A Graph Database Approach for Efficient and Scalable Management of Simulations

Jeong-Hyon Hwang, Jeremy Birnbaum, Rohini Vabbalareddy, S. S. Ravi

Department of Computer Science

University at Albany, State University of New York

Albany, NY 12222, USA

{jhh, jbirn, rohiniva, ravi}@cs.albany.edu

Abstract—Relational database technology has enabled easy
and efficient management of data in a variety of applications.
This technology, however, has been used for computer simu-
lations to a limited extent. In this context, users may need to
analyze the results of multiple simulation runs, which typically
capture interactions between various entities in the simulated
world. To these users, storing such simulation data only in
the form of relational tables may seem counter-intuitive or
challenging, particularly if they are not familiar with database
normalization theory. Furthermore, some complex queries,
including those that examine the cumulative effect of an action
(e.g., disease propagation after an initial outbreak), can neither
be easily expressed nor efficiently executed on traditional
database systems. We propose a new database approach that
aims to achieve convenient and highly efficient storage and
querying of simulation data by adopting a graph data model.
We also discuss new challenges that arise in this research, with
a focus on language design, coordination of simulations, data
storage, and query processing.

Keywords-graph; simulation; database; query; storage;

I. OVERVIEW AND CHALLENGES

Large-scale simulations that predict the behavior of a
dynamic system have been key applications for high perfor-
mance computing. These simulations include disease prop-
agation [1], molecular dynamics [2], weather prediction [3],
opinion formation on social networks [4], immune system
simulation [5], propagation of malware over computer net-
works [6], and computational economics [7].

Computer programs that carry out the above simulations
typically instantiate objects that represent entities (e.g.,
hundreds of millions of people) and then, assuming certain
interactions between entities (e.g., disease transmission),
update the states of these objects (e.g., from “susceptible”
to “exposed”) at simulated time steps. When interactions
between entities are modeled as a stochastic process, results
from multiple simulation runs must be analyzed together in
order to obtain statistically sound results.

There have been prior approaches that store simulation
data in relational databases to enable ad-hoc queries on the
data [8]. These approaches, however, have inherent limita-
tions in terms of convenience and efficiency. For example,
consider collections of simulation results, each of which
captures interactions or relationships among diverse entities.

Chanyeol Park
Department of Supercomputing Support
KISTI Supercomputing Center
Daejeon, 305-806, Korea
chan@kisti.re.kr

Storing such data only in tabular form may seem counter-
intuitive or challenging to users, particularly if they are not
familiar with database normalization theory. Furthermore,
when relationships between a pair of entities are stored as
records within a table, queries that examine the chain effect
of a phenomenon (e.g., how far did the disease spread?)
can neither be easily expressed nor efficiently executed. The
reason for this difficulty is that relational database systems
need to process a chain of n relationships using n —1 binary
join operations, each of which adds substantial complexity
in both the specification and execution of queries.

We propose a new data management approach for over-
coming the above limitations. The key idea of this approach
is to support a logical schema in which the result of
each simulation run is represented as a sequence of graphs
capturing the simulated world at different simulation steps
(e.g., in a sequence of graphs (G, 1, Gi2, ---, Gim) for
the i-th simulation run, graph G; ; represents the states of
entities and their relationships at the end of simulation step
j € [1,m]). This logical schema is mainly for providing
users with both a natural and an intuitive representation of
the simulation results. On the other hand, the actual data
storage on disk needs to be optimized for space and query
efficiency and therefore can be substantially different from
the logical schema. Our data storage mechanism that takes
advantage of the commonalities between graphs is discussed
later.

We intend to support our logical schema while enabling
nesting of objects so that users can organize simulation
results in their preferred way (e.g., hierarchical grouping
of graphs based on simulation parameter values). We also
plan to extend an object-oriented query language [9] to
allow users to conveniently express queries on various
combinations of graphs. One benefit of our approach is that
it enables a standard way of writing simulation programs,
which also creates, as explained later, opportunities for
optimizing the coordination of simulations. Our approach
models a simulation as a process of repeatedly creating
graphs. Therefore, it allows us to write a simulation program
using a loop which creates, after each iteration, a new
logical graph based on the previous graph and additional
interactions between entities. We are currently developing



a language which can create a new graph (similar to the
create view command of SQL) while adding or deleting
vertices or edges (similar to the insert and delete
commands), or changing the states of vertices and edges
(similar to the set command). This language also aims to
support the use of custom code (i.e., user defined functions)
for implementing complex state transition mechanisms, such
as those that require solving differential equations [3].

