 256 MB triplerock Berkeley 2100/500 256 MB
3 pisa San Diego 3000/800 128 MB nobozo Berkeley 3000/500X 160 MB

Table 5. Parameters for the experimental test data

Table Location Number of tows Total size

R1 Site 1 50 000 5 MB
R2 Site 2 10 000 1 MB
R3 Site 3 50 000 5 MB

cache. The benefit is that the calculation can be made without
probing the actual metadata to see if it has changed. The
quality of service is then a measurement of the metadata’s
rate of update, as well as the name server’s rate of update.

6 Mariposa status and experiments

At the current time (June 1995), a complete Mariposa im-
plementation using the architecture described in this paper is
operational on Digital Equipment Corp. Alpha AXP work-
stations running Digital UNIX. The current system is a com-
bination of old and new code. The basic server engine is that
of POSTGRES (Stonebraker and Kemnitz 1991), modified
to accept SQL instead of POSTQUEL. In addition, we have
implemented the fragmenter, broker, bidder and coordinator
modules to form the complete Mariposa system portrayed in
Fig. 1.

Building a functional distributed system has required the
addition of a substantial amount of software infrastructure.
For example, we have built a multithreaded network commu-
nication package using ONC RPC and POSIX threads. The
primitive actions shown in Table 1 have been implemented
as RPCs and are available as Rush procedures for use in
the action part of a Rush rule. Implementation of the Rush
language itself has required careful design and performance
engineering, as described in Sah and Blow (1994).

We are presently extending the functionality of our pro-
totype. At the current time, the fragmenter, coordinator and
broker are fairly complete. However, the storage manager
and the bidder are simplistic, as noted earlier. We are in
the process of constructing more sophisticated routines in
these modules. In addition, we are implementing the repli-
cation system described in Sidell et al. (1995). We plan to
release a general Mariposa distribution when these tasks are
completed later in 1995.

The rest of this section presents details of a few sim-
ple experiments which we have conducted in both LAN
and WAN environments. The experiments demonstrate the
power, performance and flexibility of the Mariposa approach
to distributed data management. First, we describe the ex-
perimental setup. We then show by measurement that the
Mariposa protocols do not add excessive overhead relative
to those in a traditional distributed DBMS. Finally, we show

how Mariposa query optimization and execution compares
to that of a traditional system.

6.1 Experimental environment

The experiments were conducted on Alpha AXP worksta-
tions running versions 2.1 and 3.0 of Digital UNIX. Table 4
shows the actual hardware configurations used. The worksta-
tions were connected by a 10 MB/s Ethernet in the LAN case
and the Internet in the WAN case. The WAN experiments
were performed after midnight in order to avoid heavy day-
time Internet traffic that would cause excessive bandwidth
and latency variance.

The results in this section were generated using a sim-
ple synthetic dataset and workload. The database consists of
three tables, R1, R2 and R3. The tables are part of the Wis-
consin Benchmark database (Bitton et al. 1983), modified to
produce results of the sizes indicated in Table 5. We make
available statistics that allow a query optimizer to estimate
the size of (R1 join R2), (R2 join R3) and (R1 join R2 join
R3) as 1 MB, 3 MB and 4.5 MB, respectively. The workload
query is an equijoin of all three tables:

SELECT *
FROM R1, R2, R3
WHERE R1.u1 = R2.u1

AND R2.u1 = R3.u1

In the wide area case, the query originates at Berkeley
and performs the join over the WAN connecting UC Berke-
ley, UC Santa Barbara and UC San Diego.

6.2 Comparison of the purchase order and expensive bid
protocols

Before discussing the performance benefits of the Mariposa
economic protocols, we should quantify the overhead they
add to the process of constructing and executing a plan rel-
ative to a traditional distributed DBMS. We can analyze the
situation as follows. A traditional system plans a query and
sends the subqueries to the processing sites; this process
follows essentially the same steps as the purchase order pro-
tocol discussed in Sect. 3. However, Mariposa can choose
between the purchase order protocol and the expensive bid
protocol. As a result, Mariposa overhead (relative to the tra-
ditional system) is the difference in elapsed time between
the two protocols, weighted by the proportion of queries
that actually use the expensive bid protocol.

