Similarity-Based Compression of
GPS Trajectory Data

Jeremy Birnbaum, Hsiang-Cheng Meng, Jeong-Hyon Hwang

Department of Computer Science
University at Albany, State University of New York
Albany, NY 12222
Email: {jbirn, hmeng, jhh}@cs.albany.edu

Abstract—The recent increase in the use of GPS-enabled
devices has introduced a new demand for efficiently storing
trajectory data. In this paper, we present a new technique that
has a higher compression ratio for trajectory data than existing
solutions. This technique splits trajectories into sub-trajectories
according to the similarities among them. For each collection
of similar sub-trajectories, our technique stores only one sub-
trajectory’s spatial data. Each sub-trajectory is then expressed
as a mapping between itself and a previous sub-trajectory. In
general, these mappings can be highly compressed due to a
strong correlation between the time values of trajectories. This
paper presents evaluation results that show the superiority of our
technique over previous solutions.

I. INTRODUCTION

In recent years, the number of GPS-enabled devices has
increased drastically. This surge has generated a plethora of
spatio-temporal data that many companies and organizations
rely on for tracking their staff, customers, shipments, and
vehicles [1], [2], [3]. This data is typically produced at a
high rate. For example, 4,000 moving objects can generate
1 GB worth of data per day with a collection interval of
10 seconds [4]. Fortunately, such data often contains large
amounts of redundant information, yielding a great opportunity
for compression.

The aforementioned data consists of GPS trajectories. Each
trajectory is a list of 3-tuple entries including spatial informa-
tion, as latitude and longitude, as well as temporal information,
as a timestamp of the record. When compressing trajectories,
there are two major classes of techniques to choose from:
single trajectory compression (STC) and multiple trajectory
compression (MTC). STC algorithms compress each trajectory
individually, and therefore cannot benefit from the commonal-
ities among trajectories [4], [5], [6], [7]. TrajStore [8], a recent
MTC system, overcomes this limitation by sharing spatial data
across similar trajectories and storing only the temporal data
of each trajectory.

This paper presents a new approach for compressing a
set of trajectories. This approach generally achieves a higher
compression ratio than previous STC and MTC algorithms
by effectively utilizing both the redundancy among different

This work has been supported by the National Science Foundation under
CAREER award IIS-1149372 as well as the Research and Innovative Tech-
nology Administration of the U.S. Department of Transportation through the
Region 2 - University Transportation Research Centers Program.

Catherine Lawson
Department of Geography and Planning
University at Albany, State University of New York
Albany, NY 12222
Email: lawsonc @albany.edu

trajectories (inter-trajectory redundancy) and the redundancy
within a trajectory (intra-trajectory redundancy). Our approach
splits trajectories into sub-trajectories according to their sim-
ilarity to others in the set. Then, it re-expresses each sub-
trajectory 7' as a mapping T’ between the time values of T
and those of a similar trajectory R. For any time value on
T, the corresponding position can be obtained from linear
interpolations on both 77 and R. This approach removes entries
in T" as long as these removals do not cause an unacceptable
degree of error. This scheme is especially effective when T'
and R reflect similar driving patterns (i.e., the time values of
T and R are highly correlated and thus many of them can be
removed safely).

In this paper, we make the following contributions:

1) We present a new approach for compressing trajec-
tories by utilizing similarities among them.

2) We provide preliminary evaluation results that show
the superiority of our approach over prior STC and
MTC solutions.

3) We describe research challenges and our planned
solutions for the construction of a usable trajectory
data management and query system.

The rest of this paper is organized as follows: Section II
summarizes related work. Section III presents our solution for
efficiently compressing trajectories. Section IV discusses our
preliminary evaluation results. Section V describes our future
research plans. Section VI concludes this paper.

II. RELATED WORK

There are two representative performance metrics for tra-
jectory compression algorithms. Compression time refers to the
amount of time that it takes to compress trajectory data. The
compression ratio is defined as the size of the original data
divided by the size of its compressed representation. There
are also error metrics that measure the difference between
a trajectory and its compressed representation. These metrics
include linear distance [8], spatial error [S], and Synchronized
Euclidean Distance (SED) [4]. For each point on the original
trajectory 7', these metrics find, using linear interpolation, a
corresponding point on the compressed representation 7’ and
then measure the distance between these two points. For each
point on 7', linear distance calculates the path length to that
point and then finds the corresponding point with the same
path length on 7”. In contrast, spatial error finds the closest

point on T” to each point on T'. For a point on 7', SED finds
the point on 7" with the same time value. In this paper, we
use SED since the other error metrics have the limitation of
not incorporating temporal data, and thus may not effectively
reflect changes in speed.

