A Framework for Efficient and Convenient
Evaluation of Trajectory Compression Algorithms

Jonathan Muckell
Department of Informatics
University at Albany—-SUNY
Albany, NY 12222, USA
jonmuckell @gmail.com

Paul W. Olsen Jr,
Jeong-Hyon Hwang, and S. S. Ravi
Department of Computer Science
University at Albany—SUNY
Albany, NY 12222, USA

Catherine T. Lawson
Department of Geography and Planning
University at Albany—-SUNY
Albany, NY 12222, USA
lawsonc @albany.edu

{polsen, jhh, ravi} @cs.albany.edu

Abstract—Trajectory compression algorithms eliminate re-
dundant information in the history of a moving object. Such com-
pression enables efficient transmission, storage, and processing of
trajectory data. Although a number of compression algorithms
have been proposed in the literature, no common benchmarking
platform for evaluating their effectiveness exists. This paper
presents a benchmarking framework for efficiently, conveniently,
and accurately comparing trajectory compression algorithms.
This framework supports various compression algorithms and
metrics defined in the literature, as well as three synthetic
trajectory generators that have different trade-offs. It also has a
highly extensible architecture that facilitates the incorporation of
new compression algorithms, evaluation metrics, and trajectory
data generators. This paper provides a comprehensive overview
of trajectory compression algorithms, evaluation metrics and
data generators in conjunction with detailed discussions on their
unique benefits and relevant application scenarios. Furthermore,
this paper describes challenges that arise in the design and imple-
mentation of the above framework and our approaches to tackling
these challenges. Finally, this paper presents evaluation results
that demonstrate the utility of the benchmarking framework.

I. INTRODUCTION

The availability of GPS-equipped mobile devices and
development of geo-spatial applications have led to rapid
adoption of location-based services. In the United States, 74%
of smart phone users regularly use thier phones to get location-
based information [1]. In particular, applications such as Four
Square have seen a dramatic rise in usage, from 4% of the
smart-phone users in 2011 to 10% in 2012. Many geo-spatial
applications have difficulties in managing large volumes of
GPS trajectory data. Common problems are long network
transmission time, inefficient processing of trajectory data, and
wasted memory and disk space.

To mitigate the above issues, a variety of trajectory com-
pression algorithms have been developed [2], [3], [4], [5], [6],
[71, [8]. Given an input trajectory, these algorithms produce an
output trajectory that consists of a subset of the points from
the input trajectory. These “lossy” compression algorithms
can trade the accuracy of the output trajectory for a greater
compression ratio or a shorter compression time. Since these
algorithms have different trade-offs in terms of compression
time, compression ratio (i.e., the size of the original trajectory
divided by the size of the compressed representation of the tra-
jectory), or diverse error metrics, it is difficult to select the most
appropriate algorithm in practical situations. Furthermore, a
standardized evaluation benchmark for comparing trajectory

compression algorithms does not exist.

This paper presents a new benchmarking framework for
efficiently, conveniently, and accurately comparing trajectory
compression algorithms. Designing and implementing such a
framework raises new challenges. First, the framework must
support a wide spectrum of trajectory compression algorithms,
metrics for evaluating these algorithms, and tools which fa-
cilitate the incorporation of newly developed or extended
algorithms and metrics. Second, the framework must be able
to provide a large number of trajectories that capture various
modes of transportation as well as extreme conditions (e.g.,
drastic changes in speed and direction) for measuring the
reliability of compression algorithms. Third, the framework
should allow users to conveniently specify compression algo-
rithms, evaluation metrics, and trajectory types of interest, and
analyze the evaluation results. Fourth, the framework must be
able to accurately evaluate compression algorithms on a fair
basis despite their inherent differences (e.g., some algorithms
strive to maximize compression ratio under a certain accuracy
constraint whereas others aim at minimizing one type of error
while guaranteeing a specific compression ratio). Fifth, the
framework needs to efficiently support large-scale evaluations
by taking advantage of the collective capability of a server
cluster.

Our benchmarking framework meets the above require-
ments by adopting a highly extensible and scalable archi-
tecture. The design and implementation of this framework is
motivated by our previous work [2], [3] which experimentally
compared seven compression algorithms using real-world tra-
jectory data and proposed a new algorithm, called SQUISH
(Spatial QUallty Simplification Heuristic), for achieving highly
competitive compression accuracy with substantially lower
overhead. Users of our framework can evaluate compression
algorithms for various combinations of parameter values, data
sets, and evaluation metrics by creating and submitting a
concise configuration file. Then, the framework automatically
schedules and efficiently carries out the specified evaluations
using all servers available in the system. The results of these
evaluations are stored in a shared database, thereby promoting
efficient and convenient analysis of them. Our framework also
supports one state-of-the-art trajectory generator capable of
realistic modeling of traffic flow [9], as well as one extended
version of a generator [10] and another newly developed
generator which enables a tight control over the variation of
speed and direction. The entire benchmarking framework is

planned to be made available online as open-source by the
summer of 2013.