To measure the difference between the two protocols,
we repeatedly executed the three-way join query described



60

Table 6. Elapsed times for various query processing stages

Network Stage Time (s)
Purchase order protocol Expensive bid protocol

Parser 0.18 0.18
LAN Optimizer 0.08 0.08

Broker 1.72 6.69
Parser 0.18 0.18

WAN Optimizer 0.08 0.08
Broker 4.52 14.08

in the previous section over both a LAN and a WAN. The
elapsed times for the various processing stages shown in
Table 6 represent averages over ten runs of the same query.
For this experiment, we did not install any rules that would
cause fragment migration and did not change any optimizer
statistics. The query was therefore executed identically every
time. Plainly, the only difference between the purchase order
and the expensive bid protocol is in the brokering stage.

The difference in elapsed time between the two proto-
cols is due largely to the message overhead of brokering,
but not in the way one would expect from simple message
counting. In the purchase order protocol, the single-site op-
timizer determines the sites to perform the joins and awards
contracts to the sites accordingly. Sending the contracts to
the two remote sites involves two round-trip network mes-
sages (as previously mentioned, this is no worse than the
cost in a traditional distributed DBMS of initiating remote
query execution). In the expensive bid protocol, the broker
sends out request for bid (RFB) messages for the two joins
to each site. However, each prospective join processing site
then sends out subbids for remote table scans. The whole
brokering process therefore involves 14 round-trip messages
for RFBs (including subbids), six round-trip messages for
recording the bids and two more for notifying the winners
of the two join subqueries. Note, however, that the bid col-
lection process is executed in parallel because the broker and
the bidder are multithreaded, which accounts for the fact that
the additional cost is not as high as might be thought.

As is evident from the results presented in Table 6, the
expensive bid protocol is not unduly expensive. If the query
takes more than a few minutes to execute, the savings from
a better query processing strategy can easily outweigh the
small cost of bidding. Recall that the expensive protocol will
only be used when the purchase order protocol cannot be.
We expect the less expensive protocol to be used for the ma-
jority of the time. The next subsection shows how economic
methods can produce better query processing strategies.

6.3 Bidding in a simple economy

We illustrate how the economic paradigm works by running
the three-way distributed join query described in the previ-
ous section, repeatedly in a simple economy. We discuss how
the query optimization and execution strategy in Mariposa
differs from traditional distributed database systems and how
Mariposa achieves an overall performance improvement by
adapting its query processing strategy to the environment.

We also show how data migration in Mariposa can automat-
ically ameliorate poor initial data placement.

In our simple economy, each site uses the same pricing
scheme and the same set of rules. The expensive bid protocol
is used for every economic transaction. Sites have adequate
storage space and never need to evict alternate fragments
to buy fragments. The exact parameters and decision rules
used to price queries and fragments are as follows:

Queries: Sites bid on subqueries as described in Sect. 3.3.
That is, a bidder will only bid on a join if the
criteria specified in Sect. 3.3 are satisfied. The
billing rate is simply 1.5× estimated cost, lead-
ing to the following offer price:

actual bid= (1.5× estimated cost)

×load average

load average= 1 for the duration of the ex-
periment, reflecting the fact that the system is
lightly loaded. The difference in the bids of-
fered by each bidder is therefore solely due to
data placement (e.g., some bidders need to sub-
contract remote scans).

Fragments: A broker who subcontracts for remote scans
also considers buying the fragment instead of
paying for the scan. The fragment value dis-
cussed in Section 4.1 is set to2×scan cost

load average ; this,
combined with the fact that eviction is never
necessary, means that a site will consider sell-
ing a fragment whenever

offer price >
2 times scan cost

load average

A broker decides whether to try to buy a frag-
ment or to pay for the remote scan according
to the following rule:

on (salePrice(frag)
<= moneySpentForScan(frag))

do acquire(frag)

In other words, the broker tries to acquire a
fragment when the amount of money spent
scanning the fragment in previous queries is
greater than or equal to the price for buying the
fragment. As discussed in Sect. 4.1, each bro-
ker keeps a hot-list of remote fragments used
in previous queries with their associated scan
costs. This rule will cause data to move closer
to the query when executed frequently.

