
Efficient Top-k Closeness Centrality Search ∗

Paul W. Olsen Jr. #1, Alan G. Labouseur #2, Jeong-Hyon Hwang #3

Department of Computer Science, University at Albany – State University of New York
1400 Washington Avenue, Albany, NY 12222, USA

1 polsen@cs.albany.edu
2 alan@cs.albany.edu
3 jhh@cs.albany.edu

Abstract—Many of today’s applications can benefit from the
discovery of the most central entities in real-world networks.
This paper presents a new technique that efficiently finds the
k most central entities in terms of closeness centrality. Instead
of computing the centrality of each entity independently, our
technique shares intermediate results between centrality com-
putations. Since the cost of each centrality computation may
vary substantially depending on the choice of the previous
computation, our technique schedules centrality computations in
a manner that minimizes the estimated completion time. This
technique also updates, with negligible overhead, an upper bound
on the centrality of every entity. Using this information, our
technique proactively skips entities that cannot belong to the final
result. This paper presents evaluation results for actual networks
to demonstrate the benefits of our technique.

I. INTRODUCTION

Consider a person planning to open a store. She would pre-
fer a location closest, on average, to a large number of potential
customers [1]. In the case of viral marketing, it is crucial to
find a small number of people who can trigger the largest and
fastest product adoption through social contact advertising [2].
In sociopolitical science and health care, researchers strive to
understand opinion formation and disease propagation with a
focus on the most influential and central people [3]. Other
applications that benefit from the discovery of highly central
entities in real-world networks include national security, power
grid administration, policy making, and computer network
management.

Each of the above networks can be represented as a graph
G with a set V of vertices that represent entities and another
set E of edges that represent relationships between entities.
In this paper, we study the problem of finding, given a graph
G(V,E) and a positive integer k, the k most central vertices
in G. We focus on one popular centrality metric, closeness
centrality [4], [5], [6]. In terms of this metric, a vertex is
highly central if it has paths to a large number of other vertices
and the average shortest path length to these vertices is small
(Section II). In a graph representing a road network, a vertex
with the highest closeness centrality corresponds to a location
closest, on average, to all other locations. In the context of viral
marketing, such a vertex represents a person who, with the
smallest number of intermediaries on average, can influence
the greatest number of people. As we discuss in Section VII,

∗ This work is supported by NSF CAREER award IIS-1149372.

other types of centrality can be efficiently computed (e.g.,
degree centrality, PageRank) or have unique limitations and
complexities (e.g., eccentricity, betweenness). We leave the
extension of our work to the latter as future research.

To find the k vertices with the highest closeness centrality
values, one may consider using traditional algorithms that
find shortest paths for all pairs of vertices [7], [8]. Al-
gorithms requiring Ω(∣V ∣2) space are impractical for large
graphs (e.g., several terabytes of memory for a graph with
1 million vertices). A more practical approach is to compute
the centrality of each vertex using a single-source short-
est path algorithm [9], [10]. Given a directed graph with
nonnegative edge weights, this approach can complete in
O(∣V ∣ ⋅ ∣E∣ + ∣V ∣2 log ∣V ∣) time with O(∣V ∣ + ∣E∣) space by
repeating an implementation of Dijkstra’s algorithm [10] us-
ing a Fibonacci heap [11] for each vertex. There are also
techniques that can reduce centrality computation time at the
expense of accuracy [12], [13], [14]. These approximation
techniques, however, support only undirected graphs [12], [14]
or unweighted graphs [13]. They are also unsuitable when
correct answers are required (e.g., the centrality measure is
used to select the best paper over the last 10 years).

In this paper, we present a new solution to the aforemen-
tioned problem for both directed and undirected graphs with
nonnegative edge weights. In our experiments, our solution
was up to 142 times faster (e.g., 28.6 minutes vs. 67.5 hours)
than the conventional approach which computes the centrality
of every vertex independently. In one case, when the graph
size was increased by a factor of 16, the completion time of
our solution increased only by a factor of 46 (= 161.38) while
that of the conventional approach showed a super-quadratic
increase (339 = 162.1). Our technique also quickly generates
approximate answers and then gradually refines them until it
produces final, correct results. In most of our experiments,
approximately 73% of vertices in the initial, approximate
answers were correct (i.e., kept in the final results). Our
solution also uses only O(∣V ∣ + ∣E∣) memory space.

A key principle of our approach is to materialize inter-
mediate results while the centrality of a vertex is computed,
and then reuse those results while the centrality of another
vertex is computed. Our technique can apply this type of
sharing to any pair of vertices with an edge between them.
The cost of computing a vertex’s centrality in this way heavily

depends on the choice of the previous vertex. Therefore, our
technique schedules (i.e., determines the order of) centrality
computations striving to minimize the overall completion time.
To enable this optimization, our technique estimates, with low
overhead, the centrality computation cost for each possible
sharing scenario. This method can also estimate the centrality
of each vertex, which enables early production of approximate
top-k answers. Finally, our technique efficiently maintains
an upper bound on the centrality of every vertex while the
centrality values of other vertices are computed. Based on
these bounds, it can proactively skip vertices that cannot
belong to the final top-k result, thereby further improving
performance.

In this paper, we make the following contributions:
● We develop a technique that efficiently shares intermedi-

ate results across centrality computations.
● We present a method for scheduling centrality computa-

tions in a manner that minimizes the estimated completion
time.

● We provide an efficient technique for skipping vertices
that cannot be among the k most central vertices.

● We describe a method for quickly producing and refining
approximate top-k answers.

● We experimentally demonstrate the benefits of the above
features using real-world networks.

The rest of this paper is organized as follows: Section II
provides a formal definition of the problem studied. Section III
describes our approach for sharing intermediate results across
centrality computations. Sections IV and V present our so-
lutions for skipping unnecessary centrality computations and
scheduling centrality computations, respectively. Section VI
shows our evaluation results and Section VII summarizes
related work. Section VIII concludes this paper.

II. PROBLEM STATEMENT

In this paper, we study the problem of finding the k most
central vertices in a graph G(V,E) where V and E denote the
set of vertices and edges, respectively. To deal with various
real-world networks, we consider both directed graphs (e.g.,
citation networks) and undirected graphs (e.g., coauthorship
networks) with arbitrary nonnegative edge weights. Hereafter,
we focus on directed graphs since any undirected graph can be
converted into a directed graph by replacing each undirected
edge {x, y} of weight w with two directed edges (x, y) and
(y, x), each of weight w.

The closeness centrality of a vertex represents how close the
vertex is, on average, to other vertices [4], [5], [6]. If graph
G is strongly connected, the closeness centrality of a vertex
v, denoted by c(v), is defined as

c(v) =
∣V ∣ − 1

∑v′∈V d(v, v
′)

(1)

where d(v, v′) denotes the geodesic (i.e., shortest) distance
from vertex v to v′ (Table I). Practical graphs, however,
including those examined in Section VI, may not be strongly

Symbol Description
V set of vertices
E set of edges
Vv set of vertices reachable from v
Ev set of edges reachable from v
w(v, v′) minimum weight of the edges from vertex v to vertex

v′ (∞ if no such edge exists)
d(v, v′) geodesic distance from vertex v to vertex v′ (∞ if

there is no path from v to v′)
c(v) closeness centrality of vertex v (Definition 1)
Vv p {v} ∪ {v′ ∈ Vv ∶ d(v, v′) < w(v, p) + d(p, v′)}
Ev p set of edges that emanate from a vertex in Vv p

TABLE I
SUMMARY OF NOTATION

connected. Therefore, we use a more general definition of
closeness centrality [15], [16]:

Definition 1: (Closeness Centrality) The closeness central-
ity of vertex v is defined as:

c(v) =
(∣Vv ∣ − 1)2

(∣V ∣ − 1)∑v′∈Vv d(v, v
′)

(2)

where Vv denotes the set of vertices reachable from v and
d(v, v′) denotes the geodesic distance from vertex v to v′

(Table I).
Note that Equation (2) assigns a high centrality value to

vertex v if v has a large number of reachable vertices and
their geodesic distances from v are short. When G is strongly
connected, Equation (2) reduces to Equation (1) since Vv = V
for any v ∈ V .

In this paper, we consider the problem of finding a set of
vertices whose centrality values are larger than or equal to the
k-th highest centrality value. This set may contain more than
k vertices if some of these vertices have identical centrality
values. For example, if the centrality values of a, b, and c are
1, 0.9, and 0.9, respectively, and no other vertex has a higher
centrality value, our answer to a top-2 centrality problem is
{a, b, c} rather than {a, b} or {a, c}. Such a top-k centrality
problem can be formally defined as follows:

Definition 2: (Top-k Centrality Problem) Given graph
G(V,E), a top-k centrality problem is to find:

arg maxV ′⊆V, ∣V ′∣≥k(minv∈V ′(c(v)), ∣V
′∣).

where the max function assumes a lexicographic order > such
that (a, b) > (c, d) if and only if (a > c)∨ ((a = c)∧ (b > d)).

In this paper, our goal is to develop solutions for quickly
answering the top-k centrality problem. The key questions
that we answer in Sections III, IV and V, respectively, are
as follows:

● Is it possible to share results between centrality compu-
tations to reduce the overall completion time?

● Is it possible to find vertices that cannot be included in the
final top-k result without computing their actual centrality
values?

