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Abstract— Large graph datasets are ubiquitous in many do-
mains, including social networking and biology. Graph summa-
rization techniques are crucial in such domains as they can assist
in uncovering useful insights about the patterns hidden in the
underlying data. One important type of graph summarization
is to produce small and informative summaries based on user-
selected node attributes and relationships, and allowing users to
interactively drill-down or roll-up to navigate through summaries
with different resolutions. However, two key components are
missing from the previous work in this area that limit the
use of this method in practice. First, the previous work only
deals with categorical node attributes. Consequently, users have
to manually bucketize numerical attributes based on domain
knowledge, which is not always possible. Moreover, users often
have to manually iterate through many resolutions of summaries
to identify the most interesting ones. This paper addresses both
these key issues to make the interactive graph summarization
approach more useful in practice. We first present a method to
automatically categorize numerical attributes values by exploiting
the domain knowledge hidden inside the node attributes values
and graph link structures. Furthermore, we propose an inter-
estingness measure for graph summaries to point users to the
potentially most insightful summaries. Using two real datasets,
we demonstrate the effectiveness and efficiency of our techniques.

I. INTRODUCTION

Many real world datasets can be modeled as graphs, where
nodes represent objects and edges indicate relationships be-
tween nodes. Today, large amounts of graph data have been
generated by various applications. For example, the popu-
lar social networking web site Facebook (www.facebook.
com) contains a large network of registered users and their
friendships. In September 2009, it has been reported that Face-
book has over 300 million users [8]. As another example, the
DBLP data [2] can be used to construct a network of authors
connected by their coauthorships. This dataset, currently has
about 700 thousand distinct authors. With the overwhelming
wealth of information encoded in these graph datasets, there is
a crucial need to summarize large graph datasets into concise
forms that can be easily understood.

Graph summarization has attracted a lot of interest in the
database community. Various graph summarization techniques
have been proposed to help understand the characteristics
of large graphs [15], [20]. An interactive graph summariza-
tion approach, called k-SNAP, is proposed in [20]. This ap-
proach produces summaries which themselves are also graphs,
called summary graphs. In addition, it is amenable to an
interactive querying scheme by allowing users to customize
the summaries based on user-selected node attributes and

relationships, and to control the resolutions of the resulting
summaries. By controlling resolutions, users can interactively
drill-down or roll-up to navigate through summaries with
different resolutions.

Examples of the k-SNAP summaries is shown in Figure 1.
This summary is constructed over a coauthorship network
(sketched in Figure 1b), where each node represents an author
and has a numerical attribute indicating the number of papers
published by the author. Figure 1a and Figure 1c show two k-
SNAP summary graphs with 5 nodes and 3 nodes, respectively.
We call the number of nodes in a summary graph as the
resolution or the size of the summary. In these summaries, the
numeric attribute (number of publications for each author) has
been “manually” mapped by the user to a categorical attribute
with three values: HP, P and LP, which stand for highly
prolific, prolific and low prolific, respectively. Each node in
a summary graph represents a set of authors in the original
data graph, and the edges in the summary graph capture the
relationships between the groups of authors.

Although the k-SNAP summarization method provides use-
ful features that can help users extract and understand the
information encoded in large graphs, two key components are
missing that limit the practical application of this technique in
many cases.

First, the k-SNAP approach only deals with categorical node
attributes. But in the real world, many node attributes are
numerical, such as the age of a Facebook user or the number of
publications of an author in a coauthorship network. Simply
running the graph summarization method on the numerical
attributes will result in summaries with large sizes (at least
as large as the number of distinct numerical values). Due to
the prevalence of numerical attributes in many graph datasets,
it is natural to consider transforming these numeric attributes
to categorical domains with smaller cardinalities, so that the
resulting summaries are easier for a human to understand.
Often, users have to draw upon their domain knowledge to
provide the cutoffs to bucketize numerical values into categor-
ical values. However, even for domain experts, providing such
cutoffs can be tricky, and is not always possible (especially
if the data is changing!). On the other hand, the graph data
already contains information that can be used to “bucketize”
the numeric domain based on the patterns of the attributes
values and link structures of nodes in the graph. By leveraging
such hidden knowledge, automatic categorization is possible.

The second missing component that affects the usability of
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Fig. 1. Graph summary based on grouping nodes

k-SNAP, is the lack of an automatic method to direct the
users to a small set of interesting summaries, from the set
of all possible summaries. The k-SNAP approach provides
users summaries with various resolutions. Exploring different
resolutions of summaries is guided purely by user intuition.
Users may have to go through a large number of summaries
until some interesting summaries are found. Automatic dis-
covery allows the system to focus the user’s attention on a
small subspace that contains the most promising/interesting
summaries. (Within this subspace, the OLAP-style navigation
of k-SNAP can be used to navigate through a far smaller set
the summaries.) This approach can significantly improve the
usability of the graph summarization method.

In this paper, we address both these key issues, to further
improve the usability of the k-SNAP graph summarization
method. The main contributions of this paper are:

• We introduce a method, called CANAL that automatically
categorizes numerical attributes values based on both the
attributes values and the link structures of nodes in the
graph.

• To guide the automatic discovery of interesting sum-
maries, we propose a measure to assess the interesting-
ness of summaries.

• We apply our techniques to two well-known datasets,
namely DBLP [2] and CiteSeer [1], and demonstrate the
effectiveness and efficiency of our methods.

The remainder of this paper is organized as follows: In
Section II, we present some background information. The
CANAL method is introduced in Section III. Section IV
discusses the interestingness measure for graph summaries,
and Section V contains experimental results. Related work
is described in Section VI, and Section VII contains our
conclusions.

II. PRELIMINARIES

In this paper, we consider a general graph model where
nodes in the graph have arbitrary number of associated at-
tributes, and are connected by multiple types of edges. More
formally, a graph is denoted as G = (V,E), where V is the
set of nodes and E is the set of edges. The set of attributes
associated with the nodes is denoted as A = {a1, a2, ..., am}.
We require that each node v ∈ V has a value for every attribute
in A. The set of edge types present in the graph is denoted

as T = {t1, t2, ..., tn}. Each edge (u, v) ∈ E can be marked
by a non-trivial subset of edge types denoted as T (u, v) (∅ ⊂
T (u, v) ⊆ T ). For example, in a graph of scientific researchers
connected by coauthorships and colleague relationships (i.e.
working in the same organization), some pairs of researchers
(nodes) are only coauthors or only colleagues, while others
can be both coauthors and colleagues.

