
Borealis-R: A Replication-Transparent Stream Processing
System for Wide-Area Monitoring Applications∗

Jeong-Hyon Hwang, Sanghoon Cha, Uğur Çetintemel, and Stan Zdonik
Department of Computer Science, Brown University
115 Waterman Street, Providence, RI 02912, USA
{jhhwang, scha, ugur, sbz}@cs.brown.edu

ABSTRACT
Borealis-R is a replication-based system for both fast and
highly-available processing of data streams over wide-area
networks. In Borealis-R, multiple operator replicas send
outputs to downstream replicas, allowing each replica to use
whichever data arrives first. To further reduce latency, repli-
cas run without coordination, possibly processing data in
different orders. Despite this flexibility, Borealis-R guaran-
tees that applications always receive the same results as in
the non-replicated, failure-free case. In addition, Borealis-
R deploys replicas at select network locations to effectively
improve performance as well as availability.

We demonstrate the strengths of Borealis-R using a live
wide-area monitoring application. We show that Borealis-R
outperforms previous solutions in terms of latency and that
it uses system resources efficiently by carefully deploying and
discarding replicas.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Design, Experimentation, Management, Performance, Reli-
ability

Keywords
availability, fault tolerance, reliability, replication, stream
processing, wide-area networks

1. INTRODUCTION
Borealis-R is a stream processing system for Internet-scale

monitoring applications. In such applications, users want to
monitor various events occurring around the world and make
smart decisions in near real time. In practice, however, it is
hard to accomplish correct and timely processing. For exam-
ple, an overloaded server may stop sending data and a failed
server may have lost data essential to processing. Further-
more, computer networks are vulnerable to link congestion
and may experience outages.

∗This work has been supported by the National Science
Foundation under Grant No. IIS-0086057 and IIS-0325838.

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

In addition to distributed operation [2], Borealis-R has
features that tackle the problems above. Similar to previous
solutions for reliable stream processing [5, 4, 7, 3], it de-
ploys, for each operator, k replicas on independent servers
to tolerate up to (k−1) simultaneous failures. In contrast to
the previous solutions, however, Borealis-R makes multiple
replicas send data to each downstream replica. As illus-
trated in Figure 1, this allows each replica to use whichever
data arrives first. To further expedite processing, Borealis-
R executes replicas without coordination, which causes non-
deterministic replicas to run differently. Regardless of this
flexible operation, Borealis-R guarantees that applications
receive the results that a non-replicated execution would
produce if the system was completely free from failures.
Borealis-R also strives to achieve better performance and
availability without increasing network cost.

In general, Borealis-R uses more computation and network
resources than previous solutions in which only one of mul-
tiple replicas can feed downstream replicas. However, it also
offers distinct advantages. First, it reduces latency because
it always uses the fastest among multiple replicated data
flows. Second, it is naturally resilient against server and net-
work problems. In previous solutions, if a replica that feeds
downstream replicas fails (or gets overloaded/disconnected),
the processing stops until each downstream replica notices
the problem after some delay and creates a new input con-
nection from another functioning upstream replica. In con-
trast, Borealis-R stays operational without blocking to de-
tect problems and switching between replicas.

2. MAIN FEATURES OF BOREALIS-R
To manage the system in a scalable fashion, Borealis-R

groups servers into logical clusters, each of which comprises
on the order of tens of servers. Each cluster consists of
servers at diverse locations (rather than those only within a
small area) in order to autonomously handle queries span-
ning distant stream sources and applications. As illustrated
in Figure 1, Borealis-R guarantees fast and reliable pro-
cessing by making multiple replicas feed each downstream
replica. To achieve reliable processing with unstable stream
sources, Borealis-R deploys entry points that keep input tu-
ples from external sources until they safely arrive at the
downstream replicas.

2.1 Replication Transparency
In Borealis-R, replication is transparent to users. In other

words, each application always receives tuples as in the ideal
non-replicated execution scenario where the system is com-



A

B

C

ping

entry point e1
(ping latency)

Fast and Reliable Processing

entry point e2
(CPU load)

duplicate filter

(time, path, latency)

(9:00:00, A-B, 1 sec)

(9:00:00, A-C, 1 sec)…
(time, server, load)

(9:00:00, B, 80%)

(9:00:00, C, 50%)’
(9:00:01, B, 90%)

(9:00:01, C, 40%)’
(9:00:00, B, 80%)’
(9:00:01, B, 90%)’
(9:00:02, B, 100%)

(9:00:02, C, 50%)’
(9:00:00, C, 50%)

(9:00:01, C, 40%)

(9:00:02, B, 100%)’
(9:00:02, C, 50%)…(time, server, load)

(9:00:00, C, 50%)’
(9:00:01, C, 40%)’
(9:00:00, B, 80%)’
(9:00:01, B, 90%)’
(9:00:02, C, 50%)’
(9:00:02, B, 100%)’…

(time, server, load)

(9:00:00, B, 80%)

(9:00:01, B, 90%)

(9:00:02, B, 100%)

(9:00:00, C, 50%)

(9:00:01, C, 40%)

(9:00:02, C, 50%)…
entry point e3
(CPU load)

Figure 1: An Example of Replication – Servers B and

C report their CPU usage via entry points e2 and e3, respec-

tively. Replicas ∪2,1 and ∪2,2 commonly merge streams from

e2 and e3 and feed 13,2 in parallel. 13,2 uses whichever tuple

arrives first from ∪2,1 and ∪2,2, while ignoring duplicates (i.e.,

late tuples; see those lined-through).

pletely free from failures and delays. We call this property
replication transparency.