There have been many techniques created for compressing
individual trajectories [4], [5], [6], [7]. Uniform sampling
downsamples a trajectory at fixed time intervals in order to
achieve a desired compression ratio. This approach, however,
cannot make any guarantee about the compression error. The
Douglas-Peucker algorithm [5] initially inserts the two end
points of the original trajectory into the compressed repre-
sentation. It then adds the point with the largest spatial error
to the compressed representation. This process is repeated
until the largest spatial error becomes smaller than a user-
specified bound. TD-TR [4] is a variant of the Douglas-Peucker
algorithm which uses SED instead of spatial error. In general,
uniform sampling and TD-TR outperform other STC algo-
rithms in terms of compression time and compression ratio,
respectively [7]. Compared to TD-TR, our recent SQUISH
(Spatial QUallty Simplification Heuristic) algorithm achieves a
similar compression ratio, but with much lower computational
overhead [6]. SQUISH iteratively adds points from a trajectory
into a priority queue. Each point in the queue has an associated
priority representing an upper bound of the error which would
be introduced by its removal. In this way, it can quickly remove
extraneous points while effectively bounding the growth of
error caused by their removal. When the end of the input
trajectory is reached, SQUISH outputs a trajectory consisting
of the points kept in the priority queue.

In contrast to STC algorithms, TrajStore compresses a set
of trajectories by exploiting the redundancy among them [8]. It
divides a map of trajectories into cells and then compresses the
sub-trajectories within each cell. For each cell, trajectories are
grouped according to their similarities with a central trajectory
for each group. Each trajectory 7' in a group is re-expressed
(e.g., T in Figure 1) using the points of the central trajectory.
Given the resulting trajectory 7", only its temporal information
is stored since its spatial information can be obtained from
the central trajectory. 77 can be compressed by removing
entries whose removal does not increase the error beyond the
user-specified bound. In Figure 1, where an error bound of
0.3 is assumed, no entry was removed from 7" since any
such removal would introduce an error beyond the bound. For
example, if tuple (8,10,0) were removed from 7", then that
tuple would be estimated as (8, 113, 940) — (8,10.5,0) using
interpolation with neighboring entries, thereby introducing an
error of 0.5.

III. MULTIPLE TRAJECTORY COMPRESSION

This section describes our technique for efficiently com-
pressing trajectories by taking advantage of commonalities
among them. Sections III-A and III-B present the core ideas
and implementation details of this technique, respectively.

A. Core Ideas

Given two similar trajectories R and 7', it should be
possible to achieve a higher compression ratio than STC
algorithms by exploiting the similarities between them. We

reference/central trajectory R
time O[1]|]2|3]|4]|5
latitude | O | | [3 [6 |10]I5
longitude | 0 [0 [0|0 |0 |0

uncompressed trajectory T compressed representation T’

tme |4 [5]|6|7[8]9 tme |4 (49| 6|7 [8]9
latitude | O [1.1] 3 | 6 [10]15 latitude [0 | 1|3 [6[10]I5
longitude | 0 | 0| 0 [0| 0| O longitude | 0 | 0 [0 |0 |0 | O
Fig. 1. TrajStore. Uncompressed trajectory 7' is first transformed into 7"
using the points on R. Then, only the time values on 7" are stored (see those

highlighted). In this example, no entries are removed from 7" since such a
removal would cause an error beyond the user-specified bound of 0.3.

reference/central trajectory R
time 0|1]|2|3[4]5
latitude | O [I | 3 | 6 [10]I5
longitude [0 [0 | 0 [0 | 0 | O

uncompressed trajectory T compressed representation T’

time 4|15(6|7]8]|9 Ttme |4 |5|6 (7 ([8]9
latitude | O [I.1| 3 | 6 | 1015 Rtime | O |JI.I| 2|3 [4]5
longitude | 0 | 0| 0 [0| 0| O 0

0

latitude 1136|1015
00|00

longitude

Fig. 2. Compression based on Time Mapping. A time mapping 7" between T'
and R is constructed by finding, for each time value on 7', the corresponding
time value on R. Then, extraneous entries (i.c., those whose removal does not
increase compression error beyond a bound) are eliminated from 7. In this
example, only the first and last entries on 7" are stored (see those highlighted).

present a new solution to this problem. Our solution finds a
mapping 7" between the time values of T and those of R.
Then, for any time value ¢ on 7, the corresponding time
value tg on R can be obtained from linear interpolation on
T’. The position for time tg (i.e., that for time ¢7) can also
be obtained from linear interpolation on R. Our solution then
uses a STC algorithm to further remove entries from 7”.