The contributions made in this paper are as follows:

e the design and implementation of a highly extensible
benchmarking framework which enables efficient and
convenient evaluation of trajectory compression algo-
rithms

e a detailed comparison of existing synthetic trajectory
generators with a description of additional develop-
ment and extension of generators to overcome previ-
ous limitations.

e a comprehensive overview of metrics for evaluating
trajectory compression algorithms with an emphasis
on the trade-offs and relevant use cases of these
metrics

e a concise review and comparison of trajectory com-
pression algorithms.

e evaluation results that demonstrate the utility of our
benchmarking framework and the unique benefits of
each compression algorithm and synthetic trajectory
generator.

The remainder of the paper is organized as follows: Sec-
tion II presents definitions of metrics for evaluating com-
pression algorithms. Sections III and IV review the literature
on synthetic trajectory generators and trajectory compression
algorithms, respectively. Section V describes the architecture
and features of our benchmarking framework. Section VI
explains the development and extension of synthetic data gen-
erators for overcoming the limitations of existing generators.
Section VII provides evaluation results obtained from our
framework. Section VIII concludes this paper.

II. METRICS

This section describes metrics for evaluating trajectory
compression algorithms. Given an input trajectory, these algo-
rithms produce an output trajectory that consists of a subset of
the points from the input trajectory. These “lossy” compression
algorithms can trade the accuracy of the output trajectory for
a shorter compression time or a greater compression ratio.
This section presents a comprehensive survey of both accuracy
metrics (Section II-A) and performance metrics (Section II-B),
as well as a detailed discussion of these metrics (Section II-C).

A. Accuracy Metrics

Let T = <(:17i,y¢,ti) i e {1,2,--- ,n}> denote a
trajectory which consists of n points, where x; and y; represent
the longitude and latitude, respectively, of a moving object at
time ¢;. Also, assume that the above trajectory is compressed
into 7" = ((x;,y;,t;) : j € M) for some M C {1,2,--- ,n}.
Researchers have developed the following metrics for express-
ing the accuracy of T’ with respect to a point in 7.

1) Spatial Error: The spatial error of the compressed tra-
jectory T" with respect to a point (x;, y;,t;) in T is defined as
the distance between the actual location (x;, y;) and estimated
location (z},y.) of that point [4]. If T" contains (z;,y;,t;),
then the spatial error of 7" with respect to (z;,y;) is O.
Otherwise, two points in 7" that are the closest predecessor and
successor of (z;,y;,t;) in T are found (denoted as predr (%)
and succr 7/ (i), respectively). For example, if 7" contains
(21,91, t1), (22,92, t2), and (z4,ys,t4), then predrr(3) =
(x2,y2,t2) and succr 1 (3) = (z4,Ya,ts). Then, (4, y}) is
the closest point to (x;,y;) along the line from predr 1 (7) to
sucer ().

2) Synchronized Euclidean Distance: A major limitation of
spatial error is that it does not take temporal data into account.
Synchronized Euclidean Distance (SED) [S5] overcomes this
limitation. As in the case of spatial error, the SED between
an actual point (z;,y;,t;) and an estimated point (2}, y., ;) is
defined as the distance between (x;, y;) and (2}, y;). However,
x; and gy} are estimated via linear interpolation between
predr (i) and succp /(7). This interpolation preserves,
across the longitude, latitude and time values, the ratio of the
difference between predr 1 (i) and (2}, y},t;) to the difference
between (z},y;,t;) and succp (7).

3) Heading Error: The heading error of T” with respect to
a point (x;,y;,t;) in T is defined as the angular displacement
between the movement from (x;_1,y;—1,ti—1) to (z;, ys, t;)
and that from (z}_,,y;_1,ti—1) to (z},y.,t;), where x}_,, z},
yi_1, and y, are estimated as in the case of SED. This error
metric is particularly useful for detecting erratic behavior or
disturbances in typical traffic flow [11].