This simple economy is not entirely realistic. Consider
the pricing of selling a fragment as shown above. Ifload
averageincreases, the sale price of the fragment decreases.
This has the desirable effect of hastening the sale of frag-
ments to off-load a busy site. However, it tends to cause
the sale of hot fragments as well. An effective Mariposa
economy will consist of more rules and a more sophisti-
cated pricing scheme than that with which we are currently
experimenting.

We now present the performance and behavior of Mari-
posa using the simple economy described above and the
WAN environment shown in Table 4. Our experiments show



61

Table 7. Execution times, data placement and revenue at each site

Steps
1 2 3 4 5 6

Elapsed time Brokering 13.06 12.78 18.81 13.97 8.9 10.06
(s) Total 449.30 477.74 403.61 428.82 394.3 384.04

R1 1 1 1 1 3 3
Location of R2 2 2 1 11 13 13
(site) R3 13 3 3 3 3 3

Site 1 97.6 97.6 95.5 97.2 102.3 0.0
Revenue Site 2 2.7 2.7 3.5 1.9 1.9 1.9
(per query) Site 3 177.9 177.9 177.9 177.9 165.3 267.7

how Mariposa adapts to the environment through the bidding
process under the economy and the rules described above.

A traditional query optimizer will use a fixed query pro-
cessing strategy. Assuming that sites are uniform in their
query processing capacity, the optimizer will ultimately dif-
ferentiate plans based on movement of data. That is, it will
tend to choose plans that minimize the amount of base table
and intermediate result data transmitted over the network. As
a result, a traditional optimizer will construct the following
plan:

(1) Move R2 from Berkeley to Santa Barbara. Perform R1
join R2 at Santa Barbara.

(2) Move the answer to San Diego. Perform the second join
at San Diego.

(3) Move the final answer to Berkeley.

This plan causes 6.5 MB of data to be moved (1 MB in step
1, 1 MB in step 2, and 4.5 MB in step 3). If the same query is
executed repeatedly under identical load conditions, then the
same plan will be generated each time, resulting in identical
costs.

By contrast, the simple Mariposa economy can adjust the
assignment of queries and fragments to reflect the current
workload. Even though the Mariposa optimizer will pick
the same join order as the traditional optimizer, the broker
can change its query processing strategy because it acquires
bids for the two joins among the three sites. Examination
of Table 7 reveals the performance improvements resulting
from dynamic movement of objects. It shows the elapsed
time, location of data and revenue generated at each site
by running the three-way join query described in Sect. 6.1
repeatedly from site 2 (Berkeley).

At the first step of the experiment, Santa Barbara is the
winner of the first join. The price of scanning the smaller
table, R2, remotely from Santa Barbara is less than that of
scanning R1 remotely from Berkeley; as a result, Santa Bar-
bara offers a lower bid. Similarly, San Diego is the winner
of the second join. Hence, for the first two steps, the execu-
tion plan resulting from the bidding is identical to the one
obtained by a traditional distributed query optimizer.

However, subsequent steps show that Mariposa can gen-
erate better plans than a traditional optimizer by migrating
fragments when necessary. For instance, R2 is moved to
Santa Barbara in step 3 of the experiment, and subsequent
joins of R1 and R2 can be performed locally. This elim-
inates the need to move 1 MB of data. Similarly, R1 and
R2 are moved to San Diego at step 5 so that the joins can

be performed locally1. The cost of moving the tables can
be amortized over repeated execution of queries that require
the same data.

The experimental results vary considerably because of
the wide variance in Internet network latency. Table 7 shows
a set of results which best illustrate the beneficial effects of
the economic model.

7 Related work

Currently, there are only a few systems documented in the
literature that incorporate microeconomic approaches to re-
source sharing problems. Huberman (1988) presents a col-
lection of articles that cover the underlying principles and
explore the behavior of those systems.