Figure 2 illustrates our solution using an example where
trajectories R and 1" are obtained from two cars which traveled
along the same route. The car representing R, Car-R, started
at time 0, while the car representing 7', Car-T, started at
time 4. In this example, both vehicles moved similarly with
Car-T initially being slightly faster than Car-R. Furthermore,
both vehicles accelerated during the first 5 seconds. Therefore,
entries in R and 7' cannot be accurately estimated using
linear interpolation with neighboring entries (i.e., STC can-
not effectively compress R and T'). For example, if tuple
(1,1,0) is removed from R, that entry will be estimated as
(1, %3 940y — (1,1.5,0). Similarly, removing any entry from
R except for the first and last entries would cause an error of
0.5. Given an error bound of 0.3, no entries on R can be
removed.

In Figure 2, for each time value on 7', our solution finds
the corresponding interpolated time value on R. For example,
for the time value 5 on 7" and its associated position (1.1,0),
a linear interpolation on R obtains 1.1 as the corresponding
time value on R (as shown by “R.time” in T"). After the time
mapping 7" between T and R is obtained, our solution can
estimate the position on T" for any time value ¢. For instance,
the time value 5 on T' corresponds to the time value 1.1 on
R according to T”, and then to position (1.1,0) according to
interpolation on R for time 1.1. Let T”(¢) denote the estimated
position on T for time value ¢. Then, 7" can be treated as a

—e-sTC
—=&— TrajStore

TrajStore (cumulative)

compression ratio
compression ratio

Trajstore (revised)

—— MTC

1 2 3 4 5

6 7 8 9

10 1 2 3 4 5 6
trajectories trajectories

(a) Error Bound: 1 meter

Fig. 3. Impact of Error Bound on Compression Ratio

Algorithm 1: add(T,C,)

input

: trajectory 71", collection of compressed trajectories C, error
bound p

1 if |C| = 0 then //C is empty

2 | add the result of stc(T,p) to C; // STC

3 else

|

Algorithm 2: mtc(T, R, 1)

input : trajectory 7', reference trajectory R, error bound x
output : compressed representation 7" of trajectory T'

1 S < null; // current sub-trajectory

2 for (t,p) : T do // for each time-point pair in T

R* + argmingec |mtc(T, R, p)|; /Ts reference
add the result of min(mtc(T, R*,), ste(T, p)) to C;

3 (t',p") + time-point pair indicating projection of p on R;
4 if distance(p,p’) < u then // reference compression

5 if S is null or not a relative trajectory then

6 set S to a new relative trajectory referencing R;
7 add S to T';

8 | add (t,t') to S;

9 else // reference compression not possible

if S is null or not an independent trajectory then
set S to a new independent trajectory;
add S to T';

| add (t,p) to S;

for each sub-trajectory S in T’ do
| set S to the result of stc(S, u); / STC

16 return 7;

conventional trajectory and thus can be compressed using an
STC algorithm. In Figure 2, the time values from 7" and R are
highly correlated (the correlation coefficient is 0.9998). In this
example, all of the entries between the first and last entries
of T" can be safely removed because these removals introduce
errors smaller than the user-specified bound of 0.3. As a result,
the compressed representation 7” in Figure 2 is smaller than
that of Figure 1 (i.e., the result of the TrajStore approach). T’
is also smaller than 7', which is the compressed representation
of T using STC since STC is unable to remove any entries
given an error bound of 0.3.

B. Implementation Details

Algorithm 1 describes how our solution compresses each
trajectory 7' while keeping the compression error under a
bound p. It also stores the compressed representation 7" of
T in a collection C. When T is the first trajectory (line
1), T is compressed using an STC algorithm such as TD-

7

8

(b) Error Bound: 10 meters

250

200

-6 sTC 150 ~ oo sTC

—=— Trajstore —&— Trajstore
100

TrajStore (cumulative) TrajStore (cumulative)

compression ratio

TrajStore (revised)

/E—Q‘G—@—@‘Q—E—@“& —— MTC

TrajStore (revised)

—— MTC

9 10 12 3 4 5 6 7 8 9 10
trajectories

(c) Error Bound: 100 meters

TR or SQUISH (line 2). Otherwise (line 3), our solution
finds a reference R* that leads to the smallest compressed
representation of 7" (line 4). In the worst case scenario, if MTC
has a compression ratio lower than STC, then we simply use
STC (line 5).