● In what order should we compute the centrality of vertices
so that overall completion time is minimized?

b

gf

h

vertex level
b 0
f 1
g 1
h 2

level -1

(1) (2)

(3)
(4)

e

a

s = 4 (= 0+1+1+2)

vertex-level map L

Fig. 1. PFS starts at b. Following
edges in the specified order, it
finds d(b, v′) for each v′ ∈ Vb.

b

g

e

f

h

vertex level

a -1

b 0

f 1

g 1

h 2

level 0

level 1

level 2

(1)

level -1 vertex-level map L

s = 8 (= 4 + 4!1)

a

(a) placing a at level -1 (e’s level un-
known)

b e

a

f

h

vertex level

a -1

b 0

f 1

g 0

h 2

(2)

g
level 0

level 1

level 2

level -1 vertex-level map L

s = 7 (= 8 - 1)

(b) promoting g to level 0 (e’s level
unknown)

b g e

a

f

h

(3)

(4)

level 0

level 1

level 2

level -1

vertex level

a -1

b 0

e 0

f 1

g 0

h 2

vertex-level map L

s = 8 (= 7 + 1)

(c) placing e at level 0

Fig. 2. ∆-PFS starts at vertex a. Placing vertex a at level -1 and then following only the four edges labeled (1) through
(4), it ensures that each vertex v′ ∈ Va is at level d(a, v′)-1.

III. SHARING ACROSS CENTRALITY COMPUTATIONS

This section describes our technique that efficiently com-
putes the centrality of each vertex by reusing intermediate
results. Sections III-A and III-B discuss basic principles and
algorithmic details of this technique, respectively.

A. Core Ideas

The closeness centrality of vertex v requires Vv and d(v, v′)
for every v′ ∈ Vv (Definition 1). This requirement can be
met by Priority-First Search (PFS) algorithms which visit
vertices in the order of increasing geodesic distance from v
(e.g., Dijkstra’s [10] for weighted graphs and BFS [8] for
unweighted graphs). Figure 1 shows an example that computes
the closeness centrality of vertex b by starting a PFS at b.
In this example, the weight of each edge is set to 1 to ease
illustration. This PFS follows edges in the order of (1) – (4)
finding that Vb = {b, f, g, h}, d(b, b) = 0, d(b, f) = d(b, g) = 1,
and d(b, h) = 2. Thus, the closeness centrality of b is computed
as c(b) = (∣Vb∣−1)2

(∣V ∣−1)∑v′∈Vb d(b,v
′) =

(4−1)2
(6−1)(0+1+1+2) =

9
20

.
Consider starting a new PFS at a in Figure 1 to compute

the centrality of vertex a. This PFS would follow all seven
edges in the figure. It is possible to achieve the same effect
more efficiently by leveraging the previous PFS started at
b. This approach raises the challenge of identifying which
past computations can be effectively reused. Our solution (i)
assumes that the previous PFS placed every vertex v′ ∈ Vb
at level d(b, v′) and then (ii) places each vertex v′ ∈ Va at
target level d(a, v′)−w(a, b) while skipping (i.e., not following
the outgoing edges of) vertices already placed at the target
level during the previous search. We call this solution ∆-PFS
because it performs PFS while skipping calculations done by
the previous search.

Figures 1 and 2 illustrate the core ideas mentioned above
(table L and variable s are explained below). In Figure 1, PFS
places b at level d(b, b) = 0, f at level d(b, f) = 1, g at level
d(b, g) = 1, and h at level d(b, h) = 2. In Figure 2(a), ∆-PFS
places a at level d(a, a)−w(a, b) = −1. Following a’s outgoing
edge to b, ∆-PFS finds that the previous search already placed
b at the target level d(a, b) −w(a, b) = 0. In this case, it does
not follow the outgoing edges of b since every vertex v′ (e.g.,
f and h in Figures 1 and 2) having a shortest path from a

via b is already at the target level d(a, v′)−w(a, b). After this
step, ∆-PFS follows vertex a’s edge to vertex g. In this case,
∆-PFS promotes g from level 1 (Figure 2(a)) to target level
d(a, g)−w(a, b) = 0 (Figure 2(b)) and newly places e (which
was not at any level) at level d(a, e)−w(a, b) = 0 (Figure 2(c)).
Next, ∆-PFS follows g’s outgoing edge to f finding that f is
already at the target level d(a, f)−w(a, b) = 1. As in the case
of examining b, it does not follow any outgoing edges of f
and then terminates since there are no more edges to follow.

Figures 1 and 2 show how our technique maintains inter-
mediate results to efficiently compute centrality values. These
intermediate results are (i) a map L which contains each
vertex v′ reachable from the source (i.e., the vertex at which
a PFS starts) and the level of v′ (denoted L[v′]) and (ii) a
variable s which maintains the sum of the differences between
the level of the source and the level of every vertex v′ in
L. For example, the PFS in Figure 1 inserts b, f, g, h and
their levels into L. It also increases s by these levels since
L[v′] − L[b] = L[v′] − 0 = L[v′] for each v′ ∈ {b, f, g, h}.
When ∆-PFS starts at a (Figure 2(a)), the source changes
from b at level 0 (Figure 1) to a at level −w(a, b) = −1. In
this case, for each v′ ∈ {b, f, g, h}, the difference between the
level of the source and the level of v′ increases by 1. Thus, ∆-
PFS increases s by 4 ⋅ 1. When ∆-PFS promotes g from level
1 (Figure 2(a)) to level 0 (Figure 2(b)), ∆-PFS decreases s
by 1, the promotion distance. When ∆-PFS newly visits e and
places it at level 0 (Figure 2(c)), (e,0) is inserted into L and
s is increased by d(a, e) = 1 in response to this new addition.

When ∆-PFS completes (Figure 2(c)), L has entries for
all of the vertices reachable from a (i.e., ∣L∣ = ∣Va∣), and
s = ∑(v′,l′)∈L(L[v

′]−L[a]) = ∑(v′,l′)∈L((d(a, v
′)−w(a, b))−

(d(a, a)−w(a, b))) = ∑v′∈Va d(a, v
′). Using a variable track-

ing ∣L∣, the centrality of a can be computed with negligible
overhead as (∣Va∣−1)2

(∣V ∣−1)∑v′∈Va d(a,v′)
=
(∣L∣−1)2
(∣V ∣−1)s =

(6−1)2
(6−1)8 =

5
8

.
A detailed description of ∆-PFS and a proof of its cor-

rectness are included in Appendices A and B. ∆-PFS is an
extension to PFS with additional features that use a map L
and a variable s to quickly compute centrality values and skip
calculations done by a previous search. Incremental search
algorithms for dynamic graphs [17] and ∆-PFS bear similarity
in that they reuse previous results. The former algorithms,

Algorithm 1: top centrality(G,k)

input : graph G(V,E), k
output : top-k list A
S ← schedule(G,k); // Section V1
for v : start(S) do // every start vertex v2

(L, s)← PFS(v);3
process(v,L, s,A,S, k); // Algorithm 24
return A;5

Algorithm 2: process(p,L, s,A,S, k)
input : vertex p, vertex-level map L, sum of geodesic

distances s, top-k list A, schedule S, k
c(p)← (∣L∣−1)2

(∣V ∣−1)s ; // centrality of p (Definition 1)1
update(A,p, c(p), k); // update A using p, c(p), and k2
for each vertex v that follows p in schedule S do3

(L, s,Λ) = ∆-PFS(v, p,L, s);4
process(v,L, s,A,S, k);5
rollback(L,Λ); // restore state of L as of step 46

however, are not applicable to searches which start at differ-
ent vertices. Furthermore, they do not maintain intermediate
results for fast centrality computation (e.g., L and s of ∆-
PFS). In Figure 2, ∆-PFS follows only 4 edges rather than
all of the seven edges. Section VI presents our experimental
results where ∆-PFS achieves the effect of PFS by visiting a
much smaller number (e.g., 0.1% – 20%) of vertices compared
to PFS. The set of vertices visited by a ∆-PFS which starts at
v and reuses the search started at p, can be expressed as Vv p =
{v} ∪ {v′ ∈ Vv ∶ d(v, v

′) < w(v, p) + d(p, v′)} (Appendix B).
While a PFS starting at v completes in O(∣Ev ∣ + ∣Vv ∣ log ∣Vv ∣)

time, a ∆-PFS starting at v and reusing a search started at p
completes in O(∣Ev p∣+ ∣Vv p∣ log ∣Vv p∣) where Vv , Ev , Vv p and
Ev p are defined as in Table I (Appendix C).

B. Detailed Algorithms

Algorithm 1 shows the overall operation of our technique.
It begins by obtaining a centrality computation schedule S
(line 1). Figure 3(b) shows an example schedule constructed
for the graph in Figure 3(a). In Figure 3(b), vertex f follows
h, suggesting the computation of f ’s centrality using a ∆-PFS
which reuses a search started at h. Vertices not following any
other vertex are called start vertices (e.g., e and h) and their
centrality values are computed using PFS. Our technique for
constructing such a schedule is presented in Section V.