4) Speed Errror: Travel speed is an important metric for
a variety of transportation applications. For example, law
enforcement utilizes speed information to derive speeding
hot-spots [12]. Furthermore, acceleration/deceleration data is
useful for identifying vehicles/drivers that are driving errat-
ically [11]. Speed error is determined in a way similar to
heading error, except that it captures the difference in travel
speed between actual and estimated movements.

B. Performance Metrics

1) Compression Ratio: Compression ratio is defined as
the size of the original trajectory divided by the size of
the compressed representation of that trajectory. For instance,
a compression ratio of 50 indicates that only 2% of the
original points remain in the compressed representation of the
trajactory.

2) Compression Time: Compression time refers to the
amount of time that it takes to compress a trajectory.

C. Discussion

In contrast to spatial error, SED has the advantage of incor-
porating temporal data into accuracy calculation. Furthermore,
there is a strong correlation between SED, heading, and speed
errors (Section VII). For this reason, SED is considered a
representative accuracy metric in the remainder of this paper.

In principle, applications require a sensible balance of
accuracy, compression ratio, and compression time. As the
following scenarios demonstrate, the significance of a metric
may vary substantially according to the characteristics of
applications:
Scenario 1 (Storage-Bound). Assume a fleet of 3, 000 trucks
each of which generates trajectory data for 8 hours per day
with a 1 second sampling rate and a sample size of 24 bytes
(i.e., approximately 0.7 MB per truck per day or 2.1 GB per
day). In this case, a 16 GB memory space and 1 TB disk space
can hold the raw trajectory data collected for approximately
8 days and 1.3 years, respectively. The above periods can be
extended to 76 days and 13 years by compressing trajectory
data with a ratio of 10. This scenario represents a historical
archive that requires a compact storage of trajectories using
sufficient computational resources.
Scenario 2 (CPU-Bound). The above scenario can keep up
with incoming trajectory data only if each trajectory is com-
pressed within 0.48 = 2269 minutes on average. Furthermore,

3000
a higher compression speed is required as more computational

resources are used to serve queries on stored trajectories.
Compression time becomes the most crucial metric when the
scarcest resource is the CPU(s).

Scenario 3 (Error-Bound). An application may tolerate only a
small error in trajectory data. In this case, the accuracy metrics
in Section II-A become a dominant factor, particularly if there
are sufficient computational and storage resources.

ITI. REVIEW OF SYNTHETIC TRAJECTORY GENERATORS

This section summarizes synthetic trajectory generators
that are available in the literature. Sections III-A and III-B
provide a categorization of these generators. Section III-C
compares them with a focus on their unique advantages and
limitations.

A. Free-Moving Trajectory Generators

There are software programs that create synthetic trajec-
tories without relying on an underlying network [13], [14],
[15]. These free-moving trajectory generators typically use
parameterized random functions to change the direction and
speed of trajectories.

B. Simulation-Based Trajectory Generators

Synthetic trajectories can be generated by using traffic
simulators (refer to the SMARTEST project for a detailed
evaluation of 58 simulators [16]). Most of these simulators,
however, are proprietary, do not generate long trajectory his-
tories, and are not easily extensible.

Our benchmarking framework takes advantage of the fol-
lowing two state-of-the-art open-source trajectory generators:

1) BerlinMOD: BerlinMOD provides moving object data
(MOD) obtained by simulating trips around the Berlin
metropolitan area [9]. BerlinMOD is based off a realistic model
of movement which incorporates a realistic road network and
statistics on home and work locations, as well as various types
of trips (e.g., shopping, sports). The standard setting of Berlin-
MOD can create trajectories using 2,000 vehicles simulated
over 28 simulation days. The resulting data set contains a total
of 292,693 trajectories each of which represents a single trip
in a travel mode (e.g., passenger car, truck, and bus). The total
size of this data set is 19.45 GB.

2) Brinkhoff: Similar to BerlinMOD, the Brinkhoff trajec-
tory generator [10] relies on traffic simulation over a road
network. This generator, however, supports more detailed
customization than BerlinMOD by allowing users to both
change application parameters in the configuration file and
override existing classes in the Brinkhoff API. In particular,
this generator enables modeling of various impacts such as
traffic and external events such as construction zones and
weather conditions. This generator can also optimize each trip
based on different criteria.

C. Discussion

Free-moving trajectory generators have the advantage of
efficiently producing trajectories without any restriction on
the variation of speed and direction. Due to the absence
of an underlying network, however, free-moving generators
have limitations in realistically representing the movement of
a car or a pedestrian along a road network. To overcome
this limitation, we have developed a free-moving trajectory
generator which uses a movement model obtained by analyzing
real trajectory data (refer to Section VI-B for further details).
This generator is incorporated into our benchmark framework
(Section V).