Algorithm 2 describes our approach for compressing 7'
using a reference R given an error bound p. This approach
splits each trajectory T into (i) sub-trajectories referencing
R (lines 4-8) and (ii) sub-trajectories containing a subset of
points from T' (lines 9-13). We refer to the former as relative
sub-trajectories and the latter as independent sub-trajectories.
The relative sub-trajectories are constructed using the points
whose projections on R are sufficiently close (i.e., with a
distance smaller than). For a time-point pair (¢,p) with a
close projection (t/,p’) on R (lines 3-4), (¢,t') is inserted into
a relative sub-trajectory S (line 8). If no such sub-trajectory is
available (line 5), then a new sub-trajectory that references R
is constructed (line 6). This new sub-trajectory is also added
to trajectory 7" (line 7), which tracks all of the sub-trajectories
constructed from 7" (lines 7 and 12). After splitting 7" as above,
each sub-trajectory is compressed using an STC algorithm
(lines 15 and 16). As described in Section III-A, our solution
provides an abstraction that allows relative trajectories to be
compressed using any STC algorithm.

IV. PRELIMINARY EVALUATION RESULTS

We conducted experiments to compare our compression
technique to those summarized in Section II. For these exper-
iments, we downloaded the public BerlinMOD data set with
a scale factor of 0.05 [9]. From this data set, we obtained
10 similar trajectories, each of which contained approximately
1000 entries. Our experiments used meters as the measurement
of distance and seconds as the measurement of time. We set
the bound on tolerable error (1) to 1 meter, 10 meters, and 100
meters. For a vehicle that moves at 100 kilometers per hour,
these error bounds correspond to time errors of 0.036, 0.36, and
3.6 seconds, respectively (e.g., the vehicle can travel 1 meter
during 0.036 seconds and 100 meters during 3.6 seconds).

Figure 3 shows the impact of the error bound on the com-
pression ratios achieved by trajectory compression techniques.
Figures 3(a), 3(b), and 3(c) illustrate the results obtained for
the error bounds of 1 meter, 10 meters, and 100 meters, re-
spectively. Each curve in these figures shows the performance
of a compression technique with each point indicating the
compression ratio for an individual trajectory.

In Figure 3, the curves labeled “STC” show the perfor-
mance of TD-TR. In general, TD-TR achieves the highest

compression ratio among STC algorithms, but incurs high
computational overhead. For larger error bounds, it can be
seen that TD-TR eliminates more points, leading to a higher
compression ratio.

In our experiments, TrajStore selected the first of the
10 trajectories as the central trajectory. To the best of our
knowledge, TrajStore does not compress central trajectories
using an STC algorithm. For this reason, the first trajectory
was uncompressed (i.e., the compression ratio was 1). We did
not apply TrajStore’s delta encoding scheme since it can also
be used for all other compared compression techniques. The
subsequent trajectories were compressed by referencing the
central trajectory as described in Section II. In all of these
cases, however, TrajStore did not have a significant benefit
over TD-TR.

As Figure 3 shows, in the case of TrajStore, the com-
pression ratio for each trajectory varied significantly. For this
reason, we also calculated the cumulative compression ratio.
When a set of trajectories are compressed, this ratio refers to
the cumulative size of the original trajectories, divided by the
cumulative size of their compressed counterparts. Our results
demonstrate a relatively low cumulative compression ratio
when the error bound is large (see “TrajStore (cumulative)”
in Figure 3(c)). This is due to the fact that it does not com-
press the first trajectory. To overcome this limitation, we also
examined the case where the first trajectory was compressed.
In this case, the subsequent trajectories were less effectively
compressed (see “TrajStore (revised)” where an error bound
of 0.4 was used to compress the first trajectory).

In all of our experiments, our approach (see “MTC” in Fig-
ure 3) outperformed other trajectory compression techniques.
Our approach uses a time mapping to relate similar trajecto-
ries. This mapping, in general, can be effectively compressed
due to a high correlation between time values from similar
trajectories. Our method also has the unique benefit that for
large error bounds, it achieves much higher compression ratios
than other methods (Figure 3(c)).