This paper focuses on a special kind of graph summary,
which themselves are also graphs. These graphs are more com-
pact in size and provide valuable insight into the characteristics
of the original graphs. We call them summary graphs.

We can formally define summary graphs as follows: Given a
graph G = (V,E), and a partition of V , Φ = {G1,G2, ...,Gk}
(
⋃k

i=1 Gi = V and ∀i &= j Gi ∩ Gj = ∅), the summary
graph based on Φ is S = (VS , ES), where VS = Φ, and
ES = {(Gi,Gj)|∃u ∈ Gi, v ∈ Gj , (u, v) ∈ E}. The set of
edge types for each (Gi,Gj) ∈ ES is defined as T (Gi,Gj) =⋃

(u,v)∈E,u∈Gi,v∈Gj
T (u, v).

In a summary graph, each node, called a group, corresponds
to one group in the partition of the original node set, and each
edge, called a group relationship, represents the connections
between two corresponding sets of nodes. A group relationship
between two groups exists if and only if there exists at least
one edge connecting some nodes in the two groups. The set
of edge types for a group relationship is the union of all the
types of the corresponding edges connecting nodes in the two
groups.

Note that the methods introduced in this paper are applicable
to both directed and undirected graphs. For ease of presenta-
tion, we only consider undirected graphs in this paper. (Our
actual implementation supports directed graphs and in fact we
present results for directed graphs in Section V.)

A. k-SNAP Summarization Approach

We now briefly describe the k-SNAP summarization method
proposed in [20]. Our work in this paper builds on the k-SNAP
summarization approach, providing two crucial components
to significantly improve the usability k-SNAP – namely,
attribute categorization and measuring the interestingness of
summaries.

Given a user-specified resolution k, the k-SNAP summa-
rization method produces a summary graph with size k (i.e.
containing k groups) by grouping nodes based on user-selected
node attributes and relationships. In the summary graph, nodes



in each group are required to have the same value for each
user-selected attribute(s), and they connect to nodes in a
similar set of groups.

Given a resolution k, there could be many different sum-
maries with the same size. A ∆-measure is proposed in [20] to
assess the quality of a k-SNAP summary by examining how
different it is to a hypothetical “ideal summary”. First, we
define the set of nodes in group Gi that participates in a group
relationship (Gi,Gj) as PGj (Gi) = {u|u ∈ Gi and ∃v ∈ Gj

s.t. (u, v) ∈ E}. Then we define the participation ratio of the
group relationship (Gi,Gj) as pi,j =

|PGj
(Gi)|+|PGi

(Gj)|
|Gi|+|Gj | . For

a group relationship, if its participation ratio is greater than
50%, then we call it a strong group relationship, otherwise,
we call it a weak group relationship. Note that in an “ideal”
summary, the participation ratios are either 100% or 0%.

Given a graph G, the ∆-measure of a grouping of nodes
Φ = {G1,G2, ...,Gk} is defined as follows:

∆(Φ) =
∑

Gi,Gj∈Φ

(δGj (Gi) + δGi(Gj)) (1)

where,

δGj (Gi) =

{
|PGj (Gi)| if pi,j ≤ 0.5
|Gi|− |PGj (Gi)| otherwise

(2)

Note that if the graph contains multiple types of relation-
ships, then the ∆ value for each edge type is aggregated as
the final ∆ value.

The ∆ measure looks at each pairwise group relationship: If
this group relationship is weak (pi,k ≤ 0.5), then it counts the
participation differences between this weak relationship and a
non-relationship (pi,k = 0). On the other hand, if the group
relationship is strong, then it counts the differences between
this strong relationship and a 100% participation-ratio group
relationship. The δ function, defined in Equation 2, evaluates
the part of the ∆ value contributed by a group Gi with one of
its neighbors Gj in a group relationship.

Given the ∆-measure, and the user specified summary
resolution k (i.e. number of groups in the summary is k),
the goal of the k-SNAP operation is to find the summary
of size k with the best quality. However, this is an NP-
Complete problem [20], and a heuristic algorithm, called top-
down k-SNAP, is proposed to produce suboptimal solutions.
This top-down k-SNAP approach first partitions nodes based
only on user-selected node attributes, and then iteratively splits
existing groups until the number of groups reaches k. Note
that the computation of the ∆ measure can be broken down
into components for each group with each of its neighbors
(see the δ function in Equation 2). Consequently, at each
iterative step, the heuristic chooses the group with the largest
δ value with one of its neighboring groups, and then splits it
based on whether nodes in this group connect to nodes in the
neighboring group.

III. CATEGORIZATION OF NUMERICAL ATTRIBUTES

The k-SNAP graph summarization method only works when
cardinalities of attribute domains are small. In a k-SNAP

summary, nodes in each group are required to have the same
value for each user-selected attributes. As a result, a summary
has at least as many groups as the number of distinct attribute
values. But many attributes of nodes in real graph datasets
are numerical, such as the number of citations of an article
in a citation network. The number of distinct values of a
numerical attribute is often large. If we naively apply the k-
SNAP summarization method on numerical values, the size of
the summary can be very large, and hence of limited use.

For example, in a citation network with 196,015 articles
connected by 823,432 citations generated from the CiteSeer
dataset [1], the attribute “number of citations” has 423 distinct
values. This means that a summary graph on this citation
network has at least 423 groups. Figure 2 shows this summary,
which has 423 groups and 28,307 group relationships. As is
evident, this summary is overwhelming.