Miller and Drexler (1988) use the term “Agoric Sys-
tems” for software systems deploying market mechanisms
for resource allocation among independent objects. The data-
type agents proposed in that article are comparable to our
brokers. They mediate between consumer and supplier ob-
jects, helping to find the current best price and supplier for
a service. As an extension, agents have a “reputation” and
their services are brokered by an agent-selection agent. This
is analogous to the notion of a quality-of-service of name
servers, which also offer their services to brokers.

Kurose and Simha (1989) present a solution to the file
allocation problem that makes use of microeconomic princi-
ples, but is based on a cooperative, not competitive, environ-
ment. The agents in this economy exchange fragments in or-
der to minimize the cumulative system-wide access costs for
all incoming requests. This is achieved by having the sites
voluntarily cede fragments or portions thereof to other sites
if it lowers access costs. In this model, all sites cooperate to
achieve a global optimum instead of selfishly competing for
resources to maximize their own utility.

Malone et al. describe the implementation of a pro-
cess migration facility for a pool of workstations connected
through a LAN. In this system, a client broadcasts a re-
quest for bids that includes a task description. The servers
willing to process that task return an estimated completion
time, and the client picks the best bid. The time estimate is
computed on the basis of processor speed, current system
load, a normalized runtime of the task, and the number and
length of files to be loaded. The latter two parameters are

1 Note that the total elapsed time does not include the time to move the
fragments. It takes 82 s to move R2 to site 1 at step 3 and 820 s to move
R1 and R3 to site 3 at step 5



62

supplied by the task description. No prices are charged for
processing services and there is no provision for a shortcut
to the bidding process by mechanisms like posting server
characteristics or advertisements of servers.

Another distributed process scheduling system is pre-
sented in Waldspurge (1992). Here, CPU time on remote
machines is auctioned off by the processing sites, and ap-
plications hand in bids for time slices. This is in contrast to
our system, where processing sites make bids for servicing
requests. There are different types of auctions, and computa-
tions are aborted if their funding is depleted. An application
is structured into manager and worker modules. The worker
modules perform the application processing and several of
them can execute in parallel. The managers are responsi-
ble for funding their workers and divide the available funds
between them in an application-specific way. To adjust the
degree of parallelism to the availability of idle CPUs, the
manager changes the funding of individual workers.

Wellman (1993) offers a simulation of multicommodity
flow that is quite close to our bidding model, but with a
bid resolution model that converges with multiple rounds of
messages. His clearinghouses violate our constraint against
single points of failure. Mariposa name service can be
thought of as clearinghouses with only a partial list of pos-
sible suppliers. His optimality results are clearly invalidated
by the possible exclusion of optimal bidders. This suggests
the importance of high-quality name service, to ensure that
the winning bidders are usually solicited for bids.

A model similar to ours is proposed by Ferguson et al.
(1993), where fragments can be moved and replicated be-
tween the nodes of a network of computers, although they
are not allowed to be split or coalesced. Transactions, con-
sisting of simple read/write requests for fragments, are given
a budget when entering the system. Accesses to fragments
are purchased from the sites offering them at the desired
price/quality ratio. Sites are trying to maximize their rev-
enue and therefore lease fragments or their copies if the
access history for that fragment suggests that this will be
profitable. Unlike our model, there is no bidding process
for either service purchase or fragment lease. The relevant
prices are published at every site in catalogs that can be up-
dated at any time to reflect current demand and system load.
The network distance to the site offering the fragment access
service is included in the price quote to give a quality-of-
service indication. A major difference between this model
and ours is that every site needs to have perfect information
about the prices of fragment accesses at every other site,
requiring global updates of pricing information. Also, it is
assumed that a name service, which has perfect information
about all the fragments in the network, is available at every
site, again requiring global synchronization. The name ser-
vice is provided at no cost and is hence excluded from the
economy. We expect that global updates of metadata will
suffer from a scalability problem, sacrificing the advantages
of the decentralized nature of microeconomic decisions.