V. FUTURE WORK

Our recent work on multiple trajectory compression raises
various research challenges. We plan to address them as
follows:

Indexing. Our approach compresses each trajectory by refer-
encing another trajectory. Our current work iterates through
all of the previously compressed trajectories to determine the
reference that yields the smallest compressed representation.
We plan on developing an indexing mechanism for quickly
finding relevant references.

Multiple References. Compression with only one reference
may not be ideal for situations where a trajectory spans mul-
tiple similar trajectories. For this reason, we intend to develop
a framework that exploits these opportunities by allowing for
one reference per sub-trajectory rather than for one trajectory
as a whole.

Memory Hierarchy. We have been storing trajectories only
in main memory. One potential issue is that the main memory
may be too small to hold the entire set of trajectories. There-
fore, we plan to develop a system for managing large amounts

of trajectory data on disk. A key challenge in this research is to
minimize disk I/O by collocating highly-related trajectory data
within the same disk block and caching frequently accessed
data in memory.

Distributed Trajectory Data Management. We envision situ-
ations where massive amounts of trajectory data necessitate the
use of a large server cluster. We intend to develop techniques
for distributing trajectory data over multiple servers in a
manner that minimizes network overhead and balances the
resource utilization of the servers.

Querying. We wish to develop a framework for processing
various types of queries on trajectory data. This framework
needs to utilize our compression technique not only to reduce
storage costs, but also to improve query speed.

Experiments. In this paper, we compared the performance
of compression techniques using the BerlinMOD data set
(Section IV). We plan to extend our experiments by using more
synthetic and real-world data sets.

VI. CONCLUSIONS

This paper presents a new technique for compressing
multiple trajectories. This technique splits trajectories into sub-
trajectories based upon their similarities. Each sub-trajectory
is then re-expressed using only a time mapping between that
sub-trajectory and another similar sub-trajectory. In general,
such a time mapping can be highly compressed due to a strong
correlation between the time values of similar trajectories. Our
evaluation results demonstrate the advantage of our technique
over previous trajectory compression solutions.

REFERENCES

[11 S. P. Greaves and M. A. Figliozzi, “Commerical Vehicle Tour Data
Collection Using Passive GPS Technology: Issues and Potential Appli-
cations,” Transportation Research Record, vol. 2049, pp. 158-166, 2008.

[2] J. E Srour and D. Newton, “Freight-Specific Data Derived from In-
telligent Transportation Systems: Potential Uses in Planning Freight
Improvement Projects,” Transportation Research Record, vol. 1957, pp.
66-74, 2006.

[3] E. McCormack and M. E. Hallenbeck, “ITS Devices Used to Collect
Truck Data for Performance Benchmarks,” Transportation Research
Record, vol. 1957, pp. 43-50, 2006.

[4] N. Meratnia and R. A. de By, “Spatiotemporal Compression Techniques
for Moving Point Objects,” in Proceedings of the 9th International
Conference on Extending Database Technology (EDBT), 2004, pp. 765—
782.

[5] D. Douglas and T. Peucker, “Algorithms for the Reduction of the Number
of Points Required to Represent a Line or its Caricature,” The Canadian
Cartographer, vol. 10, no. 2, pp. 112-122, 1973.

[6] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. S.
Ravi, “SQUISH: An Online Approach for GPS Trajectory Compression,”
in Proceedings of the 2nd International Conference and Exhibition on
Computing for Geospatial Research & Application (COM.Geo), 2011,
p. 13.

[7]1 J. Muckell, J.-H. Hwang, C. T. Lawson, and S. S. Ravi, “Algorithms for
Compressing GPS Trajectory Data: An Empirical Evaluation,” in Pro-
ceedings of the 18th SIGSPATIAL International Conference on Advances
in Geographic Information Systems (GIS), 2010, pp. 402—405.

[8] P. Cudré-Mauroux, E. Wu, and S. Madden, “TrajStore: An Adaptive
Storage System for Very Large Trajectory Data Sets,” in Proceedings of
the 26th International Conference on Data Engineering (ICDE), 2010,
pp. 109-120.

[9] BerlinMOD,
BerlinMOD.html.

http://dna.fernuni-hagen.de/secondo/BerlinMOD/