In contrast, by bucketizing the numerical values into 3
categories, LC (Low Cited: ≤ 3 citations), MC (Moderately
Cited: ≥ 4 and ≤ 8 citations) and HC (Highly Cited: ≥ 9
citations), more compact summaries can be generated to help
users understand the characteristics of the citation network.
Figure 3 shows three summaries with resolutions 3, 4 and 5
based on this categorical attribute and the citation relationship.
In this figure, groups with the LC value are colored in white,
groups with the MC value are colored in light blue, and the
groups with the HC value are in yellow. The bold edges
between two groups indicate strong group relationships (with
more than 50% participation ratio), while dashed edges are
weak group relationships. (We analyze these summaries in
more detail in Section V).

The categorization of numerical attribute values in the above
example produces compact and informative summaries, but
obtaining the right cutoffs for the categorization is very hard
in practice. Experts can draw upon domain knowledge to
decide such cutoffs. But this manual selection of cutoffs is
not always possible, especially if the data is changing. To
solve this problem, we propose a technique to automatically
categorize numerical values by exploiting the similarities of
attribute values and link structures of nodes in the graph. We
call this technique CANAL (Categorization of Attributes with
Numerical Values based on Attribute Values and Link Struc-
tures of Nodes). In fact, the categories in the above example
are automatically generated by the CANAL algorithm.

Next, we discuss the CANAL algorithm in detail. For
ease of presentation, the methods discussed in this paper are
assumed to work on one attribute and one type of relationship;
extending these methods to multiple attributes and relation-
ships is straightforward, and omitted in the interest of space.

A. Overview of the CANAL Algorithm

Given a graph G = (V,E), a numerical node attribute a
and a desired number of categories C, the CANAL algorithm
automatically finds C − 1 cutoffs to categorize the values of
attribute a for all the nodes in G, such that the cutoffs result
in high-quality summaries.
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tributes

Fig. 3. Graph summaries for the CiteSeer dataset

The CANAL algorithm operates in three phases, as outlined
in Algorithm 1.

In the first phase, the CANAL algorithm groups nodes based
on the attribute values of all the nodes in G. Nodes with the
same value belong to the same group. Note that although the
domain of a numerical attribute can be uncountable, such as
real numbers, the number of distinct values in a particular
graph is bounded by the number of nodes in the graph.

We can define the attribute range of a group Gi as a(Gi) =
[si, ti], where si = minv∈Gi{a(v)} and ti = maxv∈Gi{a(v)}.
In other words, the attribute range of a group is defined by the
minimum attribute value and the maximum attribute value of
nodes in the group. Since the initial groups are formed based
on the values of attribute a, si = ti for each group initially.
We impose an order on the groups. Given two groups Gi and
Gj , if ti < sj , then we order Gi before Gj , denoted as Gi ≺ Gj .

If Gi ≺ Gj and there exists no Gk such that Gi ≺ Gk ≺ Gj ,
then we order Gi immediately before Gj , denoted as Gi ! Gj .
Furthermore, we call Gi and Gj value-adjacent to each other
if Gi ! Gj or Gj ! Gi.

The second phase of the CANAL algorithm iteratively
merges two value-adjacent groups based on the similarities
of the link structures, until there is only one group left. When
merging, the CANAL algorithm also monitors the changes of
the quality of the summary corresponding to the grouping. If
merging two value-adjacent groups significantly worsens the
quality of the resulting summary, then the boundary between
the two merged groups serves as good candidate for a cutoff
of the attribute range.

In the final third phase, CANAL selects the top C−1 merges
that cause the most deterioration in the summary quality and
uses the corresponding boundaries as the cutoffs to categorize
the numerical attribute.

Next we discuss in detail how CANAL decides which
groups to merge at each iteration of the second phase (Sec-
tion III-B), and how the algorithm measures the deterioration
of summary quality and chooses the cutoffs in the third phase
(Section III-C).

Algorithm 1 CANAL Algorithm
First Phase: Initialization

1: INPUT: A graph G, numerical attribute a and the number
of categories C.

2: Group nodes in G based on numeric values of a
3: Sort the groups to obtain the value-adjacent groups
4: Maintain a heap for pairs of value-adjacent groups, sorted

by SimLink
5: Pre-compute ∆p for the current grouping, where p is

initialized to 0
Second Phase: Merge groups

1: while the SimLink heap is not empty do
2: Pop the pair of value-adjacent groups Gi and Gj with

the smallest SimLink values from the heap
3: Merge Gi and Gj , calculate µp, and put µp, Gi and Gj

into µp heap
4: Update the SimLink heap
5: end while

Third Phase: Determine the C − 1 cut-offs
1: for C − 1 iterations do
2: Pop the largest µp and its associated groups Gi and Gj

from µp heap
3: Pick the boundary of Gi and Gj as a cutoff , and save

in an array O
4: end for
5: OUTPUT: The array O, which has the C − 1 cutoffs for

the attribute a.

B. Merging Groups

The goal of the CANAL algorithm is to exploit the do-
main knowledge hidden inside the attribute values and link
structures of nodes in the graph, to automatically categorize
numerical attributes. The merging of groups is guided by
similarities of both attribute values and link structures of nodes
in the graph. In other words, two groups of nodes with similar
attribute values and link structures are likely to be put in a



same category of the numerical attributes. Since similarities
on attribute values have already been crudely captured in the
definition of value-adjacent groups, CANAL can only merge
groups that are value-adjacent to each other. In addition,
CANAL requires that the groups to be merged should also
have similar neighbor groups with similar participation ratios.

To characterize the link structural similarities between two
value-adjacent groups, we define a measure called SimLink
as follows:

SimLink(Gi,Gj) =
∑

i,j #=k

|pi,k − pj,k|

Intuitively, SimLink(Gi,Gj) accumulates the differences
in participation ratio between the value-adjacent groups Gi

and Gj with other groups. The smaller this value is, the
more similar the two groups are. Our implementation of
CANAL uses a heap to store pairs of groups based on the
SimLink(Gi,Gj) value. At each iteration, we pop the element
from the heap corresponding to the two value-adjacent groups
Gi and Gj with the smallest SimLink(Gi,Gj) value, and
merge the pair into one group. At the end of each iteration,
we remove the heap elements (pairs of groups) involving
either of the two merged groups, update elements involving the
neighbors of the two merged groups, and insert new elements
involving this new group. These algorithmic steps are shown
in the second phase of Algorithm 1.