TABLE 1L SUMMARY OF GPS TRAJECTORY ALGORITHMS (n:
trajectory size, \: target compression ratio, ¥: maximum spatial error, p:
maximum SED error)

[Algorithm [Param. | Online/Offline | Time |
Uniform Sampling A Online O(n)
Douglas-Peucker v Offline O(n?)
TD-TR 1 Offline O(n?)
Open Window v Online O(n?)
OPW-TR u Online O(n?)
Dead Reckoning 1 Online O(n)
SQUISH(\) A Online/Offline | O(nlog %)
SQUISH(11) I Offline O(nlogn)

The Brinkhoff generator is superior to other generators in
terms of its customization capability. However, this generator
is unable to produce detailed trajectories due to the lack of
a model to capture small, local movements along road edges.
For this reason, we have extended this generator to capture
vehicle movement over short durations (Section VI-A). Our
benchmark framework supports this extended version of the
Brinkhoff generator.

In contrast to Brinkhoff and free-moving trajectory genera-
tors, BerlinMOD can produce long, detailed, and realistic tra-
jectories of moving objects. Therefore, our benchmark frame-
work does not require modifications to this generator. Berlin-
MOD configuration details are provided in Section VI-C.

IV. TRAJECTORY COMPRESSION ALGORITHMS

This section describes the trajectory compression algo-
rithms that are supported by our benchmark and evaluated
in this paper. Table I compares these algorithms in terms of
their parameters and computational complexity. Algorithms
that use A, the target compression ratio, as the input parameter
ensure that the ratio of the input trajectory size to the output
trajectory size is at most A, but provide no guarantees on the
maximum error bound. Other algorithms strive to maximize
the compression ratio while preserving the constraint that the
maximum spatial error (or SED error) between the input and
output trajectories must be less than ¥ (or p). Trajectory
compression algorithms can also be classified into online or
offline algorithms depending on whether or not they process
trajectory data as they arrive.

A. Uniform Sampling

Uniform Sampling simply takes every |A|-th point in the
input trajectory. Uniform sampling is fast and simple. It runs
in an online fashion, but often results in large spatial and SED
errors.

B. Douglas-Peucker

The Douglas-Peucker algorithm [4] approximates a trajec-
tory using a series of line segments. This algorithm initially
constructs an approximating line segment using the two end
points of the input trajectory. It then recursively repeats the
process of finding a point from the input trajectory which lies
at the maximum distance from the closest approximating line
segment, while using the point to split the line segment into
two. The whole process stops when the maximum distance
from the input trajectory to the closest line segment is less
than W.

The Douglas-Peucker algorithm in general achieves a high
compression ratio with relatively high computational overhead.

It is not suitable for real-time applications since it is an
offline algorithm (i.e., requires the entire trajectory before
compression). Additionally, it does not allow users to set the
desired compression ratio.

C. TD-TR

Meratnia and de By [6] indicate that line generalization
algorithms, such as Douglas-Peucker, are not suitable for GPS
trajectories since they do not take temporal data into account.
The TD-TR algorithm [6] is similar to Douglas-Peucker except
that it uses SED.

D. Opening Window

Opening Window algorithms [7] begin by creating an
opening window anchored at the first point in the original
trajectory and adding points to the window until the distance
between the original trajectory and a line segment defined
by the anchor and a point in the window is larger than W.
Then, they add to the output trajectory either the point causing
the maximum error (Normal Opening Window Algorithm or
NOWA) or the point just before the one that causes the
maximum error (Before Opening Window or BOPW). Each
point added to the output trajectory is also used as the next
anchor of the opening window. The above process completes
when the input trajectory ends.

E. OPW-TR

The standard Opening Window algorithms are unsuitable
for compressing GPS trajectories because they ignore temporal
data. OPW-TR [6] overcomes this limitation by using SED as
in the case of TD-TR.

F. Dead Reckoning

Dead Reckoning [8] is an online algorithm that estimates
the next point in the input trajectory based on the current point
and velocity. The next point in the input trajectory is added to
the output trajectory only if the distance between that point and
the estimated point is larger than p. Dead Reckoning repeats
the above process until it reaches the end of the input trajectory.

The computational complexity of Dead Reckoning is O(n),
where n is the number of points in the input trajectory. This
complexity is due to the fact that it takes only O(1) time to
compare each point with the corresponding predicted location.
A major advantage of Dead Reckoning is that it runs in online
mode. Dead Reckoning, however, does not allow users to set
the compression ratio a priori and usually leads to a relatively
low compression ratio.