We are planning to carry out the proposed research while
tackling the following new challenges:
Language Design. Just as SQL allows users to conveniently
create, update, and query relational tables, our language
needs to support easy development and configuration of
simulations as well as efficient analysis of simulation results.
We are currently designing the language while incorporating
features of procedural languages (to enable repeated execu-
tion of certain commands) and graph processing capabilities
(e.g., identification of connected components, computation
of a vertex’s centrality).
Coordination of Simulations. Since we propose to write
simulation programs using an SQL-like language, we intend
to explore ways of coordinating simulations in an optimized
fashion. As in traditional database systems, our approach
will express each simulation run as a network of operators
and then strive to coordinate them in a manner that min-
imizes the overall completion time (e.g., by automatically
determining an appropriate set of servers for each simulation
run). We plan to tackle new challenges that arise due to the
need for handling loops in simulations and estimating the
behavior of custom code which implements a complex state
transition mechanism.
Data Storage. We have been constructing a scalable data
storage mechanism that can store graph data on multiple
servers. This technique also achieves highly efficient data
storage by taking advantage of the commonalities between
graphs. For example, if a vertex representing person A is
in the “infected” state in graphs G 19 through G 30 and
Ga 5 through G2 39, then this technique stores that version
of the vertex only once on disk and then associates it with
all of the related graphs using a fast, compact index. We
are currently exploring techniques for quickly optimizing
the storage of graph data in the main memory before they
are gradually saved on disk. This technique strives to reduce
the disk I/O cost during query execution by improving data
locality and to avoid slowing down ongoing simulations due
to the storage of data on disk.
Query Processing. We have been developing techniques
that can efficiently execute queries on multiple graphs by
taking advantage of the commonalities between graphs (i.e.,
by sharing computations on common vertices across mul-
tiple graphs). To support a variety of analytic queries on
graphs, we have been constructing operators that implement
popular graph processing algorithms. We intend to develop
techniques for optimizing queries, as in traditional database

systems, based on estimated query execution costs.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under CAREER award IIS-
1149372 and by the KISTI Supercomputing Center.

REFERENCES

[1] C. L. Barrett, K. R. Bisset, S. Eubank, X. Feng, and M. V.
Marathe, “EpiSimdemics: An Efficient Algorithm for Simulat-
ing the Spread of Infectious Disease over Large Realistic Social
Networks,” in Proceedings of the ACM/IEEE Conference on
High Performance Computing (SC), 2008, p. 37.

[2] A. Troisi, V. Wong, and M. A. Ratner, “An Agent-Based
Approach for Modeling Molecular Self-Organization,” Pro-
ceedings of the National Academy of Sciences of the United
States of America (PNAS), vol. 102, no. 2, pp. 255-260, 2005.

[3] P. Houtekamer, L. Lefaivre, J. Derome, H. Ritchie, and
H. Mitchell, “A system simulation approach to ensemble pre-
diction,” Monthly Weather Review, vol. 124, no. 6, pp. 1225—
1242, 1996.

[4] C.J. Kuhlman, V. S. A. Kumar, and S. S. Ravi, “Controlling
Opinion Bias in Online Social Networks,” in Proceedings of
the International Conference on Web Science (WebSci), 2012,
pp- 255-264.

[5] V.Folcik, G. An, and C. Orosz, “The Basic Immune Simulator:
An Agent-Based Model to Study the Interactions between In-
nate and Adaptive Immunity,” Theoretical Biology and Medical
Modelling, vol. 4, no. 1, p. 39, Sep. 2007.

[6] K. Channakeshava, K. R. Bisset, V. S. A. Kumar, M. V.
Marathe, and S. M. Yardi, “High Performance Scalable and
Expressive Modeling Environment to Study Mobile Malware
in Large Dynamic Networks,” in Proceedings of the 25th
IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), 2011, pp. 770-781.

[7]1 L. Tesfatsion, “Agent-Based Computational Economics: Mod-
eling Economies as Complex Adaptive Systems,” Information
Sciences, vol. 149, no. 4, pp. 262-268, 2003.

[8] G. Heber and J. Gray, “Supporting Finite Element Analysis
with a Relational Database Backend, Part I: There is Life
beyond Files,” CoRR, vol. abs/cs/0701159, 2007.

[9] A. M. Alashqur, S. Y. W. Su, and H. Lam, “OQL: A Query
Language for Manipulating Object-oriented Databases,” in
Proceedings of the 15th International Conference on Very
Large Data Bases (VLDB), 1989, pp. 433-442.