Note that the SimLink measure is very similar to the
MergeDist measure introduced in [20]. However, the two
measures are used for two different purposes. The SimLink
measure is used to automatically find the cutoffs to categorize
numerical values, while the MergeDist is used to produce
summary graphs. Furthermore, SimLink is only defined on
value-adjacent groups, while MergeDist is defined for any
pair of groups.

C. Selecting Cutoffs

In the second phase of the algorithm, each generated group
corresponds to a node in the summary graph. As the merge
progresses, CANAL also monitors the changes in the qualities
of these resulting summaries. The goal is to catch the merges
of two groups that cause the most deterioration in the quality
scores. These groups provide hints on how to divide the
numerical attribute into categories.

First, we need to quantitatively measure the deterioration
in the summary quality caused by a merge. We adopt the ∆
quality measure of summaries in [20]. The brief description
of this quality measure can be found in Section II.

We define µp as the relative ∆ change between two group-
ing Φ and Φ′, where Φ is the grouping before the pth merge
and Φ′ is the grouping after the pth merge. µp is defined as:

µp =
∆p − ∆p−1

∆p−1

Here, ∆p is the shorthand of the ∆ value of the grouping
Φ after the pth merge, where p is bounded by |Φ| − 1. Note

that µp reflects the ratio of ∆ changes from before and after
the pth merge.

In each iteration of the second phase, we keep track of
the µp value as well as the merged Gi and Gj in another
heap, which is sorted by µp. When the second phase finishes,
we return and remove the current largest µp value and its
associated groups Gi and Gj . The boundary between the two
value-adjacent groups Gi and Gj (the boundary can be either
ti or sj assuming Gi ! Gj) is considered as one cutoff.
The process of returning the largest µp and deciding cutoff
is repeated C − 1 times. Then, the resulting C − 1 cutoffs can
be used to categorize the numerical values. The details of this
step are shown in the third phase of Algorithm 1.

The time complexity of CANAL algorithm is the cost of
initialization, merging groups, and determining the C − 1
cutoffs. The algorithm takes at most O(|V | log |V |) time for
sorting and grouping the attribute values, and O(k2

a) time for
initializing the heaps, where ka is the number of distinct values
of the numerical attribute a for all the nodes in the graph.
Note that ka is bounded by |V |, but in practice is orders of
magnitude smaller than |V |. (For example, in the CiteSeer
citation network [1], |V | = 823, 432 whereas ka = 423. )
In each iteration of the second phase, the algorithm needs at
most O(k3

i + k2
i log ki) steps to update the heaps, where ki

is the size of the current grouping at each iteration. The total
number of iteration in the second phase is bounded by ka. The
determination of C−1 cutoffs only takes at most O(C log ka)
time. To sum up, the time complexity of the CANAL algorithm
is bounded by O(|V | log |V | + k4

a).
Note that CANAL is a pre-computation step. In practice,

CANAL is only executed once to categorize the numerical
values, then different summaries can be generated without re-
running the CANAL algorithm again. (CANAL has to be rerun
if the underlying data has changed significantly.) Furthermore,
even choosing a different C value does not need a complete
rerun of the CANAL algorithm – since all the potential cutoff
candidates are maintained in a heap structure, CANAL just
needs to return a different number of top cutoffs from the
heap in the third phase of the algorithm. In addition, as we
show in Section V-C, CANAL is very efficient, and hence is
unlikely be a bottleneck for generating summaries.

IV. AUTOMATIC DISCOVERY OF INTERESTING

SUMMARIES

In this section, we propose a measure to assess the interest-
ingness of a summary and discuss how to use this measure to
automatically discover interesting summaries, allowing users
to focus on a small number of summaries.

A. Measuring Interestingness of Summaries

The essence of graph summarization is to capture the
high-level structural characteristics of the original graphs
by extracting the dominant relationships amongst groups of
nodes. A strong group relationship in a summary exhibits a
frequent relationship pattern between two groups of nodes in
the original graph. Leveraging the work from the data mining



community [3], [9], [11], we now define the interestingness of
a summary graph.

Note that in the following definition of the interestingness
measure, we omit the weak group relationships, since they do
not exhibit frequent patterns in the link structures and are less
important.

Intuitively, the interestingness of a summary graph has the
following three aspects:

• Diversity: Strong relationships between groups with dif-
ferent attribute values reveal more insights into the orig-
inal graph, thus make a summary more informative.

• Coverage: If more nodes participate in strong group rela-
tionships, the resulting summary is more comprehensive.

• Conciseness: Summaries with fewer groups and strong
group relationships are more concise, and hence are easier
to understand and visualize.

Next, we will discuss each of these aspects in detail.
1) Diversity: A summary graph S is considered more

diverse, if more strong group relationships in S are connecting
groups with different categorical attribute values. A diverse
summary is interesting because in the absence of background
knowledge, a user often wants to see more relationships
between groups with diverse features (e.g. the interactions be-
tween researchers with very different prolificacies). A formal
definition of diversity is as follows:

Diversity(S) =
|DPC(S)|

C

where C is the cardinality of the categorical attribute in S
and DPC(S) is the set of distinct pair of categorical values
connected by one or more strong group relationships in S.
Note that |DPC(S)| is bounded by the number of all possible
combinations of two different categorical values. When C
increases, |DPC(S)| usually increases as well. To reduce this
bias, we divide |DPC(S)| by C.

The rationale behind the above formula is: (1) We are
largely interested in strong group relationships which reflect
frequent structural patterns in the original graph. (2) We only
pick the strong relationships across groups with different
attribute values, since strong relationships between groups
with the same attribute values are pervasive in many cases
and can be expected by common knowledge. (3) Nodes with
the same categorical values are often split into different groups
in a summary. As a result, there may be more than one strong
group relationships connecting different categorical values. In
the Diversity definition, we only count the distinct pair of
categorical values that are connected by one or more strong
group relationships.