G. SQUISH

We have developed a novel trajectory compression algo-
rithm called SQUISH [2]. This algorithm includes points in
a standard priority queue [17], with the priority of a point
being an estimate of the maximum SED error that could be
introduced if the point were to be removed. Given)\, the
target compression ratio, SQUISH keeps only 5 = n/\ points
in the queue. If a point is inserted into the queue when the
queue contains [points, the point with the lowest priority
(i.e., smallest estimated error) is removed from the queue in
O(log) time and the priorities of the points that were adjacent
to the removed point are updated in O(1) time. If pu, the
tolerable SED error, is given, SQUISH preserves in its queue
only the points whose priority is larger than p. Our previous
work [2] has shown SQUISH to be comparable to TD-TR, the

Directories
input="/benchmark/data/original/
output="/benchmark/data/compressed/ratiol0/

Executors with Compression Methods

executor=DefaultExecutor (SQUISH(*), 10.0)

executor=GuaranteedCompressionRatioExecutor (TDTR(%*),10,0.5)

Metrics

metrics=(SED, {Average, Maximum})

metrics=(HeadingError,

{Average, Maximum})

Fig. 2. Example Configuration File

most accurate algorithm, while running at significantly faster
speed.

V. BENCHMARKING FRAMEWORK
This section presents our benchmarking framework for
comparing trajectory compression algorithms. Section V-A
provides an architectural overview of the framework. Sec-
tions V-B and V-C explain the implementation details of
trajectory compression algorithms and evaluation metrics.

A. Overview

Our benchmark framework supports a wide spectrum of
trajectory compression algorithms, metrics for evaluating these
algorithms, and tools which facilitate the incorporation of
newly developed or extended algorithms and metrics. As
Figure 1 shows, this framework consists of a master server
which controls the overall system and worker servers that
evaluate compression algorithms using a collection of trajec-
tories. Whenever a trajectory is compressed, the values of
performance metrics (i.e., compression time and compression
ratio) as well as user-specified accuracy metrics (e.g., the
maximum SED error) are obtained. Accuracy error metrics are
measured by comparing the original trajectory and the com-
pressed representation of the trajectory (Section II-A). Then
these values are stored altogether as a record in a database table
(Figure 1). To execute the benchmark, a user only needs to
submit a configuration file (e.g., ratiol10.cfg in Figure 1)
to the master. Then, the master parses the configuration file,
constructs an evaluation plan, and assigns evaluation tasks to
available servers in the cluster.

Figure 2 shows an example configuration file. This

file specifies the directory on the shared file system
(e.g., benchmark/data/original) which contains
the trajectory collections (e.g., berlinmod_bus,

berlinmod_passenger, and others shown in Figure 1)
for benchmarking. These trajectories can be produced
by using the generators described in Section VI. In
addition to the above input directory, the configuration
file specifies the directory where the output trajectories
are stored, modules (e.g., DefaultExecutor and
GuaranteedCompressionRatioExecutor) for
executing compression algorithms, as well as performance
metrics (e.g., SED) and operations (e.g., Average and
Maximum) for obtaining aggregate metric values computed
over all of the points in the original trajectory.

The aforementioned DefaultExecutor and
GuaranteedCompressionRatioExecutor modules
are for accurately evaluating compression algorithms on a fair
basis despite their differences. For examples, algorithms such

Shared Database Table: ratio |0
traiTIthory executor ID Corr\t?rl;}e:sion O;iiiienal Comsﬁlzﬂzssed Ma;([iinsum _____
...Joriginal/berlinmod_bus/| DefaultExecutor(SQUISH(*), 10.0) 42.1 42569 4258 24 | ..
/original/belllli;;lmod_busll GuaranteedCompressionRa;;;éxecutor(TDTR(*), 10.0,0.5) 162.2 9970 998 I86
/original/be.;l.i.nmod_bus/3 GuaranteedCompressionRat.i.;Executor(TDTR(*), 10.0,0.5) I457 37745 3776 467

Shared Directory: .../benchmark/data/

v [benchmark
v [data

3
S 10.ct evaluation
ratiol0.c .
: ___________________ g} Parser plan Coordinator
A
- Communication Layer
master control
— nework
A A
data’ |control control | data
Communication Layer ¢ , Communication Layer
Execution Engine Execution Engine
GuaranteedCompressionRatio DefaultExecutor
Executor
TD-TR SQUISH
L } !
s~ |k e S
NS S