A simple way to achieve replication transparency would be
to identically execute peer replicas [3]. As will be shown in
the demonstration, however, this approach introduces extra
latencies. Therefore, Borealis-R runs replicas independently,
while allowing them to process any available data. This
causes multi-input operators to produce tuples in different
orders. In Figure 1, replicas ∪2,1 and ∪2,2 produce outputs
in different orders for this reason. Despite this, Borealis-R
achieves replication transparency as follows:

1. It merges stream replicas into a non-duplicate stream
using a non-blocking duplicate filter (cf. the second
duplicate filter of 13,2 in Figure 1). This is to pre-
vent duplicate-sensitive operators, such as count ag-
gregates, from producing incorrect results. Duplicate
filters can handle disorder in stream replicas and mul-
tiple occurrences of the same tuple in a stream replica.

2. It sorts disordered streams only when necessary. Order-
sensitive applications and operators (e.g., those with
count-based windows) must receive inputs in the order
of the ideal non-replicated execution. Borealis-R sorts
streams only in such cases, because sorting streams
introduces extra delays [6].

3. It provides operators that always produce, from disor-
dered input streams, the output tuples that would ap-
pear in the ideal non-replicated execution. The output
order is not important because downstream replicas
can handle disorder. We call this property of operators
replica consistency because it guarantees that opera-
tor replicas always produce consistent output streams
from consistent input streams. We say that two streams
are consistent if they contain the same tuples regard-
less of internal order.

In summary, Borealis-R achieves replication transparency
by eliminating duplicates, minimally sorting data streams,
and ensuring replica consistency. The details are presented
in [6].

2.2 Management of Replicas
Borealis-R efficiently improves both performance and avail-

ability. For this, it initially creates replicas in a manner that
minimally increases the network cost. To cope with changes
in system conditions, it gradually discards the least useful
replicas or adds new replicas (further details can be found
in [6]):
Initial Deployment. As described early in this section,
Borealis-R forms logical clusters to manage the system in a
scalable way. Servers in the same cluster elect a coordinator
that traces the network delays between them. Whenever the
coordinator receives a query (i.e., a network of operators),
it deploys replicas in a predefined number kmax of phases,
each of which adds a new replica for each operator.

In each deployment phase, the coordinator first rules out
servers that are too busy to run a new replica or likely to
fall into the same network partition with a server that al-
ready runs a peer replica. Among the remaining candidate
servers, the coordinator finds the server that will minimize
the network cost of the input and output streams of the new
replica. The network cost of each stream is defined as the
product of the data rate and latency of the stream. This
bandwidth-delay product is based on the observation that
usually more network resources are used as more data stays
in the network for a longer time. An optimal placement of
replicas under this metric also tends to choose fast network
links, thereby improving performance.
Garbage Collection. After deploying replicas, the coor-
dinator periodically discards the least useful replicas until
the overall network cost decreases to a predefined level θ.
To preserve the minimum level of failure tolerance, how-
ever, it keeps at least kmin replicas for each operator. As
a result, garbage-collection reduces the number of stream
replicas from k2

max (i.e., all possible connections between
kmax upstream replicas and kmax downstream replicas) to
a few times kmin, while minimally degrading performance
and availability.

To measure the utility (i.e., the impact on applications)
of each stream replica, each duplicate filter gives, for each
input tuple, different weights 1

1
, 1

2
, 1

3
, · · · to stream replicas

according to how early these stream replicas deliver the tu-
ple. For stream replicas {S}ki=1, the utility u(Si) of Si is

defined as w(Si)Pk
j=1 w(Sj)

u(o), where w(S) is the accumulated

weight of stream S and u(o) is the utility of the operator
replica o that {S}ki=1 commonly feed. The utility of o, u(o),
is defined as

P
S∈out(o) u(S), where out(o) denotes the out-

put streams of o.
Adaptation. If an operator replica observes unusual delays
in its input, it revives some garbage-collected input streams
to reduce the input delay. If the current network cost is
below the target cost θ, the coordinator also adds replicas
to further reduce latency.