2) Coverage: The coverage of a graph summary measures
the comprehensiveness of strong group relationships, that is,
the fraction of nodes in the original graph that are present in
these strong group relationships. Now, we formally define the
coverage of a summary graph S as follows:

Coverage(S) =
∑

(Gi,Gj)∈SR(S)

|PGj (Gi)| + |PGi(Gj)|
|V |

where SR(S) is the set of strong group relationships in S,
and PGj (Gi) is the set of nodes in group Gi that participate in
a group relationship (Gi,Gj).

3) Conciseness: A summary graph is concise if it contains
relatively few groups and strong group relationships. A concise
summary graph is easy to understand and visualize. Intuitively,
the conciseness of a summary graph S is:

Conciseness(S) = |VS | + |SR(S)|

where VS is the set of groups in S and SR(S) is the set of
strong group relationships in S.

4) Putting it Together: To put the above three aspects
together, we define the interestingness of a summary graph
as:

Interestingness(S) =
Diversity(S) × Coverage(S)

Conciseness(S)

The product of diversity and coverage generally indicate the
informativeness of a given summary. Large summaries usually
tend to be more informative, but may not be usable, due to
the lack of conciseness. The interestingness measure defined
above aims to make a tradeoff between the two.

We acknowledge that the proposed interestingness measure
is not perfect. However, quantitative assessment of graph
summary interestingness is a hard problem. Although crude,
the proposed measure intuitively captures the different aspects
of the interestingness, and is a significant step towards the goal
of automatic discovery of interesting summaries. We expect
that future work in this area has the potential to improve this
measure and/or produce better measures for specific domains.

B. Automatic Discovery of Interesting Summaries

The k-SNAP summarization technique allows generating
numerous summaries with different resolutions efficiently [20].
However, users have to manually navigate through these
numerous summaries to find out the interesting ones. Now, the
proposed interestingness measure can help users automatically
narrow down the search space to a very small subset of high
scoring summaries. Within this space, they can examine a few
selected summaries, and/or use the OLAP-style of drill-down
or roll-up navigation provided by k-SNAP .

In Section V-E, we will demonstrate how to make use of the
interestingness measure defined above to discover interesting
summaries in two real applications.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results evaluating
the effectiveness and efficiency of our methods on two real
datasets, namely the DBLP and the CiteSeer datasets. All
algorithms are implemented in C++. The graph data is stored
in a node table and an edge table in a PostgreSQL database.
Accesses to nodes and edges are implemented by issuing SQL
queries to the database. At the start of summarization process,
the graph data is fetched and cached in memory. This process
of caching the graph data takes 6 seconds on the largest dataset
that we use. In the results below, we do not include this



TABLE I

CITESEER DATASETS

Description # Nodes # Edges Avg. Degree
D50k CiteNum ≥ 10 46,550 125,012 2.68
D100k CiteNum ≥ 5 92,813 233,020 2.51
D150k CiteNum ≥ 2 143,887 330,997 2.30
D200k CiteNum ≥ 1 196,015 823,432 4.20

TABLE II

MANUAL 2-CUTOFFS AND CANAL CUTOFFS FOR THE DBLP DB

DATASET

Cutoffs on PubNum
Manual 2-cutoffs [1,5] [6,20] [≥ 21]
CANAL 2-cutoffs [1,3] [4,10] [≥ 11]
CANAL 3-cutoffs [1] [2,3] [4,10] [≥ 11]
CANAL 4-cutoffs [1] [2,3] [4,10] [11,26] [≥ 27]

TABLE III

CANAL CUTOFFS FOR THE CITESEER D200K DATASET

Cutoffs on CiteNum
CANAL 2-cutoffs [1,3] [4,8] [≥ 9]
CANAL 3-cutoffs [1,3] [4,8] [9,12] [≥ 13]
CANAL 4-cutoffs [1,3] [4,5] [6,8] [9,12] [≥ 13]

caching time, since this cost is easily amortized over several
summary generations. All experiments were run on a Linux
server with 2.66GHz Intel Core-2 Quad processor and 8GB
RAM.

We first describe the datasets used in our empirical evalua-
tion. Then, we present results evaluating the effectiveness and
efficiency of the CANAL algorithm, and the effectiveness of
the interestingness measure introduced in Section IV-A. After
that, we use two example applications to demonstrate that
summaries produced by the proposed methods can be used
to conduct interesting analysis on real graph data.

A. Datasets

DBLP DB Dataset This dataset is constructed from the
DBLP Bibliography data [2] by choosing publications from
selected database conferences and journals1. An undirected
coauthorship graph is formed from this dataset, with nodes
corresponding to authors and edges indicating coauthorships.
Each node has an attribute, called PubNum, which is the
number of publications belonging to the corresponding author.
This coauthorship graph contains 7,445 nodes and 19,971
edges.

CiteSeer Dataset We construct citation graphs from the
CiteSeer dataset [1]. Citation graphs are directed graphs,
where nodes denote articles and a directed edge X → Y
indicates that article X cites article Y . Each node in a citation
graph has an attribute, called CiteNum, representing the num-
ber of citations for the corresponding article. For scalability

1We selected papers longer than 4 papers from VLDB J., TODS, KDD,
PODS, VLDB and SIGMOD. We included “long” industrial papers in our
dataset, since we did not want to discriminate against these papers. We have
also created a dataset in which we removed all industrial papers, and the
results are similar as those presented in this paper. We omit these results in
the interest of space.
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Fig. 4. Comparison between the Manual 2-cutoffs and the CANAL 2-cutoffs
on the DBLP DB dataset

experiments, we partition the CiteSeer dataset and construct
four datasets with increasing sizes. The characteristics of
these datasets are shown in Table I. These four datasets are
constructed as follows: dataset D50k contains articles with
CiteNum ≥ 10. Dataset D100k includes articles with CiteNum
≥ 5. Articles with CiteNum ≥ 2 belong to the dataset D150k,
and finally, dataset D200k contains articles with CiteNum ≥ 1.

B. Effectiveness of The CANAL Algorithm

We first evaluate the effectiveness of the CANAL algo-
rithm when categorizing numerical attributes, by comparing
the cutoffs generated by CANAL to the manually selected
cutoffs in [20] for analyzing the DBLP DB coauthorship graph
dataset.