After obtaining the schedule, Algorithm 1 picks a start
vertex v (line 2) and then starts PFS at v (line 3). The PFS
executed on line 3 corresponds to Dijkstra’s algorithm [10]
except that it (i) places each vertex v′ ∈ Vv at level d(v, v′)
while storing v′ and d(v, v′) in L and (ii) initially sets s to 0
and then increases s by d(v, v′) for every v′ ∈ Vv , thereby en-
suring that s = ∑v′∈Vv d(v, v

′) when PFS completes. This PFS
algorithm is presented in Appendix A. After obtaining L and
s as above, the centrality values of v and its successors in the
schedule are computed recursively (line 4) using Algorithm 2.

b

gf

h

e

a

(a) Graph

b

gf

h

e

a

(1) PFS

a -3

b -2

e -2

f -1

g -2

h 0

h 0

b -2

f -1

g -1

h 0

(2) !-PFS
g -2

f -1

h 0

e 0

f -1

h 0

start

start
(3) !-PFS

(4) !-PFS

(5) !-PFS

(6) PFS

(b) Schedule

Fig. 3. Overview

Algorithm 2 computes the centrality of p (line 1) using
L and s as explained in Section III-A. Next, it updates the
top-k list A so that A keeps, among the vertices whose
centrality values are computed, those having centrality values
no less than the k-th highest centrality value (Definition 2).
Algorithm 2 then, for every vertex v that follows p in the
schedule (line 3), updates L and s using ∆-PFS and returns
them (line 4) in addition to a map Λ (explained below). Finally,
it recursively uses Algorithm 2 to process v and its successors
(line 5). The tables in Figure 3(b) illustrate how L is updated
as the centrality of each vertex is computed in the order (1)
– (6). In the tables for steps (2) – (5), the changed entries in
L are shaded. These entries indicate the vertices that ∆-PFS
visits. The rest of each table shows the benefit of ∆-PFS over
PFS (i.e., the vertices that ∆-PFS skips, but PFS would visit
if it were executed).

Our method uses a separate map Λ (lines 4 and 6 in
Algorithm 2) to handle multiple successors. For instance,
vertex f in Figure 3(b) is followed by b and g. The ∆-PFS
computations for b and g must use the same version of L (see
table (2)) although each of them needs to update L. Therefore,
our technique updates an entry in L only after saving that entry
in Λ. When we add a new vertex v′ to L, we add the entry
(v′, null) to Λ. This logging approach allows our centrality
computation method to restore the previous version of L by
undoing the operations that have changed the levels of vertices
(line 6 in Algorithm 2).

Our technique preserves one instance of Λ for every level
of recursion (Algorithm 2). In all of our evaluations, each
instance of Λ stores information about a small fraction (e.g.,
< 5%) of vertices and the depth of recursion is relatively small
(e.g., 30, given a graph containing 1,000,000 vertices). Our
technique can also be extended to control memory utilization
by adding code, after line 2 in Algorithm 2, that changes the
current vertex p’s successors to start vertices if the memory
utilization is higher than a threshold. In this case, because
further recursion is disallowed, no more instances of Λ are
created. However, the vertices that became start vertices must
be processed using PFS which is usually much slower than
∆-PFS.

v

f

p

(4)

(7)

(8)

(1) current top-3!

(3)

(6)

v”

(9)

(10)

(11)

|Vp| = 12

A = {(x, 0.5), (y, 0.5), (z, 0.4)}
θ(A) = 0.4

v’

|Vv| = 15

∀v′ ∈ Vv : d(v, v′) ≤ 4∑

v′∈Vv

d(v, v′) = 34
|Vf | ≥ 12

|Vf | ≤ 15
∑

v′∈Vf

d(v, v′) ≤ 15 · 1 +
∑

v′∈Vf

d(f, v′)

∑

v′′∈Vv−Vf

d(v, v′′) ≤ (15 − 12) · 4

∑

v′∈Vf

d(v, v′) ≥ 34 − 12 − 15 = 7

c(f) ≤ (15 − 1)2

(100 − 1) · 7
< 0.4 = θ(A)

Fig. 4. Pruning Example (∣V ∣ = 100)

p ! v

f

(2) (5)

!!

Fig. 5. Schedule before Skipping f

p ! v

f
(12)

!!

removed

Fig. 6. Schedule after Skipping f

IV. PRUNING

This section presents our technique for proactively skipping
vertices that cannot be included in the final top-k answer. Sec-
tion IV-A provides an overview of this technique. Section IV-B
describes this technique in detail.

A. Core Ideas

Suppose that our solution presented in Section III has
inserted the centrality values of k vertices into top-k list A. Let
θ(A) denote the minimum of the current centrality values in
A. Then, any vertex f whose centrality c(f) is less than θ(A)

cannot be included in the final top-k answer. It is possible
to proactively skip such a vertex f if an upper bound on
c(f) is found before computing c(f) and if that bound is
less than θ(A). For this reason, we call θ(A) the pruning
threshold. A crucial requirement of this pruning approach
is the maintenance of these bounds with low computational
overhead. To effectively skip vertices, these bounds must be
close to the actual centrality values.

Consider the example in Figure 4 where θ(A) is 0.4 (see (1)
in Figure 4) and an upper bound on c(f) = (∣Vf ∣−1)

2

(∣V ∣−1)sf is derived
after obtaining an upper bound on ∣Vf ∣ and a lower bound on
sf = ∑v′∈Vf d(f, v

′). In this example, c(p) is computed (3)
according to the schedule in Figure 5 (2) finding that ∣Vp∣ = 12
(i.e., 12 vertices are reachable from p). At this point, ∣Vp∣ = 12
can be used as a lower bound on ∣Vf ∣ for any vertex f that has
a path to p (4) since Vp ⊆ Vf (i.e., every vertex reachable from
p is also reachable from f). Next, according to the schedule
(5), c(v) is computed (6) finding that ∣Vv ∣ = 15, d(v, v′) ≤ 4
for every v′ ∈ Vv and sv = ∑v′∈Vv d(v, v

′) = 34. In this case,
∣Vv ∣ = 15 can be used as an upper bound on ∣Vf ∣ for any vertex
f reachable from v since Vf ⊆ Vv (7).

Assume that d(v, f) = 1 and ∣V ∣ = 100. Then, a lower
bound on sf = ∑v′∈Vf d(f, v

′) can be found as follows: First,

∑v′∈Vf d(v, v
′) ≤ ∑v′∈Vf (d(v, f) + d(f, v′)) = ∑v′∈Vf 1 +

∑v′∈Vf d(f, v
′) = 1 ⋅ ∣Vf ∣ + sf ≤ 1 ⋅ 15 + sf (8). Since

∣Vv − Vf ∣ = ∣Vv ∣ − ∣Vf ∣ ≤ 15 − 12 and d(v, v′) ≤ 4 for all
v′ ∈ Vv (by (6)), ∑v′′∈Vv−Vf d(v, v

′′) ≤ (15 − 12) ⋅ 4 = 12 (9).
Then, by (8), sf ≥ ∑v′∈Vf d(v, v

′) − 1 ⋅ 15. Furthermore, since
∑v′∈Vv d(v, v

′) = ∑v′∈Vf d(v, v
′) + ∑v′′∈Vv−Vf d(v, v

′′), sf ≥

(∑v′∈Vv d(v, v
′) −∑v′′∈Vv−Vf d(v, v

′′)) − 1 ⋅ 15 ≥ 34 − 12 − 15

by (9) = 7 (10). In this case, c(f) ≤
(15−1)2
(100−1)⋅7 < 0.4 = θ(A)

(11) and f can be safely skipped (12).
The above properties can be formally expressed as follows:
Lemma 1: For any vertex f reachable from vertex v,

sf = ∑
v′∈Vf

d(f, v′) ≥ sv − (∣Vv ∣ − �f) ⋅ δv − d(v, f) ⋅ ⊺f

where sf = ∑v′∈Vf d(f, v
′), �f and ⊺f are lower and upper

bounds on ∣Vf ∣, and δv is an upper bound such that δv ≥

d(v, v′) for all v′ ∈ Vv .
Proof: For any vertex f reachable from v, Vf ⊆ Vv and

thus Vv = Vf ∪ (Vv − Vf) and Vf ∩ (Vv − Vf) = ∅. Therefore,

(i) sv = ∑
v′∈Vv

d(v, v′) = ∑
v′∈Vf

d(v, v′) + ∑
v′∈Vv−Vf

d(v, v′).

Here,
(ii) ∑

v′∈Vv−Vf
d(v, v′) ≤ (∣Vv ∣ − �f) ⋅ δv

because d(v, v′) ≤ δv for each v′ ∈ Vv − Vf and ∣Vv − Vf ∣ =

∣Vv ∣ − ∣Vf ∣ (due to Vv ⊇ Vf) ≤ ∣Vv ∣ − �f . Furthermore,

(iii) ∑
v′∈Vf

d(v, v′) ≤ d(v, f) ⋅ ⊺f + sf

since ∑v′∈Vf d(v, v
′) ≤ ∑v′∈Vf (d(v, f) + d(f, v′)) = d(v, f) ⋅

∣Vf ∣ +∑v′∈Vf d(f, v
′) ≤ d(v, f) ⋅ ⊺f + sf . Then,

sf ≥ ∑
v′∈Vf

d(v, v′) − d(v, f) ⋅ ⊺f by (iii)

= (sv − ∑
v′∈Vv−Vf

d(v, v′))

− d(v, f) ⋅ ⊺f by (i)
≥ sv − (∣Vv ∣ − �f) ⋅ δv − d(v, f) ⋅ ⊺f by (ii).

Theorem 1: For any vertex f ,

c(f) ≤ (⊺f − 1)2

(∣V ∣ − 1)(sv − (∣Vv ∣ − �f) ⋅ δv − d(v, f) ⋅ ⊺f)

where sv , δv , �f and ⊺f are as in Lemma 1.
Proof: c(f) =

(∣Vf ∣−1)2
(∣V ∣−1)sf ≤

(⊺f−1)2
(∣V ∣−1)sf ≤

(⊺f−1)2

(∣V ∣−1)(sv−(∣Vv ∣−�f)⋅δv−d(v,f)⋅⊺f)
by Lemma 1.