Fig. 1. Architecture of Benchmarking Framework

as SQUISH(A) and Uniform Sampling compress trajectories
while guaranteeing a specific compression ratio (Table I). In
contrast, algorithms such as SQUISH(u), Douglas-Peucker,
and TD-TR strive to maximize compression ratio under a
certain accuracy constraint. The DefaultExecutor on line
6 in Figure 2, runs the specified compression implementation
(e.g., SQUISH which implements SQUISH(A)) using the
specified parameter value (e.g., 10.0) when assigned to an
available server (Figure 1). If the compression time is too short
(e.g., 1 millisecond) to be considered a reliable measurement,
this module repeatedly runs the compression algorithm up
to a predefined amount of time (e.g., 10 seconds by default)
and then uses the average compression time obtained over
these recent executions . In contrast to DefaultExecutor,
GuaranteedCompressionRatioExecutor varies the
parameter value of the specified compression algorithm using
binary search until the compression ratio is within the desired
range (e.g., between 9.5 and 10.5 on line 8 in Figure 2).

B. Integration of Compression Algorithms

Our benchmarking framework represents each trajectory as
a Java object of the Trajectory type. Each Trajectory
object is an ordered collection of Point objects whose x, y
and t attributes represent the longitude, latitude, and time,
respectively, of a point in the trajectory. Each compression
algorithm implements the TrajectoryCompressor inter-
face which contains a method, compress (Trajectory
o) method, where o is the trajectory to compress. This
method returns a Trajectory object which is a compressed
representation of the original trajectory o.

Integrating a new compression algorithm into our bench-
marking framework requires only writing a Java class which

1
2
3
4
5
6
7

O 0NN B W=

v [compressed
» [ratiol0
v [ratio20
v | original
» | berlinmod_bus
\ » [berlinmod_passenger
» [berlinmod_truck
» L] brinkoff_city
» L brinkoff_erratic
» [brinkoff_highway
» [gaussian_constant_speed
» L] gaussian_random_walk
» L] gaussian_straight_line
L 100l

public class SED implements ErrorMetric {
public double evaluate (Trajectory c, Point p) {
return c.estimatedPoint (p.t) .distanceTo (p);
}

}

Fig. 3. Implementation of SED Metric

public class Maximum extends AggregateOperator {
double maximum = Double.NEGATIVE_INFINITY;
public void update (double value) {

maximum Math.max (maximum, value);

}

public double aggregateValue () {
return maximum;

}

}

Fig. 4. Implementation of Maximum Aggregate Operator

implements the TrajectoryCompressor interface, and
adding the name of that Java class and the parameter values
in the configuration file for benchmarking.

C. Integration of Evaluation Metrics

Our benchmarking framework supports all of the evaluation
metrics summarized in Section II. The actual code for the
accuracy metrics in Section II-A is written in the form of Java
classes which implement the ErrorMetric interface. This
interface contains a method, evaluate (Trajectory c,
Point p), which returns a numeric error value derived from
the compressed trajectory c with respect to a point p in the

original trajectory. Figure 3 shows our implementation of the
SED metric.

Our framework also provides aggregate operations for
obtaining a representative value (e.g., maximum, average)
computed with respect to all of the points in the original
trajectory. The classes that implements these operations extend
the AggregateOperator class. Figure 4 shows our code
that implements the Maximum aggregate operation. Custom
code for an error metric or an aggregate operation can be easily
incorporated into our benchmarking framework by writing a
Java class which implements the ErrorMetric or extends
the AggregateOperator class. The name of the new class
must then be added to the relevant configuration files.

VI. OUR TRAJECTORY GENERATORS

This section describes the trajectory generators that were
either modified or developed for our benchmarking framework.
Each generator was chosen to fulfill a unique niche, targeting a
particular aspect for compression. These generators include an
extended version of the Brinkhoff generator that can produce
relatively realistic trajectories with a tight control on the mov-
ing speed (Section VI-A), our Gaussian trajectory generator
which can significantly vary speed and heading (Section VI-B),
and the BerlinMOD generator which takes advantage of a
mature road network model (Section VI-C).

A. Modification of Brinkhoff Generator

The original Brinkhoff generator cannot produce long,
densely sampled trajectories. In particular, it can report vehicle
locations only at the end points of road segments. Furthermore,
it may drastically change the speed of a vehicle when it exits
or enters a new road. We extended this Brinkhoff generator so
that it can take into account arbitrary points on road segments
and support smoothing of travel speed.