As described in Section V-A, each author (node) in the
coauthorship graph has a numerical attribute, called PubNum,
indicating the number of publications for the corresponding
author. To summarize the graph, this numerical attribute was
categorized into three categories in the previous work [20]
based on domain knowledge and the authors’ familiarity with
this dataset. The manually selected cutoffs are shown in the
first row of Table II.

In [20], the measure ∆
k was used to compare the qualities of

summaries with different resolutions, where ∆ is the value of
the ∆-measure described in Section II-A, and k is the number
of groups in the summary. With the ∆

k measure, for a fixed
k, a smaller ∆

k value implies that the summary is of a higher
quality, which in turn indirectly indicates better cutoffs. The
cutoffs in [20] (we call them Manual 2-cutoffs) are manually
tuned to achieve good ∆

k value. Note that as mentioned in [20]
∆
k is not claimed to be a perfect measure of summary quality.
To facilitate direct comparison with this previous work, here
we used the same ∆

k measure to compare the cutoffs generated
by CANAL with the manually selected cutoffs. As our results
(presented below) show, the cutoffs produced by CANAL (we
call them CANAL cutoffs) results in ∆

k values that are very
close to the manually selected ones.

For this experiment, we use CANAL to automatically
generate 2 cutoffs for the DBLP DB dataset. The second
row of Table II shows details about the resulting CANAL
2-cutoffs. Then, we run the same k-SNAP summarization
algorithm proposed in [20] using the CANAL 2-cutoffs as
well as the manually selected cutoffs to compare the qualities
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of the resulting summaries. Figure 4 plots the ∆
k values

corresponding to the different cutoffs.
As shown in Figure 4, in the range of 8 ≤ k ≤ 14, CANAL

2-cutoffs result in summaries with better quality than Manual
2-cutoffs. Even when 3 ≤ k ≤ 7, the average difference for
∆
k between the Manual 2-cutoffs and the CANAL 2-cutoffs is
within 10%. Overall, CANAL 2-cutoffs produce high-quality
summaries that match the manually selected Manual 2-cutoffs.

C. Efficiency of The CANAL Algorithm

In this section, we present results evaluating the efficiency
of the CANAL algorithm.

For this experiment, we use the four CiteSeer datasets
shown in Table I, and set C = 3 (i.e. 2 cutoffs) for simplicity.
The first row of Table III shows the cutoffs. Note that different
C values do not significantly affect the run time of the CANAL
algorithm, because all the cutoff candidates are maintained in
a heap structure and running CANAL once can generate all
different number of cutoffs (refer to Section III). We run each
experiment 100 times, and report the average number.

Figure 5 shows the execution time of the CANAL algorithm
on the CiteSeer datasets with increasing data sizes. As can be
seen, CANAL scales nicely with increasing data sizes. After
generating the cutoffs, the k-SNAP summarization method
only takes a few seconds to produce each of the summaries
of size less than 15 (e.g. k < 15) on these datasets.

D. Effectiveness of the Interestingness Measure

In Section IV, we proposed a measure to assess the inter-
estingness of graph summaries. Now, we evaluate the effec-
tiveness of this measure on the DBLP DB and the CiteSeer
datasets for different combinations of k (number of groups in a
summary) and C (the number of categories) values. All cutoffs
in this experiment are produced by the CANAL algorithm
and the cutoff details are shown in Table II and Table III.
In this experiment, we select some interesting summaries, and
visualize them to explain why they are interesting.

Table IV and Table V shows the interestingness values of
the summaries with different combinations of k and C values
for the DBLP and the CiteSeer D200k datasets respectively.
As observed in Table IV and Table V, large k values often
result in summaries with low interestingness values. This is
because large summaries tend to have low conciseness. In

TABLE IV

EXPLORING INTERESTING SUMMARIES – DBLP DATASET

k 2-cutoffs 3-cutoffs 4-cutoffs
3 0.010
4 0.112 0.054
5 0.091 0.098 0.037
6 0.093 0.110 0.072
7 0.086 0.122 0.067
8 0.075 0.064 0.077
9 0.065 0.060 0.067
10 0.052 0.080 0.066
11 0.051 0.051 0.051
12 0.047 0.052 0.050
13 0.043 0.056 0.044
14 0.041 0.054 0.044

TABLE V

EXPLORING INTERESTING SUMMARIES – CITESEER D200K DATASET

k 2-cutoffs 3-cutoffs 4-cutoffs
3 0.105
4 0.098 0.091
5 0.167 0.087 0.086
6 0.138 0.134 0.084
7 0.137 0.115 0.110
8 0.152 0.114 0.128
9 0.149 0.104 0.125
10 0.119 0.095 0.012
11 0.105 0.094 0.121
12 0.099 0.101 0.118
13 0.081 0.100 0.116
14 0.080 0.080 0.093

addition, large C values also contribute to summaries with
low interestingness values, because very detailed attribute
categories may lead to summaries that are hard to interpret.
Therefore, in the remainder of this section, we only consider
small k and small C values.

Figure 6 and Figure 7 plot the interestingness values of
summaries with 2 and 3 cutoffs for the DBLP and CiteSeer
datasets. We observe that there is a common shape that is
present in these two graphs. Figure 8 illustrates this common
shape. The interestingness value is low when k is very small,
then quickly increases as k increases. Then, it reaches a peak.
After that, the interestingness value decreases a bit, and then
rises again to a second peak. After this second peak, the
interestingness value slowly declines.

The two peaks correspond to two types of interesting
summaries. We call them overall summary and informative
summary, respectively. The overall summary, with a small
k value, concisely captures the general relationships amongst
groups of nodes. On the other hand, the informative summary
contains more details that lead to new discovery of diverse
relationships.

According to the interestingness measure introduced in
Section IV, the overall summary takes advantage of a smaller
Conciseness value, and also achieves good Coverage and
Diversity values. On the other hand, although the informative
summary is not as concise, it discovers new relationships and
consequently has a higher Diversity value.