B. Algorithmic Details

After the centrality values of k vertices are inserted into
top-k list A, our pruning approach can be enabled by running
Algorithm 3 right after line 2 in Algorithm 2. Algorithm 3 uses
intermediate results L and s obtained from a search started
at vertex v (Section III), as well as pruning threshold θ(A),
schedule S , and δv . The value of δv is determined as follows
to ensure that δv ≥ d(v, v′) for each v′ ∈ Vv: If c(v) was

Algorithm 3: prune(v,L, s, θ(A),S, δv)

input : vertex v, vertex-level map L, sum of distances s,
threshold θ(A), schedule S, distance upper bound δv

ensure that �[f] ≥ ∣L∣ for every f with a path to v;1
ensure that ⊺[f] ≤ ∣L∣ for every f with a path from v;2
insert (v,0) into priority queue Q (priority: 0);3
while ∣Q∣ > 0 do4

(f, l)← pop(Q); // dequeue arg min(v′,l′)∈Q l
′5

s′ = s − (∣L∣ − �[f]) ⋅ δv − l ⋅ ⊺[f]; // Lemma 16

c′ ← (⊺[f]−1)2
(m−1)⋅s′ ; // upper bound on c(f): Theorem 17

if c′ − θ(A) < φ[f] then // c′ decreased or θ(A) increased8
φ[f]← θ(A) − c′; // save θ(A) − c′ for vertex f9
for each vertex f ′ with an edge from f do10

insert (f ′, l +w(f, f ′)) into Q;11

if c′ < θ(A) and f has no successors in S then12
remove f and its incoming edge from S;13

computed using PFS (Algorithm 5 in Appendix A), δv is set to
maxv′∈Vv d(v, v

′). If c(v) was computed using ∆-PFS which
reused a search started at p (Algorithm 6 in Appendix A),
δv is assigned the maximum of (i) w(v, p) + δp where δp ≥

d(p, v′) for v′ ∈ Vp is from the search started at p and (ii)
maxv′∈Vv−Vp d(v, v

′). In this case, (i) for each v′ ∈ Vp, δv ≥
w(v, p) + δp ≥ w(v, p) + d(v, p) ≥ d(v, v′) and (ii) for each
v′ ∈ Vv − Vp, δv ≥ d(v, v′).

Our method uses maps ⊺ ∶ V → N and � ∶ V → N to store,
for every f ∈ V , upper and lower bounds on ∣Vf ∣, respectively.
Given ∣L∣ = ∣Vv ∣, it visits each vertex f such that there is a
path from f to v and the value of �[f] is less than ∣L∣. For
each visited vertex f , �[f] is set to ∣L∣ (line 1 in Algorithm 3).
This approach incurs low overhead since it visits a vertex f
only when a tighter bound value for �[f] is available. In an
undirected graph, �[f] is updated only once for every vertex
f because ∣Vp∣ = ∣Vf ∣ for every vertex p with a path to and
from f . Next, for every vertex f such that there is a path from
v to f and the value of ⊺[f] is greater than ∣L∣, our method
sets ⊺[f] to ∣L∣ (line 2).

After the above steps, our method skips vertices that cannot
be included in the final top-k answer. Since the pruning condi-
tion for vertex f requires d(v, f) (Lemma 1 and Theorem 1),
our method performs a PFS which starts at vertex v (lines 3-
13). While visiting each vertex f in the order of increasing
geodesic distance from v, it computes a lower bound s′ on sf
(line 6) and an upper bound c′ on c(f) (line 7). It then checks
if c′ has decreased or θ(A) has increased, by comparing
c′ − θ(A) to φ[f] which stores the minimum among the past
values of c′ − θ(A) (line 8). If so, it sets φ[f] to c′ − θ(A)

(line 9) and inserts into Q vertices whose pruning condition
may hold due to the changes reflected in c′ and θ(A) (lines 10
and 11). If vertex f cannot be in the final top-k answer (i.e.,
c′ < θ(A)) and f is not needed for computing the centrality
of any other vertex (i.e., f has no successors in S), then f is
safely skipped (lines 12-13). Our method visits vertex f only
if the difference between the upper bound on c(f) and θ(A)

t̂b|g

t̂g|f
t̂f |h

t̂b|f

t̂a|b t̂a|g

t̂a

t̂b

t̂f

t̂h

t̂g

t̂e

t̂a|e

b

f

h

g

e

a

o

Fig. 7. Initial Schedule

h

e

start

b

f g

a

o

start

PFS

PFS

∆-PFS

∆-PFS

∆-PFS

∆-PFS

Fig. 8. Optimized Schedule

decreases. Section VI provides detailed evaluation results on
our method’s effectiveness in skipping centrality computations
with economical use of computation resources.

V. SCHEDULING

This section describes our techniques for determining the
order of centrality computations (Section V-A) and estimating
centrality computation time (Sections V-B and V-C). The
technique mentioned in Section V-B can also estimate the
centrality of vertices.

A. Overview

If there is an edge from a vertex v to a vertex p, the
centrality of v can be obtained from ∆-PFS which reuses a
search started at p (Section III-A). Each solid arrow in Figure 7
represents such a centrality computation scenario for the graph
in Figure 3(a). In Figure 7, the weight of an edge is the
estimated time to finish the corresponding computation. For
example, the weight t̂a b of the edge from b to a represents
the estimated time to compute the centrality of a using ∆-
PFS which reuses a search started at b. The centrality of each
vertex v can also be computed using PFS. In Figure 7, this
case is represented as a dotted edge from a virtual vertex o to
vertex v and the edge weight t̂v is set to the estimated time
to compute the centrality of v using PFS.

If all of the possible centrality computation scenarios are
represented as above, a directed minimum spanning tree rooted
at virtual vertex o (Figure 8) has the following properties:
(i) every vertex v in the tree has a path from o, meaning
that the centrality of v can be computed using a series of
PFS and ∆-PFS operations represented as the edges on the
path from o, and (ii) the sum of edge weights (i.e., the
estimated completion time) is no larger than those of other
spanning trees rooted at o. In other words, this spanning tree
represents a centrality computation schedule which minimizes
the estimated completion time. This tree can be obtained in
O(∣E∣ log ∣V ∣) time [18].

B. Approximate Top-k Answers

Our scheduling approach (Section V-A) requires an esti-
mated completion time for every possible scenario of comput-
ing a vertex’s centrality. Such estimated times must be accurate
and obtained with low computational and space overhead.

Our solution to this problem first estimates, for each vertex
v, ∣Vv ∣ (i.e., the number of vertices reachable from v) and
sv = ∑v′∈Vv d(v, v

′). It then uses these results to estimate
centrality computation time (Section V-C).

Our method for estimating ∣Vv ∣ and sv for every v extends
an approximate centrality computation algorithm by Kang et.
al [13]. This algorithm uses a fixed-size bitmap V̂v,i, called
an FM-sketch [19], to represent the set of vertices reachable
from v within i hops. First, it initializes, for each vertex v, a
sketch V̂v,0using the ID of v. At iteration i, for every vertex v,
V̂v,i is updated using the bitwise OR operation ⊎ with V̂v,i−1
and V̂p,i−1 for every vertex p with an edge from v. The ⊎
operation supports duplicate-insensitive counting (i.e., has the
property that if count(V̂1) ≈ ∣V1∣ and count(V̂2) ≈ ∣V2∣, then
count(V̂1⊎ V̂1) ≈ ∣V1 ∪V2∣ where count(V̂i) is the number of
distinct values estimated from sketch V̂i). The above process
is then repeated until V̂v,i = V̂v,i−1 for every vertex v (i.e., all
of the vertices reachable from v are reflected in V̂v,i). Then,
∣Vv ∣ and sv are estimated as count(V̂v) and ŝv = ∑ij=1 j ⋅ V̂v,j
where V̂v = V̂v,i.

The algorithm by Kang et al. cannot effectively support
weighted graphs. To overcome this limitation with low space
and time costs, our approach merges sketches that are sent to
the same vertex during different iterations. At iteration i, our
approach incorporates, for every edge (p, v), sketch V̂v,i into
V̂p,τ rather than V̂p,i+1, where τ is roundµ(roundw(p,v)(i +

w(p, v))), µ = min(p,q)∈E w(p, q) is the minimum edge
weight, and roundµ(t) is a multiple of µ closest to t. In this
way, V̂p,τ can approximate a set of vertices whose shortest
distance from p is no longer than τ .

Algorithm 4 describes our method that efficiently estimates
the centrality of every vertex. At iteration 0, this algorithm
initializes, for each vertex v, V̂v (an FM-sketch for estimating
∣Vv ∣) using the ID of v and sets ŝv (a variable for estimating
sv = ∑v′∈Vv d(v, v

′)) to 0 (lines 4 and 5). Next, it updates,
for every edge (p, v), V̂p,τ (the sketch for vertex p and
iteration τ) using V̂v , where τ = roundµ(w(p, v)) (lines 7
and 8). The variable η keeps track of the largest iteration
value (line 9). For every iteration i obtained as above (line
10) and for every sketch created for a vertex v and iteration
i (line 11), our algorithm updates V̂v and ŝv (lines 12 - 15).
It also updates, for every edge (p, v), V̂p,τ using V̂v , where
τ = roundµ(roundw(p,v)(i +w(p, v))) (lines 17 and 18).