This extended Brinkhoff generator provides three modes:
“Highway”, “City”, and “Erratic”. The “Highway” mode de-
termines the route of every trip with a preference to highways,
meaning the production of relatively straight trajectories that
represent fast movements. On the other hand, the “City” mode
prefers local roads to highways and therefore tends to generate
trajectories with more changes in speed and direction com-
pared to the “Highway” mode. The third “Erratic” mode pro-
duces trajectories which contain drastic, unpredictable speed
changes. All of these modes are implemented by changing the
weight of each road segment when the routes between a pair
of locations are determined using the A* algorithm.

B. Gaussian Generator

Due to the absence of an underlying network, free-moving
trajectory generators have a limitation in modeling moving
objects. To address this limitation, we developed a new free-
moving trajectory generator which varies the speed and head-
ing of an object according to statistics obtained from real-world
trajectories. Our analysis of data collected from commuters in
New York City [3] is shown in Figures 5 and 6, in which the
distribution of changes in speed and heading are approximated
using Gaussian distributions. For this reason, we call this
generator the Gaussian trajectory generator.

Given the current location (®,A) in a trajectory, the
Gaussian generator determines the next location (®’, A’) using
parameters that define changes in speed and heading. These pa-
rameters include pspeeqd and fipeading, Which denote the mean
of the changes in speed and in heading, respectively. Additional

-8 -6 -4 -2 o 2 4 6 8
Change in Speed (km/hr)

Fig. 5. Distribution of Changes in Speed

5 43210 1 2 3 4 5
Change in Heading (degrees)

Fig. 6. Distribution of Changes in Heading

parameters are the standard deviation of the changes in speed
and heading, which are denoted as 0 peeq and opeqding, respec-
tively. The current speed (A) and heading (©) are determined
by randomization formula described below (adjustments for
keeping A within a certain range are omitted):

A — A+ random() - Ospeed + fhspeed
© <= O +random() - Oheading + Hheading

Then, the next location (@', A’) is determined as follows:

&’ = asin(sin(®) cos(d/R) + cos(®) sin(d/R) cos(O))
A = A + atan2(w, ()

where R is the earth’s radius, d is the product of the
speed (A) and the sampling rate of the trajectory, w =
sin(0©) sin(d/R) cos(®), and ¢ = cos(d/R) sin(P) sin(P’).
Our Gaussian generator supports the following modes:
Straight Line (speed). This mode constructs trajectories that
maintain a constant heading, but contains Gaussian changes in
speed. This mode is used for evaluations that focus on speed
errors.
Constant Speed (heading). This mode produces trajectories
that maintain a constant speed, but contains Gaussian changes
in heading, which enables evaluations focused on heading
errors.
Random Walk (SED). This mode generates trajectories that
have Gaussian speed and heading changes. This mode is for
evaluating trajectory compression algorithms with an emphasis
on SED errors.

C. BerlinMOD Generator

The BerlinMOD trajectory generator uses a parameter
called the scale factor Y, which determines the duration of
the simulation in terms of the number of simulation days. For
our experiments, T was set to 0.05, which created a data set
spanning 6 days and consisting of 447 vehicles traveling a total
of 15,045 kilometers. Short trips were excluded from compres-
sion, leaving 2,566 trips, including 165 truck trips, 121 bus
trips, and 2, 280 passenger trips. The average trip distance was
16.1 kilometers. The mean speed was 42.5 kilometers per hour,
with a standard deviation of 18.2 kilometers per hour. The

TABLE IL COMPRESSION RESULTS FOR A COMPRESSION RATIO OF 10 (n: number of points in the input trajectory, 8: number of points kept in the

priority queue, v: number of points kept in the window)

[[UsS [DR [SQ(\) [SQ(w) [DP [TD-TR [OoPwW [OPW-TR H Average]
SED (meters) 158 | 14.3 10.2 9.7 | 332 8.6 24.4 13.3 16.2
Spatial (meters) 5.7 6.0 4.6 4.6 4.1 42 6.5 5.6 5.2
Speed (meters/sec) 253 | 244 21.4 19.1 23.8 17.8 22.0 24.4 22.3
Heading (degrees) 17.5 | 189 14.7 13.4 | 23.1 12.6 20.2 17.5 17.24
Compression Time (ms) 0.6 3.5 594 424 | 55.0 151.3 12.8 164.2 62.1
Memory Usage o) | 0() | Odog %) O(n) | O(n) O(n) O®) o) N/A