In Table IV and Table V, we highlighted the interestingness
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and Figure 6

TABLE VI

SUMMARY GRAPHS WITH 2-CUTOFFS AND 3-CUTOFFS FOR THE DBLP DB DATASET

k=3 k=4 k=5 k=6 k=7
2-cutoffs

HP
Size: 269

0.98

LP
Size: 6391

0.42

P
Size: 785

0.88

0.79

0.48

0.84

HP
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0.98
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0.51

P
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0.88
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0.05

LP
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0.03
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0.63

0.01

0.040.05

0.75

0.06
0.04

1.00

3-cutoffs
HP

Size: 269
0.98

LP
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0.62

P
Size: 785

0.88
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0.37

0.62

0.65

0.44

0.84

0.42

0.64

HP
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LP
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P
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0.65
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0.84

0.74

0.29

0.43

0.66

1.00

0.66

scores of the overall summaries and the informative summaries
for the two datasets in bold for the 2-cutoffs and the 3-cutoffs.
Now, let’s take a look at some of the summaries and explain
why there are interesting.

First, let’s consider the case of the 2-cuttoffs for the DBLP
dataset. The numerical attribute PubNum is cut into three
categories. Using the same convention as in [20], we name the
three categories as Low Prolific (LP) when 1 ≤ PubNum ≤
3, Prolific (P) when 4 ≤ PubNum ≤ 10, and Highly Prolific
(HP) when PubNum ≥ 11. The first row of Table VI shows
the summaries with sizes increasing from 3 to 7. For ease
of presentation, we call them 3-summary, 4-summary and
so on. With 2-cutoffs, the 4-summary corresponds to the
overall summary. Compared to the 3-summary, it introduces
one extra group and two new strong relationships between
different categorical values, thus has better Diversity and
Coverage. On the other hand, it is more concise than the
5-summary. The 6-summary is considered the informative
summary. It introduces a new LP group (1261 LP) that only

strongly collaborates with the HP group, thus achieves better
Diversity and Coverage than the 5-summary. Compared to
the 7-summary, it has better Conciseness.

Now, we switch to the summaries with 3 cutoffs. 3 cutoffs
give us four categories as shown in the third row of Table II.
We name them ULP (Ultra Low Prolific), LP, P and HP.
Summaries with k = 4 to k = 7 are visualized in the second
row of Table VI. The highest interestingness value is achieved
at k = 7. The corresponding 7-summary is considered as the
overall summary. In this summary, each group of ULP authors
has unique coauthorship pattern with other groups.

Table V shows interestingness values of summaries for the
CiteSeer D200k dataset. Here we focus on the interesting
summaries in the 2-cutoffs column, because most of the high-
scoring summaries are from this column. With 2-cutoffs, the
CiteNum attribute is divided into three categories as shown
in the first row of Table III. We call the three categories Low
Cited (LC), Moderately Cited (MC) and Highly Cited (HC).

The 5-summary shown in Figure 3c and the 8-summary
shown in Figure 9b, correspond to the overall summary and
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Fig. 9. Summary graphs with 2 cutoffs for the CiteSeer dataset (k = 7, 8)

the informative summary, respectively. Compared to the 4-
summary in Figure 3b, the 5-summary introduces an important
group of LC (28631 LC) heavily citing both MC and HC
groups, which results in a high interestingness value. The 8-
summary introduces a new HC group (11338 HC) that heavily
cites a MC group (27754 MC). This relationship, which is
not shown in the 7-summary in Figure 9a, provides more
insights to the original data, thus makes the 8-summary more
interesting than the 7-summary.

From the above experiments, we have shown that using the
proposed interestingness measure, the summaries with high
scores often correspond to summaries with high interesting-
ness. We have also shown that this measure provides two
important summary points (the overall and the informative
summaries). Therefore, our interestingness measure is effective
in selecting a small set of interesting summaries that user can
explore.

E. Example Applications

In this section, we demonstrate how summaries produced
by the proposed methods can be used to answer interesting
questions in two real examples applications:

1) DBLP Coauthorship Network: The first example appli-
cation is to analyze the impact of the double-blind review
process in SIGMOD (which started using double-blind review
since 2001) using the DBLP DB coauthorship network.

Fig. 10. Publication growth rates (SIGMOD vs VLDB)

There has been a lot of debate on whether double-blind
review has any impact on SIGMOD publication. Madden et
al. [14] and Tung [21] drew contradictory conclusions on this
subject by using simple statistics. Here, we show how our
method can be used to analyze the effect of double-blind
reviewing.

As described in Section V-A, the coauthorship graph repre-
sents the coauthorship among the database researchers. Each
node in this graph has a numerical attribute PubNum, indicat-
ing the number of publications for each author. Table II shows
the different cutoffs produced by CANAL to categorize this
numerical attribute. The interestingness scores of summaries
with different C and k values are listed in Table IV. As shown
in this table, 2-cutoffs and 3-cutoffs both lead to interesting
summaries. For 2-cutoffs, summaries with size k ≤ 6 have
high interestingness scores, and for 3-cutoffs, summaries with
size k ≤ 10 are ranked among the top.

Let’s first look at the 3-cutoffs summaries. 3-cutoffs single
out authors with only one publication into a category called
ULP (Ultra Low Prolific). The second row of Table VI
visualizes the summaries with k = 4 to k = 7. The summaries
split the ULP authors into more and more detailed groups,
while the general LP group stays unchanged. However, in the
analysis of the double-blind review effect, we do not want
to single out authors with only one publications, instead we
want to investigate a general group of low prolific authors.
Therefore, we omit these 3-cutoffs summaries, although they
score high with respect to the interestingness measure.