Our approach requires only O(ψ∣V ∣ + ψ∣E∣) memory
space where ψ is the size of each FM-sketch. The reason
for this benefit is that our approach maintains one sketch
for each vertex and up to two sketches for each edge
since roundµ(roundw(p,v)(i + w(p, v))) < ((i + w(p, v)) +

w(p, v)) + µ ≤ i + 3 ⋅ w(p, v). The running time of this

approach is O(ψ δ
µ ∣E∣) where δ is the diameter of the graph

such that δ = maxv∈V (maxv′∈Vv d(v, v
′)). In many real-world

networks, the diameter tends to decrease as the network size
increases [20]. On road networks defined in a 2-dimensional

Algorithm 4: prep(G,k)
input : graph G(V,E), k
output : estimated values {V̂v ∶ v ∈ V } and {ŝv ∶ v ∈ V }
Find µ = min(p,q)∈E w(p, q); // minimum edge weight1
η ← 0; // initialize the last iteration to 02
for v ∈ V do3

V̂v ← sketch(v); // create sketch V̂v representing {v}4
ŝv ← 0; // initialize the variable for ∑v∈Vv d(v, v

′) to 05
for each vertex p with an outgoing edge to v do6

τ ← roundµ(w(p, v)) = arg mint=i⋅µ,i∈N ∣t −w(p, v)∣;7

V̂p,τ ← V̂p,τ ⊎ V̂v; // sketch for vertex p and iteration τ8
η = max(η, τ); // the last iteration must be ≥ τ9

for (i = µ; i ≤ η; i← i + µ) do // each iteration i ≤ η10

for each sketch V̂v,i created for vertex v and iteration i do11

V̂ ′ ← V̂v ⊎ V̂v,i; // info. about {v′ ∈ Vv ∶ d(v, v′) ≤ i}12

if V̂v ≠ V̂ ′ then // if there is new info. about Vv13

ŝv ← ŝv + i ⋅ (count(V̂ ′) − count(V̂v));14

V̂v ← V̂ ′; // save the latest information about Vv15
for each vertex p with an outgoing edge to v do16

τ ← roundµ(roundw(p,v)(i +w(p, v)));17

V̂p,τ ← V̂p,τ ⊎ V̂v; // for vertex p and iteration τ18
η = max(η, τ); // last iteration must be ≥ τ19

coordinate space, δ in general increases in proportion to
√

∣V ∣

(Section VI). If δ is extremely large compared to µ, the running
time of our approach can also be reduced at the expense of
accuracy by suppressing the variation of edge weights (e.g.,
changing each edge weight w(p, v) to w(p, v)ε for some ε
such that 0 ≤ ε < 1).

When V̂v and ŝv are obtained as above, the centrality of v
can be estimated as (count(V̂v)−1)

2

(∣V ∣−1)ŝv with negligible overhead.
Then, the k vertices with the highest estimated centrality
values can also be found in O(∣V ∣ log k) time using a priority
queue of size k. The utility of these vertices as an approximate
top-k answer is experimentally demonstrated in Section VI.

C. Search Cost Estimation

The running time of PFS which starts at v is O(∣Ev ∣ +

∣Vv ∣ log ∣Vv ∣) (Section III-A and Appendix C). Furthermore,
when Vv contains a relatively large number of vertices, ∣Ev ∣

can be approximated as ∣E∣
∣V ∣ ⋅ ∣Vv ∣. Therefore, given sketch

V̂v such that count(V̂v) ≈ ∣Vv ∣ (Section V-B), we define the
estimated PFS time t̂v as count(V̂v) log(count(V̂v)) while
setting the time unit to the average amount of time that PFS
would spend per visited vertex. If an unweighted graph is
given, t̂v is defined to be count(V̂v) since PFS can complete
in O(∣Ev ∣ + ∣Vv ∣) (Appendix C).

A ∆-PFS which starts at v and reuses a search started at
p completes in O(∣Ev p∣ + ∣Vv p∣ log ∣Vv p∣) time (Section III-A
and Appendix C). Making assumptions on ∣Ev p∣ as in the case
of t̂v , we set the estimated ∆-PFS time t̂v p to γ∣Vv p∣ log ∣Vv p∣

where γ denotes the ratio of the time that ∆-PFS spends
per visited vertex to the time that PFS spends per visited

name type degree meaning of edge from v1 to v2
RI weighted,

undirected
2.1 a road segment with length

w(v1, v2) between locations v1
and v2 in Rhode Island [21]

DBLP unweighted,
undirected

5.3 researchers v1 and v2 have coau-
thored papers [22]

Wiki unweighted,
directed

2.1 user v2 has edited a Wikipedia
Talk page of user v1 [23]

Web unweighted,
directed

5.8 web page v2 has a hyperlink to
v1 [23]

TABLE II
DATA SETS

vertex. In all of our evaluations (Section VI), γ was 1.79 or
slightly smaller since ∆-PFS performs, for each visited vertex
n, additional operations which save the previous location of
n in Λ and restore the previous location of n using Λ (line
6 in Algorithm 2). Despite this higher overhead per visited
vertex, ∆-PFS generally outperforms PFS since a vertex v in
a real-world graph is likely to have an adjacent vertex p such
that Vv p is much smaller than Vv (Section VI). Furthermore,
our scheduling approach selects PFS when it has a shorter
expected completion time than ∆-PFS (Section V-A).

To obtain t̂v p as above, our method estimates ∣Vv p∣ (i.e.,
the number of vertices that ∆-PFS visits) by adding (i) the
estimated number of vertices that ∆-PFS would newly visit
(e.g., vertex e in Figure 2(c)) and (ii) the estimated number
of vertices that ∆-PFS would promote (e.g., vertex g in
Figure 2(b)). The former (i.e., ∣Vv ∣ - ∣Vp∣) can be approximated
as count(V̂v) − count(V̂p). The latter is approximated as

0.82
σ̂ 0.96
v p ⋅ count(V̂p)

0.23

(w(v,p))0.83 ⋅ ŝ 0.16
p

where σ̂v p is the estimated sum of
promotion distances. This formula is obtained through linear
regression that identified the relationship among the above
variables based on actual ∆-PFS executions (Section VI).
We define σ̂v p as w(v, p) ⋅ count(V̂p) + ŝp −

count(V̂p)
count(V̂v)

ŝv
for the following reasons: (i) For every promoted vertex v′,
v′ ∈ Vp. (ii) For every promoted vertex v′, the promotion
distance is w(v, p) + d(p, v′) − d(v, v′). (iii) ∆-PFS skips
every vertex v′ ∈ V such that w(v, p) + d(p, v′) − d(v, v′) =

0. (iv) By (i), (ii) and (iii), the sum of the promotion
distances can be expressed as ∑v′∈Vp (w(v, p) + d(p, v′) −

d(v, v′)) = ∑v′∈Vp w(v, p)+∑v′∈Vp d(p, v
′)−∑v′∈Vp d(v, v

′) =
w(v, p)∣Vp∣ + sp − ∑v′∈Vp d(v, v

′). (v) If Vp contains a rel-
atively large number of vertices from Vv , ∑v′∈Vp d(v, v

′) ≈
∣Vp∣
∣Vv ∣ ∑v′∈Vv d(v, v

′) =
∣Vp∣
∣Vv ∣sv .

VI. EVALUATION

This section presents experimental results obtained by run-
ning three methods for finding the k most central vertices
in a graph. One method, called PFS, computes the centrality
of each vertex using an implementation of Dijkstra’s algo-
rithm [10] with a Fibonacci heap [11]. To the best of our
knowledge, PFS is the fastest method in the literature for find-
ing the k most central vertices (Section VII). Another method,
referred to as ∆-PFS, performs centrality computations as

described in Sections III and V. This method can also be
used with the pruning technique described in Section IV. We
call this combination ∆-PFS (Pruning). These methods were
evaluated using the data sets summarized in Table II. From
each data set, we derived a series of five graphs. Each graph
in a series contained twice as many vertices as the previous
graph. For example, the smallest and largest graphs from the
Wiki data set consisted of 62,500 vertices and 1,000,000
vertices, respectively (Figure 9(c)). The results in this section
are averaged over 10 runs executed on Quad-Core Xeon E5430
2.67 GHz CPUs.

A. Effectiveness of ∆-PFS and Pruning

We measured the performance of PFS, ∆-PFS, and ∆-PFS
(Pruning). On the graphs constructed from the RI data set, the
completion time of PFS increased by a factor of 339 (from 12
minutes to 67.5 hours) as the graph size varied from 25,000
to 400,000 vertices. On the other hand, the completion time
of PFS increased at a rate of 2,470 (from 1.7 minutes to 69.2
hours) in graphs from the DBLP data set. The reason is that
while all of the vertices in the RI data set are reachable from
each other, the fraction of vertices reachable from a vertex (i.e.,
those visited by PFS) increased substantially (from 10.8% to
60.5%) in the case of the DBLP data set.