3. DEMONSTRATION DETAILS
The demonstration will stress the strengths of Borealis-

R using a wide-area monitoring application. Specifically,
the demonstration will show that (i) Borealis-R outperforms
representative previous solutions in terms of latency, (ii)
Borealis-R deploys replicas in a resource-efficient manner,
and (iii) garbage-collecting replicas can significantly reduce
the overall network cost while keeping latency low.



Figure 2: The Borealis-R Visualizer

3.1 Tools
The demonstration will proceed using the visualizer in

Figure 2. The visualizer has the following views:

1. Logical View - The logical view displays the queries
as graphs of operators and also allows us to edit the
queries. We need to specify the actual locations of
stream sources and applications. In contrast, interme-
diate operators are not assigned locations and Borealis-
R automatically deploys their replicas.

2. Physical View - The physical view illustrates the de-
ployment of replicas as well as various statistics such
as the CPU utilization of each server, the data rate as
well as the latency of each stream replica, and the la-
tency at each operator replica. It also allows us to con-
trol the system in various ways, including adding more
replicas, conducting garbage-collection, and killing a
Borealis-R process.

3.2 Setup
The demonstration will show the operation of a logical

cluster using a live wide-area monitoring application. We
will choose tens of distant PlanetLab servers [1] that reliably
communicate with each other. If the demonstration site has
a network problem, we will run Borealis-R processes locally,
while emulating network latencies based on a trace collected
in advance.

The demonstration will assume the following scenario:
“As illustrated in Figures 1 and 2, users want to monitor
a subset of servers in the PlanetLab testbed. Each of these
servers runs two periodic stream sources, one that reports
the server’s CPU load and the other that reports the re-
cent latencies in the connections to other servers. The load
readings are merged at ∪1, whereas the latency readings are
merged at ∪2. Because users want to identify long laten-
cies while determining whether such latencies are caused by
busy remote servers or by the network itself, a Join oper-
ator correlates the load and latency readings. Then, the
Join operator feeds operators that produce output streams
according to users’ various interests.”

Given the query above, the coordinator will deploy repli-
cas using the strategy described in Section 2.2. To suc-
cessfully garbage-collect replicas later, the coordinator will
continuously collect statistics, including network latencies
between servers and the data rates of streams.

3.3 Comparison to Previous Techniques
This demonstration will compare Borealis-R with repre-

sentatives of previous solutions [5, 4, 7, 3] during both non-

failure and failure periods. We will first observe the runtime
behavior of two modes. The Borealis-R mode will run mul-
tiple replicas without coordination, while sending their out-
puts to each downstream replica. The other mode will mimic
previous solutions by allowing only one of many peer repli-
cas to send data downstream. This will show that Borealis-
R outperforms previous solutions during failure-free periods
because it always uses the fastest among multiple replicated
data flows.

We will also compare the two modes in terms of the fail-
ure masking capability. For this, we will randomly choose a
Borealis-R process and kill it using the visualizer. This will
show that Borealis-R keeps latency lower than previous so-
lutions because it does not need to detect failures and switch
between replicas.

3.4 Advantages of Replication
This demonstration will show how the replica deployment

strategy in Section 2.2 can reduce latency while efficiently
using network resources. To obtain a good initial, non-
replicated deployment, we will first deploy kmax = 3 replicas
for each operator as described early in this section and then
garbage-collect replicas with kmin = 1 and θ = 0. The rea-
son behind this is that, when we deploy replicas for the first
time, it is hard to find a good deployment since the data
rate of each stream is not yet known. After finding a good
non-replicated deployment, we will gradually add replicas
and observe how the end-to-end latency varies. We will also
contrast the above scenario with another one where replicas
are deployed at arbitrary servers.

3.5 Garbage Collection
In this demonstration, we will show that garbage-collection

can effectively reduce the overall network cost while keeping
latencies low. We will also observe what types of replicas
are usually less useful and thus discarded.

4. REFERENCES
[1] http://www.planet-lab.org.

[2] M. Balazinska, D. Abadi, Y. Ahmad, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Rasin, N. Tatbul,
Y. Xing, and S. Zdonik. The design of the borealis
stream processing engine. In Proc. of the 2nd CIDR,
2005.

[3] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the borealis
distributed stream processing system. In Proc. of the
2005 ACM SIGMOD, June 2005.

[4] J.-H. Hwang, , U. Çetintemel, and S. Zdonik. A
cooperative, self-configuring high-availability solution
for stream processing. In Proc. of the 23th ICDE, 2007.

[5] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. Zdonik. High-availability
algorithms for distributed stream processing. In Proc.
of the 21th ICDE, 2005.

[6] J.-H. Hwang, U. Çetintemel, and S. Zdonik. Fast and
highly-available stream processing over wide area
networks. In Proc. of the 24th ICDE, 2008.

[7] M. A. Shah, J. M. Hellerstein, and E. Brewer.
Highly-available, fault-tolerant, parallel dataflows. In
Proc. of the 2004 ACM SIGMOD, June 2004.