Now, we study the 2-cutoffs summaries. The first row of
Table VI visualizes the summaries with size k = 3 to k = 7,
among which the 4-summary is the overall summary and
the 6-summary is the informative summary according to our
summary interestingness measure (see Section V-D). In the 4-
summary, the LP authors are divided into 2 groups: one group
of 2680 strongly coauthor with both HP and P authors; and
one group of 3711 only strongly coauthor among themselves.
In the 6-summary, LP authors are divided into more detailed
groups: one group of 1258 LP authors strongly coauthor with
both HP and P authors, one group of 1261 only strongly
coauthor with the HP group, one group of 1422 only strongly



Fig. 11. Analysis of the double-blind review process
with the 4-summary Fig. 12. Analysis of the double-blind review process with the 6-summary

coauthor with the P group, and the remaining 2450 LP authors
are isolated from the P and HP authors (they only coauthor
among themselves).

While the previous studies [14], [21] treat all the low
prolific authors as a whole, our methods can divide them into
subgroups based on their coauthorship with the prolific or
highly prolific authors, and analyze the different subgroups
to get a more comprehensive understanding.

As in [14], [21], we compare the publication rates of SIG-
MOD before and after the double-blind review against VLDB
(which does not have double-blind reviewing). Figure 10
shows the average number of publications for all authors in
SIGMOD and VLDB from 1994 to 2007. The period 1994-
2000 is before the start of double blind reviewing in SIGMOD,
and the period 2001-2007 is after double blind reviewing was
introduced in SIGMOD. This chart shows the average growth
rates are 73% for SIGMOD and 89% for VLDB. The detailed
growth rates of each author group for the 4-summary and the
6-summary are shown in Figure 11 and Figure 12, respectively.

In the overall 4-summary, we observe that the HP authors
have much lower growth rate in SIGMOD (41%) than the
average growth rate (73%), whereas the growth rate in VLDB
(82%) is close the average (89%). So double-blind reviewing
appears to result in fewer papers from the HP group of authors.
Furthermore, the LP group (2680 LP) that coauthors with both
HP and P authors has significantly more publications and much
higher growth rates in both SIGMOD and VLDB than the LP
group (3711 LP) that has little connection with the HP and P
authors.

The more informative 6-summary with detailed growth
rates (shown in Figure 12) provides us further insights into
the double-blind review analysis. In this finer summary, the

isolating group of LP authors (2450 LP) has significantly
higher growth rate in SIGMOD (121%) than average (73%),
but has a much lower growth rate in VLDB (54%) than average
(89%). This observation seems to suggest that double-blind
review in SIGMOD welcomes more papers from low prolific
authors even without any collaboration with HP or P authors.

2) CiteSeer Citation Networks: In the second example
application, we analyze what potentially helps a low cited
paper get more citations.

In this analysis, we use the CiteSeer D200k dataset as
described in Section V-A. Each node in the citation network
has a numerical attribute CiteNum, which is the number of
citations the article receives. We choose 2 cutoffs as shown
in the first row of Table III, and name the resulting three
categories as LC, MC and HC as in Section V-D.

The 5-summary shown in Figure 3c is an overall summary
as discussed in Section V-D and sheds lights on answering
this question. In this summary, the LC articles are divided into
three subgroups: One group of 28631 LC articles both strongly
cites MC and HC articles, one group of 31912 LC largely
only strongly cites HC articles, and the last group of 42659
LC rarely cites either HC or MC articles. Now, we calculate
the average of the CiteNum values for each of the three LC
groups. We find that the LC group (28631 LC), citing both
HC and MC articles, has a high average number of citations
(1.75). In addition, the LC group (31912 LC), largely only
citing HC articles also has a similar high average number of
citations (1.74). However, the last group of LC articles (42659
LC), which does not frequently cite HC or MC articles, has on
average only 1.61 citations. This seems to suggest that citing
more influential articles potentially helps low cited articles get
more citations. A potential explanation for this behavior is that



for each article CiteSeer can also show which other articles
have cited it in its history. Therefore, when a LC article L
cites an influential article H , L can also be seen when a reader
visits the web page of H . This citation relationship potentially
helps L become frequently exposed to the public search, thus
increases its chances of being cited as well.

VI. RELATED WORK

Graph summarization has been an active research area, and
various ways of summarizing graphs have been proposed.
Statistical methods (e.g. [6], [7], [16]), are able to discover
properties of large social networks, such as the scale-free
property and the small world effect. However, these methods
do not produce summaries that are graphs (which is the focus
of this paper). Graph partitioning methods, such as [17], [19],
[23], are useful in detecting communities in large networks,
but node attributes are largely ignored in the analysis.

The related problem of graph compression has been ex-
tensively studied [5], [10], [12], [13], [18]. The recent work
by Navlakha et al. [15] uses the MDL principle to com-
press graphs with bounded error. Although this MDL based
approach produces summary-like structures, its main goal is
to reduce the storage space needed to represent the original
graph. Furthermore, unlike our methods, the MDL based
approach does not consider node attributes or multiple edge
types.

Work in graph visualization aims to design layout methods
to improve the visualization of large graphs. A good survey of
such methods is provided in [4]. In [22], Wang et al. proposed
a method called CSV to mine and visualize cohesive subgraphs
by mapping edges and nodes to a multidimensional space
wherein dense areas correspond to cohesive subgraphs. Tools,
such as [24], can visualize dynamic interaction graphs by in-
corporating common visualization paradigms such as zooming,
coarsening and filtering. Our methods are complementary to
these methods and can be combined with these visualization
methods to provide an interactive way of summarizing graphs.

This paper is an improvement over our previous work [20].
We solve two main limitations of this previous work by
proposing automatic categorization of numeric attributes and
interestingness measurement of summaries. These two propos-
als significantly improve the usability of the previous work.

VII. CONCLUSIONS

This paper presents a graph summarization technique that
builds on the previous work [20] which summarizes graphs
based on node attributes and different edge types. However,
there were two key limitations in that previous work, which we
address in this paper. First, we allow automatic categorization
of numeric node attributes (which is a common scenario), and
second we automatically score the graph summaries to produce
a small subset of interesting summaries (which results in a
better paradigm as the user does not have to manually inspect
a large number of summaries to find the interesting ones). Our
solutions are crucial for the usability of graph summarization.

Extensive evaluations using the DBLP and CiteSeer datasets
show that our methods are effective in producing interesting
graph summaries. Furthermore, the proposed methods are also
very efficient and can be used to summarize large graph
datasets.
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