As mentioned above, the varying percentage of reachable
vertices in a graph may significantly affect top-k centrality
computation time. In order to effectively show general trends
in performance despite this complexity, Figure 10 shows the
overall completion time as a function of the average number
of reachable vertices in a graph. In each observed case, ∆-
PFS (Pruning) demonstrated significant performance benefits.
In particular, it outperformed PFS by a factor of 142 (28.6
minutes vs. 67.5 hours) on a graph containing 400,000 vertices
from the RI data set. In this case, while the graph size
was increased by a factor of 16, the running time of ∆-
PFS (Pruning) only increased by a sub-quadratic factor of 46
(=161.38). On the other hand, PFS showed a super-quadratic
increase (339 = 162.1) in its completion time.

Figure 11 demonstrates how the benefit of ∆-PFS varies sig-
nificantly depending on the data set. ∆-PFS without pruning
outperforms PFS by a factor of 3.3 on a graph with 400,000
vertices from the RI data set. On the other hand, ∆-PFS
reduces execution time by a factor of more than 73.7 in a
graph with 400,000 vertices from the Web data set. In this
graph, each vertex v tends to have a neighboring vertex p
such that many shortest paths from v to other vertices pass
through p. In this graph, a shortest path from a vertex v to
a vertex v’ consists of an edge from v to a vertex p and
a shortest path from p to v′ with high probability. For this
reason, ∆-PFS can skip a relatively large number of vertices
(up to 99% of vertices) in this graph (see “savings by ∆-PFS”
in Figure 9(b)).

In highly connected graphs (e.g., graphs from the RI data
set), our pruning technique can obtain a relatively tight upper
bound on the centrality of every vertex and check the pruning
condition along more paths. Therefore, it can proactively

25 50 100 200 400
0

20

40

60

80

100

graph size (unit: 1000 vertices)

p
e

rc
e

n
t

mean % of reachable vertices
savings by ∆−PFS
savings by Pruning

(a) RI

25 50 100 200 400
0

20

40

60

80

100

graph size (unit: 1000 vertices)

p
e

rc
e

n
t

mean % of reachable vertices
savings by ∆−PFS
savings by Pruning

(b) Web

63 125 250 500 1000
0

20

40

60

80

100

graph size (unit: 1000 vertices)

p
e

rc
e

n
t

mean % of reachable vertices
savings by ∆−PFS
savings by Pruning

(c) Wiki

25 50 100 200 400
0

20

40

60

80

100

graph size (unit: 1000 vertices)

p
e

rc
e

n
t

mean % of reachable vertices
savings by ∆−PFS
savings by Pruning

(d) DBLP
Fig. 9. Mean % of Reachable Vertices and Savings by ∆-PFS (k = 10)

25 50 100 200 400
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

p
le

tio
n

 t
im

e
 (

h
o

u
r)

PFS
∆−PFS
∆−PFS (Pruning)
approximate

(a) RI

0 0.1 1.5 18.5 87.5
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

p
le

tio
n

 t
im

e
 (

h
o

u
r)

PFS
∆−PFS
∆−PFS (Pruning)
approximate

(b) Web

0.1 0.2 0.9 1.7 3.4
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

p
le

tio
n

 t
im

e
 (

h
o

u
r)

PFS
∆−PFS
∆−PFS (Pruning)
approximate

(c) Wiki

2.7 5.5 28.1 90.5 241.9
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

p
le

tio
n

 t
im

e
 (

h
o

u
r)

PFS
∆−PFS
∆−PFS (Pruning)
approximate

(d) DBLP
Fig. 10. Benefits of ∆-PFS, Pruning, and Scheduling (k = 10)

25 50 100 200 400
1

4

16

64

256

graph size (unit: 1000 vertices)

sp
e

e
d

u
p

 (
co

m
p

a
re

d
 t

o
 P

F
S

)

∆−PFS
∆−PFS (Pruning)

(a) RI

25 50 100 200 400
1

4

16

64

256

graph size (unit: 1000 vertices)

sp
e

e
d

u
p

 (
co

m
p

a
re

d
 t

o
 P

F
S

)

∆−PFS
∆−PFS (Pruning)

(b) Web

63 125 250 500 1000
1

4

16

64

256

graph size (unit: 1000 vertices)

sp
e

e
d

u
p

 (
co

m
p

a
re

d
 t

o
 P

F
S

)

∆−PFS
∆−PFS (Pruning)

(c) Wiki

25 50 100 200 400
1

4

16

64

256

graph size (unit: 1000 vertices)

sp
e

e
d

u
p

 (
co

m
p

a
re

d
 t

o
 P

F
S

)

∆−PFS
∆−PFS (Pruning)

(d) DBLP
Fig. 11. Speedup

25 50 100 200 400
4

16

64

256

1024

graph size (unit: 1000 vertices)

m
e
m

o
ry

 s
iz

e
 (

M
B

)

graph data
scheduling
stack

(a) RI

25 50 100 200 400
4

16

64

256

1024

graph size (unit: 1000 vertices)

m
e

m
o

ry
 s

iz
e

 (
M

B
)

graph data
scheduling
stack

(b) Web

63 125 250 500 1000
4

16

64

256

1024

graph size (unit: 1000 vertices)

m
e

m
o

ry
 s

iz
e

 (
M

B
)

graph data
scheduling
stack

(c) Wiki

25 50 100 200 400
4

16

64

256

1024

graph size (unit: 1000 vertices)

m
e

m
o

ry
 s

iz
e

 (
M

B
)

graph data
scheduling
stack

(d) DBLP

Fig. 12. Memory Utilization during Different Stages in Top-k Query Processing

skip more vertices, particularly overcoming relatively few
sharing opportunities (Figure 9(a)). In every observed case,
as graph size increases, more paths tend to exist between
vertices [20]. For this reason, our pruning technique usually
skips more vertices in larger graphs. In Figure 9, curves labeled
“savings by Pruning” show the actual percentage of centrality
calculations skipped.

B. Cost Analysis

Our technique mentioned in Section V determines the order
of centrality computations and produces an approximate top-k

answer. Our experimental results on the time overhead of this
technique are presented in Section VI-D. Figure 12 shows the
memory utilization of this technique. In all observed cases,
memory utilization increased by a factor of 3 or 4 due to the
use of sketches and the construction of the centrality com-
putation schedule (Section V). When the schedule is initially
constructed (Figure 7), it has the same size as the original
graph. Its size then decreases as it is optimized (Figure 8).
Given the aforementioned schedule, our technique performs
a series of ∆-PFS operations (Section III). As the curves
in Figure 12 labeled “stack” show, the memory overhead of

24.1 66.9 129.7 201.1 338.5

0.85

0.9

0.95

mean # of reachable vertices (unit: 1000 vertices)

sa
vi

ng
s

by
 p

ru
ni

ng
 (

%
)

k = 1
k = 10
k = 100
k = 1000

(a) savings by pruning

24.1 66.9 129.7 201.1 338.5
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

pl
et

io
n

tim
e

(h
ou

r)

k = 1
k = 10
k = 100
k = 1000

(b) completion time

Fig. 13. Impact of k (RI)

2.8 4.7 26.9 85 197.2

0.35

0.4

0.45

0.5

0.55

0.6

mean # of reachable vertices (unit: 1000 vertices)

sa
vi

ng
s

by
 p

ru
ni

ng
 (

%
)

k = 1
k = 10
k = 100
k = 1000

(a) savings by pruning

2.8 4.7 26.9 85 197.2
1/256

1/64

1/16

1/4

1

4

16

64

mean # of reachable vertices (unit: 1000 vertices)

co
m

pl
et

io
n

tim
e

(h
ou

r)

k = 1
k = 10
k = 100
k = 1000

(b) completion time
Fig. 14. Impact of k (DBLP)

Wiki size (unit: 1000 vertices) 62.5 125 250 500 1000
% correct initial answer 70 90 90 100 70

DBLP size (unit: 1000 vertices) 25 50 100 200 400
% correct initial answer 30 70 90 80 80

Web size (unit: 1000 vertices) 25 50 100 200 400
% correct initial answer 0 0 0 40 70

RI size (unit: 1000 vertices) 25 50 100 200 400
% correct initial answer 50 100 0 0 0

TABLE III
ACCURACY OF APPROXIMATE RESULTS (k = 10)

keeping the instances of Λ (Section III-B) is low. Furthermore,
our technique can keep the memory utilization under a user-
specified bound (Section III-B).

As Figure 10(c) shows, our pruning method incurs negli-
gible computational overhead. In this case, the overall com-
pletion time with pruning did not increase noticeably despite
adversarial conditions for pruning (see “savings by Pruning”
in Figure 9(c)).

C. Impact of Parameters

While we increased the size of the sketches from 4 bytes
to 1,024 bytes, we did not observe noticeable improvement in
the performance of ∆-PFS (Pruning). However, sketches larger
than 64 bytes incurred perceivable space and time overhead.
Therefore, we use 64-byte sketches.

We examined the impact of k on the overall completion
time. The completion time was minimized when k = 1. As k
increases, the pruning threshold decreases. Thus, our pruning
technique skipped fewer vertices (Figures 13 and 14).

D. Benefits of Approximate Results

Our technique mentioned in Section V-B has the advantage
of producing approximate top-k answers. In contrast to pre-
vious approximation techniques that support only undirected
graphs [12], [14], this technique is applicable to directed
graphs. It also overcomes the limitation of an algorithm
by Kang et al. [13] that cannot support weighted graphs
(both algorithms process unweighted graphs in an identical
way). The delivery times of these approximate results are
shown in Figure 10 (see the curves labeled “approximate”).
In each unweighted graph containing up to 1,000,000 vertices,
approximate results were obtained in less than 1.8 minutes. In
graphs from the RI data set, the delivery time was longer
since it is proportional to the network diameter, which is large

in real-world road networks. In most cases, 73% of entries
in the initial top-k answer were correct (i.e., remained in the
final answer). Given graphs from the Web and RI data sets,
approximate answers were less accurate since the variation in
the centrality values was small (Table III).