When computer centers were the main source of com-
puting power, several authors studied the economics of such
centers’ services. The work focussed on the cost of the ser-
vices, the required scale of the center given user needs, the
cost of user delays, and the pricing structure. Several results
are reported in the literature, in both computer and man-

agement sciences. In particular, Mendelson (1985) proposes
a microeconomic model for studies of queueing effects of
popular pricing policies, typically not considering the de-
lays. The model shows that when delay cost is taken into
account, a low utilization ratio of the center is often opti-
mal. The model is refined by Dewan and Mendelson (1990).
The authors assume a nonlinear delay cost structure, and
present necessary and sufficient conditions for the optimal-
ity of pricing rules that charges out service resources at their
marginal capacity cost. Although these and similar results
were intended for human decision making, many apply to
the Mariposa context as well.

On the other hand, Mendelson and Saharia (1986) pro-
pose a methodology for trading off the cost of incomplete
information against data-related costs, and for constructing
minimum-cost answers to a variety of query types. These re-
sults can be useful in the Mariposa context. Users and their
brokers will indeed often face a compromise between com-
plete but costly and cheaper but incomplete and partial data
and processing.

8 Conclusions

We present a distributed microeconomic approach for man-
aging query execution and storage management. The dif-
ficulty in scheduling distributed actions in a large system
stems from the combinatorially large number of possible
choices for each action, the expense of global synchroniza-
tion, and the requirement of supporting systems with het-
erogeneous capabilities. Complexity is further increased by
the presence of a rapidly changing environment, including
time-varying load levels for each site and the possibility of
sites entering and leaving the system. The economic model
is well-studied and can reduce the scheduling complexity
of distributed interactions because it does not seek globally
optimal solutions. Instead, the forces of the market provide
an “invisible hand” to guide reasonably equitable trading of
resources.

We further demonstrated the power and flexibility of
Mariposa through experiments running over a wide-area net-
work. Initial results confirm our belief that the bidding pro-
tocol is not unduly expensive and that the bidding process
results in execution plans that can adapt to the environment
(such as unbalanced workload and poor data placement) in
a flexible manner. We are implementing more sophisticated
features and plan a general release for the end of 1995.

Acknowledgements.The authors would like to thank Jim Frew and Darla
Sharp of the Institute for Computational Earth System Science at the Uni-
versity of California, Santa Barbara and Joseph Pasquale and Eric Anderson
of the Department of Computer Science and Engineering of the University
of California, San Diego for providing a home for the remote Mariposa sites
and their assistance in the initial setup. Mariposa has been designed and
implemented by a team of students, faculty and staff that includes the au-
thors as well as Robert Devine, Marcel Kornacker, Michael Olson, Robert
Patrick and Rex Winterbottom. The presentation and ideas in this paper
have been greatly improved by the suggestions and critiques provided by
Sunita Sarawagi and Allison Woodruff. This research was sponsored by the
Army Research Office under contract DAAH04-94-G-0223, the Advanced
Research Projects Agency under contract DABT63-92-C-0007, the National
Science Foundation under grant IRI-9107455, and Microsoft Corp.



63

References

Banerjea A Mah BA (1991) The real-time channel administration protocol.
In: Proc 2nd Int Workshop on Network and Operating System Support
for Digital Audio and Video, Heidelberg, Germany, November

Bernstein PA, Goodman N, Wong E, Reeve CL, Rothnie J (1981) Query
processing in a system for distributed databases (SDD-1). ACM Trans
Database Syst 6:602–625

Bitton D, DeWitt DJ, Turbyfill C (1983) Benchmarking data base systems:
a systematic approach. In: Proc 9th Int Conf on Very Large Data Bases,
Florence, Italy, November

Cheriton D, Mann TP (1989) Decentralizing a global naming service for
improved performance and fault tolerance. ACM Trans Comput Syst
7:147–183

Copeland G, Alexander W, Boughter E, Keller T (1988) Data placement in
bubba. In: Proc 1988 ACM-SIGMOD Conf on Management of Data,
Chicago, Ill, June, pp 99–108

Dewan S, Mendelson H (1990) User delay costs and internal pricing for a
service facility. Management Sci 36:1502–1517