VII. RELATED WORK

In addition to closeness centrality (Definition 1), researchers
have developed several types of centrality metrics to capture
the influence of real-world entities from a different perspective.
For example, the degree centrality of a vertex refers to the
number of edges incident on that vertex [24], [25]. Another
popular centrality metric is PageRank which assigns relatively
high scores to vertices that have connections to other vertices
with a high score [24]. The degree of all vertices can be
computed in O(∣V ∣+ ∣E∣) time by counting the edges incident
on every vertex. In this case, k vertices with the highest degree
centrality can be found in O(∣V ∣ ⋅ log k) time by inserting each
vertex into a priority queue and dequeuing a vertex the lowest
degree whenever the queue contains more than k vertices.
It is also known that an appropriate PageRank value can be
obtained for all vertices usually in O(∣V ∣ + ∣E∣) time [26].

The betweenness centrality of a vertex [9], [24], [27] is
defined as:

∑
s≠v≠t∈V

σst(v)

σst
(3)

where σst is the number of shortest paths from vertex s to
vertex t and σst(v) is the number of shortest paths from
s to t which pass through v. While the closeness centrality
of a vertex v can be computed using only one PFS from
v, the betweenness centrality of v requires examining all
shortest paths for all pairs of vertices. Variants of betweenness
centrality, including stress centrality [9], [27] and bridging
centrality [28] share this inherent complexity. Eccentricity cen-
trality [16] measures the maximum distance from a vertex to
any other vertex. In our preliminary experiments, we observed
that many vertices had identical eccentricity centrality values,
rendering the metric inappropriate in the context of finding k
most central vertices.

Given a graph, k vertices with the highest closeness cen-
trality values can be found by solving the all pairs shortest
paths (APSP) problem and then computing the centrality of
each vertex. The Floyd-Warshall algorithm [8] solves APSP
using dynamic programming in Θ(∣V ∣

3
) time and Θ(∣V ∣

2
)

space. In dense graphs, the time complexity of APSP has
been reduced to O(∣V ∣

3
log3 log ∣V ∣ / log2

∣V ∣) [7]. Johnson’s
algorithm for APSP is faster than the Floyd-Warshall algorithm
in sparse graphs [29]. This algorithm runs Djikstra for each
vertex and uses the results to construct a distance matrix. For
this reason, Johnson’s algorithm for APSP runs in O(∣V ∣ ∣E∣+

∣V ∣
2

log(∣V ∣)) time and O(∣V ∣
2
) space. Brandes’ algorithm [9]

uses Dijkstra’s repeatedly to compute the betweenness cen-
trality of every vertex in O(∣V ∣ ∣E∣ + ∣V ∣

2
log(∣V ∣)) time and

O(∣V ∣+∣E∣) space. This algorithm can also be used to compute
the closeness centrality of each vertex. There are methods that
construct an index for quickly finding the shortest distance
between any pair of vertices [30]. However, computing the
centrality of vertex v by repeatedly finding the shortest dis-
tance from v to every other vertex is known to be slower than
doing the same using Dijkstra’s algorithm [30]. In contrast to
these algorithms, our technique derives unique performance
benefits by sharing data across centrality computations and
bypassing vertices that cannot be in the final answer.

There are also techniques for providing approximate an-
swers to top-k centrality queries. Eppstein and Wang [12]
developed an algorithm that approximates the closeness cen-
trality of every vertex in a graph. This algorithm first runs
Dijkstra on a small number of randomly selected pivot vertices
and then uses the results to estimate the closeness centrality
of every vertex. This algorithm, however, supports only undi-
rected graphs since it assumes that the shortest distance from
each vertex v to any other vertex v′ is the same as the shortest
distance from v′ to v. Okamoto et al. [14] extended Eppstein’s
algorithm to provide approximate top-k results. Their method
strives to strike a balance between result accuracy and query
completion time. An approximation technique by Kang et
al. [13] is summarized in Section V-B. In contrast to these
approximation algorithms, our solution supports both directed
and weighted graphs and refines approximate answers until it
finds exact answers at a much higher speed than other methods.

The standard approach for processing top-k queries in
database systems is to maintain the current top-k set, from
which a threshold (the least valued object in the set) and
an upper bound on unexamined objects are derived [31]. If
the upper bound on the unexamined objects is lower than the
threshold, the current set is returned as the final answer. Our
approach is similar in that it obtains a threshold from a list of
examined vertices. However, its pruning condition exploits the
structural properties of graphs (Theorem 1), which has high
utility for large graphs (Section VI-A).

VIII. CONCLUSION

In this paper, we proposed a new solution for efficiently
finding k vertices with the highest closeness centrality values
in directed graphs with nonnegative edge weights. By effi-
ciently updating an upper bound on the centrality of every
vertex, our solution proactively skips vertices that cannot be
among the k most central vertices. Our solution also shares in-
termediate results between centrality computations scheduled
in a manner that minimizes the estimated completion time.

Evaluations on real-world data sets show our solution to be,
in addition to having a small memory footprint, a magnitude
of one or two orders faster than other traditional approaches.

We plan to extend our technique to a wider range of graph
problems including the computation of network diameter and
other centrality metrics such as betweenness centrality and
stress centrality. Another future research plan is to develop
a parallel processing framework that will facilitate centrality
computations on large graphs.

REFERENCES

[1] S. Porta, “Street Centrality and Densities of Retail and Services in
Bologna, Italy,” Environment and Planning B: Planning and design,
vol. 36, no. 3, pp. 450–465, 2009.

[2] C. Kiss and M. Bichler, “Identification of Influencers–Measuring Influ-
ence in Customer Networks,” Decision Support Systems, vol. 46, no. 1,
pp. 233–253, 2008.

[3] D. Bell, J. Atkinson, and J. Carlson, “Centrality Measures for Disease
Transmission Networks,” Social Networks, vol. 21, no. 1, pp. 1–21, 1999.

[4] E. Elmacioglu and D. Lee, “On Six Degrees of Separation in DBLP-DB
and More,” SIGMOD Record, vol. 34, no. 2, pp. 33–40, 2005.

[5] S. A. Macskassy, “Using Graph-Based Metrics with Empirical Risk
Minimization to Speed up Active Learning on Networked Data,” in
SIGKDD, 2009, pp. 597–606.

[6] Z. Zhuang, E. Elmacioglu, D. Lee, and C. L. Giles, “Measuring
Conference Quality by Mining Program Committee Characteristics,” in
JCDL, 2007, pp. 225–234.

[7] T. Chan, “More Algorithms for All-Pairs Shortest Paths in Weighted
Graphs,” SIAM Journal on Computing, vol. 39, no. 5, pp. 2075–2089,
2010.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2001.

[9] U. Brandes, “A Faster Algorithm for Betweenness Centrality,” Journal
of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[10] E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[11] M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses
in Improved Network Optimization Algorithms,” in FOCS, 1984, pp.
338–346.

[12] D. Eppstein and J. Wang, “Fast Approximation of Centrality,” in SODA,
2001, pp. 228–229.

[13] U. Kang, S. Papadimitriou, J. Sun, and H. Tong, “Centralities in
large networks: Algorithms and observations,” in SIAM International
Conference on Data Mining, 2011, pp. 119–130.

[14] K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of Closeness Centrality
for Large-Scale Social Networks,” in FAW, 2008, pp. 186–195.

[15] N. Lin, Foundations of Social Research. Mcgraw-Hill, 1976.
[16] W. Stanley and K. Faust, “Social Network Analysis: Methods and

Applications,” Cambridge Univ., 1994.
[17] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng, “New Dynamic Algorithms for

Shortest Path Tree Computation,” IEEE/ACM TON, vol. 8, no. 6, pp.
734–746, 2000.

[18] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan, “Efficient
Algorithms for Finding Minimum Spanning Trees in Undirected and
Directed Graphs,” Combinatorica, vol. 6, no. 2, pp. 109–122, 1986.

[19] P. Flajolet and G. N. Martin, “Probabilistic Counting Algorithms for
Data Base Applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–
209, 1985.

[20] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graphs over Time:
Densification Laws, Shrinking diameters and Possible Explanations,” in
SIGKDD, 2005, pp. 177–187.

[21] OpenStreetMap, http://www.openstreetmap.org/.
[22] DBLP, http://dblp.uni-trier.de/xml/.
[23] SNAP, http://snap.stanford.edu/data/.
[24] S. Borgatti, “Centrality and Network Flow,” Social networks, vol. 27,

no. 1, pp. 55–71, 2005.
[25] L. Freeman, “Centrality in Social Networks Conceptual Clarification,”

Social networks, vol. 1, no. 3, pp. 215–239, 1979.
[26] T. Haveliwala, “Efficient computation of pagerank,” 1999.
[27] L. Freeman, “A Set of Measures of Centrality Based on Betweenness,”

Sociometry, pp. 35–41, 1977.

Algorithm 5: PFS(v)
input : source vertex v
output : vertex-level map L, sum s of geodesic distances from

p, maximum geodesic distance δv
L[v]← 0; // place vertex v at level 01
s← 0; // set the sum of distances to 02
δv ← 0; // set the maximum distance to 03
insert (v,0) into priority queue Q (priority: 0);4
while ∣Q∣ > 0 do5

(n, l)← remove min(Q); // dequeue arg min(n′,l′)∈Q l
′6

s← s + l; // add d(v, n) to s7
δv ←max(δv, l);// update δv if d(v, n) > δv8
for each vertex v′ with an edge from vertex n do9

l′ ← l +w(n, v′); // level where v′ can be placed10
if (L[v′] = null) then // visiting v′ first time11

L[v′]← l′; // place vertex v′ at level l′12
insert (v′, l′) into priority queue Q (priority: l′);13

else if (l′ < L[v′]) then // shorter path to v′14
L[v′]← l′; // place vertex v′ at level l′15
decrease the priority of v′ to l′ in Q;16

return (L, s, δv);17

[28] W. Hwang, T. Kim, M. Ramanathan, and A. Zhang, “Bridging Central-
ity: Graph Mining from Element Level to Group Level,” in SIGKDD,
2008, pp. 336–344.

[29] D. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Net-
works,” JACM, vol. 24, no. 1, pp. 1–13, 1977.

[30] R. Jin, N. Ruan, Y. Xiang, and V. Lee, “A Highway-Centric Labeling
Approach for Answering Distance Queries on Large Sparse Graphs,” in
SIGMOD, 2012, pp. 445–456.

[31] I. Ilyas, G. Beskales, and M. Soliman, “A survey of top-k query
processing techniques in relational database systems,” CSUR, vol. 40,
no. 4, p. 11, 2008.

APPENDIX A
PFS AND ∆-PFS ALGORITHMS

Algorithm 5 shows the PFS method mentioned in Sec-
tion III-B. It extends Dijkstra’s algorithm [10] (lines 4-6 and
9-16) with the addition of updating variables s for centrality
computation (lines 2 and 7) and δv for pruning (lines 3 and
8).

Algorithm 6 describes the ∆-PFS method explained in
Section III-A. It is similar to Algorithm 5 except that it places
vertex v at a level higher than p by w(v, p) (lines 1-2), skips
vertices that are already placed at the target level (lines 15-
19), updates variable s in a more complex way in response to
new vertex visits (lines 10-11) and vertex promotions (lines
13-14), and logs operations that may need to be undone (lines
3 and 23).

APPENDIX B
CORRECTNESS OF ∆-PFS

Lemma 2: Given vertices v and p, Algorithm 6 places every
vertex v′ ∈ Vv p at level αv + d(v, v′) where

Vv p = {v} ∪ {v′ ∈ Vv ∶ d(v, v
′
) < w(v, p) + d(p, v′)} (4)

Proof: Since Algorithm 6 places the source vertex v at
level αv = αv +d(v, v), we prove the above for each vertex v′

such that (i) d(v, v′) < w(v, p)+d(p, v′) (i.e., v′ ∈ Vv p−{v}).

Algorithm 6: ∆PFS(v, p,L, s, δp)

input : source vertex v, previous source vertex p, map L, sum
of distances s, distance upper bound δp

output : vertex-level map L, sum of distances s, previous
levels of vertices Λ, distance upper bound δv

αp ← L[p]; // previous level of p (previous top level)1
αv ← αp −w(v, p); // new level for v (current top level)2
insert (v,L[v]) into Λ (i.e., log the previous level of v);3
insert (v,αv) into priority queue Q (priority: αv);4
s← s +w(v, p)∣L∣; // add w(v, p) to each distance5
L[v]← αv; // place v at current top level αv6
δv ← δp +w(v, p); // ensure that δv ≥ d(v, v′) for v′ ∈ Vp7
while ∣Q∣ > 0 do8

(n, l)← remove min(Q); // dequeue arg min(n′,l′)∈Q l
′9

if Λ[n] = null then // visiting v′ for the first time10
s← s + (l − αv); // add d(v, v′) to s11
δv ←max(δv, l − αv); // update δv if d(v, n) > δv12

else // if v′ is promoted from Λ[n] to l13
s← s − (Λ[n] − l); // subtract promotion distance14

for each vertex v′ with an edge from vertex n do15
l′ ← l +w(n, v′); // level where v′ can be placed16
l′′ ← L[v′]; // previous level of v′17
if (l′′ = null // if visiting v′ for the first time18

or l′ < l′′) then // if v′ can be promoted19
L[v′]← l′; // place vertex v′ at level l′20
set the priority of v′ to l′ in priority queue Q;21
if v′ ∉ Λ then22

add (v′, l′′) to Λ; // log the previous level of v′23

return (L, s,Λ, δv);24

Consider a shortest path v → v1 → v2 → ⋯ → vk from
v to v′ = vk (i.e., ∀i ∈ [1, k], d(v, v′) = d(v, vi) + d(vi, v

′)).
If d(v, vi) = w(v, p) + d(p, vi), then d(v, v′) = d(v, vi) +
d(vi, v

′) = (w(v, p) + d(p, vi)) + d(vi, v
′) = w(v, p) +

(d(p, vi) + d(vi, v
′)) ≥ w(v, p) + d(p, v′), which contradicts

(i). Therefore, (ii) any shortest path v → v1 → v2 → ⋯ → vk
from v to v′ = vk has the property that ∀i ∈ [1, k], d(v, vi) <
w(v, p) + d(p, vi).

Using (i) and (ii), let us prove by induction that Algorithm 6
places v′ at level αv + d(v, v′). First, when v is dequeued
(line 9) and then v1 is examined (lines 15-23), v1’s target
level value (l′ = αv +w(v, v1) = αv + d(v, v1); line 16) must
be smaller than its previous level value (l′′ = αp + d(p, v1);
line 17) since αv + d(v, v1) = (αp − w(v, p)) + d(v, v1) =

αp + (d(v, v1) − w(v, p)) < αp + d(p, v1). Thus, v1 must be
promoted to level αv + d(v, v1) (lines 19 and 20) and then
enqueued (line 21). Second, when vi(i ∈ [1, k−1]) is dequeued
and then vi+1 is examined, vi+1 must be promoted, as in the
case of v1, from its previous level (αp + d(p, vi+1)) to a new
level (αv+d(v, vi+1)) and then enqueued, unless the same was
done earlier when a vertex on another shortest path from v to
v′ was processed.

Lemma 3: Algorithm 6 skips (i.e., does not follow the
outgoing edges of) every vertex v′ ≠ v such that d(v, v′) =

w(v, p) + d(p, v′).
Proof: The level l′ of vertex v′ on line 16 is determined

along a path from v to v′ after v is placed at level αv .

Therefore, l′ ≥ αv +d(v, v′). On line 17, the initial value of l′′

(i.e., the previous level of v′) is αp+d(p, v′) = (αv+w(v, p))+

d(p, v′) = αv + (w(v, p)) + d(p, v′)) = αv + d(v, v
′) ≤ l′. In

this case, Algorithm 6 skips v′ since the conditions on lines
18 and 19 do not hold.

Theorem 2: (Correctness of ∆-PFS) Given vertices v and
p, a map L ∶ Vp → R such that L[v′] = L[p] + d(p, v) for
each v′ ∈ Vp, and s = ∑v′∈Vp d(p, v

′), Algorithm 6 updates
L and s so that L[v′] = L[v] + d(v, v′) for all v′ ∈ Vv and
s = ∑v′∈Vv d(v, v

′).
Proof: By Lemma 2, L[v′] = αv + d(v, v

′) = L[v] +
d(v, v′) for all v′ ∈ Vv p. If v′ ∈ Vv − Vv p, since Algo-
rithm 6 skips v′ (Lemma 3), L[v′] keeps the previous level
of v′ (i.e., αp + d(p, v′)). Thus, L[v′] = αp + d(p, v

′) =

(αv + w(v, p)) + d(p, v′) = αv + (w(v, p) + d(p, v′)). By the
definition of Vv p, d(v, v′) = w(v, p) + d(p, v′). Therefore,
L[v′] = L[v] + d(v, v′). The reason for preserving the above
property of s is explained earlier in Sections III-A and III-B.

APPENDIX C
TIME COMPLEXITY OF ∆-PFS

Algorithms 5 and 6 have the following computational com-
plexity:

Theorem 3: (Computational Overhead) Algorithm 5 takes
O(∣Ev ∣ + ∣Vv ∣ log ∣Vv ∣) time and Algorithm 6 takes O(∣Ev p∣ +

∣Vv p∣ log ∣Vv p∣) time, where Vv , Ev , Vv p and Ev p are defined
as in Table I. For unweighted graphs, the running times of
Algorithms 5 and 6 can be reduced to O(∣Ev ∣ + ∣Vv ∣) and
O(∣Ev p∣ + ∣Vv p∣), respectively.

Proof: Algorithm 5 performs lines 1-4 once, lines 5-
8 ∣Vv ∣ times, and lines 9-16 at most ∣Ev ∣ times. If Q is
implemented as a Fibonacci heap [11], lines 4, 13, 16 complete
in constant time whereas line 6 takes O(log ∣Vv ∣) time. Given
an unweighted graph, a FIFO queue implementation of Q
suffices and can perform line 6 in constant time. The other
lines in Algorithms 5 take constant time.

Algorithm 6 runs lines 1-7 once, lines 8-14 up to ∣Vv p∣ times
(Lemma 2), and lines 15-23 at most ∣Ev p∣ times. Lines 4 and
21 complete in constant time whereas line 9 takes O(log ∣Vv p∣)

time. The rest of the proof is the same as that for Algorithm 5.