Ferguson D, Nikolaou C, Yemini Y (1993) An economy for managing
replicated data in autonomous decentralized systems. Proc Int Symp
on Autonomous Decentralized emsSyst (ISADS 93), Kawasaki, Japan,
March, pp 367–375

Huberman BA (ed) (1988) The ecology of computation. North-Holland,
Amsterdam

Kurose J, Simha R (1989) A microeconomic approach to optimal resource
allocation in distributed computer systems. IEEE Trans Comp 38:705–
717

Litwin W et al (1982) SIRIUS system for distributed data management. In:
Schneider HJ (ed) Distributed data bases. North-Holland, Amsterdam

Mackert LF, Lohman GM (1986) R* Optimizer validation and performance
evaluation for distributed queries. Proc 12th Int Conf on Very Large
Data Bases, Kyoto, Japan, August, pp 149–159

Malone TW, Fikes RE, Grant KR, Howard MT (1988) Enterprise: a market-
like task scheduler for distributed computing environments. In: Huber-
man BA (ed) The ecology of computation. North-Holland, Amsterdam

Mendelson H (1985) Pricing computer services: queueing effects. Commun
ACM 28:312–321

Mendelson H, Saharia AN (1986) Incomplete information costs and data-
base design. ACM Trans Database Syst 11:159–185

Miller MS, Drexler KE (1988) Markets and computation: agoric open
systems. In: Huberman BA (ed) The ecology of computation. North-
Holland, Amsterdam

Ousterhout JK (1994) Tcl and the Tk Toolkit. Addison-Wesley, Reading,
Mass

Sah A, Blow J (1994) A new architecture for the implementation of scripting
languages. In: Proc USENIX Symp on Very High Level Languages,
Santa Fe, NM, October. pp 21–38

Sah A, Blow J, Dennis B (1994) An introduction to the Rush language. In:
In: Proc Tcl’94 Workshop, New Orleans, La, June pp 105–116

Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG (1979)
Access path selection in a relational database management system.
In: Proc 1979 ACM-SIGMOD Conf on Management of Data, Boston,
Mass, June

Sidell J, Aoki PM, Barr S, Sah A, Staelin C, Stonebraker M, Yu A (1995)
Data replication in Mariposa (Sequoia 2000 Technical Report 95-60)
University of California, Berkeley, Calif

Stonebraker M (1986) The design and implementation of distributed IN-
GRES. In: Stonebraker M (ed) The INGRES papers. M. Addison-
Wesley, Reading, Mass

Stonebraker M (1991) An overview of the Sequoia 2000 project (Sequoia
2000 Technical Report 91/5), University of California, Berkeley, Calif

Stonebraker M, Kemnitz G (1991) The POSTGRES next-generation data-
base management system. Commun ACM 34:78–92

Stonebraker M, Aoki PM, Devine R, Litwin W, Olson M (1994a) Mariposa:
a new architecture for distributed data. In: Proc 10th Int Conf on Data
Engineering, Houston, Tex, February, pp 54–65

Stonebraker M, Devine R, Kornacker M, Litwin W, Pfeffer A, Sah A,
Staelin C (1994b) An economic paradigm for query processing and
data migration in Mariposa. In: Proc 3rd Int Conf on Parallel and
Distributed Information Syst, Austin, Tex, September, pp 58–67

Waldspurger CA, Hogg T, Huberman B, Kephart J, Stornetta S (1992)
Spawn: a distributed computational ecology. IEEE Trans Software Eng
18:103–117

Wellman MP (1993) A market-oriented programming environment and its
applications to distributed multicommodity flow problems. J AI Res
1:1–23

Williams R, Daniels D, Haas L, Lapis G, Lindsay B, Ng P, Obermarck
R, Selinger P, Walker A, Wilms P, Yost R (1981) R*: an overview
of the architecture. (IBM Research Report RJ3325), IBM Research
Laboratory, San Jose, Calif

Zhang H, Fisher T (1992) Preliminary measurement of the RMTP/RTIP. In:
Proc Third Int Workshop on Network and Operating System Support
for Digital Audio and Video, San Diego, Calif November