TABLE IIL ACCURACY RANKINGS FOR A COMPRESSION RATIO OF 10
[[US [DR [SQ(\) [SQ(w) [DP [TD-TR [OPW [OPW-TR]
SED 6 5 3 2 8 1 7 4
Spatial 6 7 4 3 1 2 8 5
Speed 8 6 3 2 5 1 4 7
Heading 4 6 3 2 8 1 7 5
[Overall Ranking [6.0 [6.0 [33 [2.3 [5.5 [1.3 [6.5 [5.3]

TABLE IV. PERFORMANCE RANKINGS FOR A COMPRESSION RATIO OF 10
[[GSTDR [SQM [SQ(x) | DP | TD-TR | OPW | OPW-TR |
Computation Time 1 2 6 4 5 7 3 8
Memory Usage 1 1 3 6 6 6 4 4
[Overall Ranking [1.0 [1.5] 45] 50 55] 65] 35] 6.0]

TABLE V. LIST OF COMPRESSION ALGORITHMS metric, the most accurate algorithm is TD-TR with a ranking

[Abbreviation | Algorithm Name] of 1.3 and the second and third most accurate are SQUISH(1x)

US Uniform Sampling and SQUISH(\) with rankings of 2.3 and 3.3, respectively.

DR Dead Reckoning A strong correlation can be observed in Table III between an

SQM) SQUISH(\) algorithm’s rank in the SED row and the algorithm’s ranks

SQ(x) SQUISH(p) in the speed and heading rows. SED also has an advantage

DP Douglas Peucker over spatial error in that it takes temporal data into account

TD-TR TD-TR (Section II-C). Due to these benefits, the remainder of this
OPW Opening Window section considers SED as a representative error metric.

OPW-TR Opening Window (SED) Table IV ranks trajectory compression algorithms accord-

mean acceleration was 4.1 km/ hrg, with a standard deviation
of 8.2 km/ hr?. In terms of the above statistics, there was no
significant difference among different travel modes.

VII. BENCHMARKING RESULTS

This section presents evaluation results that compare all of
the trajectory compression algorithms described in Section IV.
We obtained these results by running our benchmark with a
total of nine data sets from the three trajectory generators men-
tioned in Section VI. Each trajectory contained up to 37,000
points. In all of the evaluation cases, a compression ratio
of 10 is achieved. Table II summarizes the characteristics of
compression algorithms in terms of the error and performance
metrics defined in Section II. Table V shows the abbreviations
used to refer to the compression algorithms in Tables II, III,
IV, and VI

To highlight the benefits of each compression algorithm
relative to the other algorithms, Tables III and IV present
the rankings of these algorithms in terms of accuracy and
performance, respectively. For example, Table III shows that,
among the 8 compression algorithms that are compared, TD-
TR achieves the smallest average SED error. In contrast,
Douglas-Peucker results in the largest average SED error. The
overall ranking of each compression algorithm in Table III is
obtained by averaging the rankings of the algorithm in the
SED, spatial, speed and heading error rows. In terms of this

ing to performance metrics, which indicate the average amount
of time and space used for compressing trajectories. The algo-
rithm that incurs the lowest computation and space overhead is
Uniform Sampling, followed by Dead Reckoning and Opening
Window. SQUISH()) ranks the fourth in overall performance,
but achieves much more accurate compression than the above
three. Furthermore, both SQUISH(\) and SQUISH(p) signif-
icantly outperform TD-TR, the most accurate algorithm, in
terms of speed and memory efficiency at the expense of slightly
lower accuracy.

Table VI presents the average SED achieved by each
compression algorithm for a compression ratio of 10 and for
each of nine data sets obtained from three data generators.
The table shows that the average SED can vary significantly
depending on the compression algorithm and the data set. For
example, Douglas-Peucker results in an average SED of 95.1
meters for trajectories produced by our Gaussian generator in
the “Random Walk” mode. In contrast, both SQUISH(x) and
TD-TR achieve an average SED of 0.9 meters for trajectories
produced by the Brinkhoff generator in the “Highway” mode.

Table VI shows the advantage of our Gaussian trajectory
generator which allows us to observe the effectiveness of
compression algorithms under significant changes only in
speed (“Straight Line”), only in direction (“Constant Speed”),
and in both speed and direction (“Random Walk™). The benefit
of BerlinMOD is that it more accurately models typical urban
transportation patterns and fluctuations than other generators.

TABLE VI.

AVERAGE SED (IN METERS) FOR EIGHT COMPRESSION ALGORITHMS AND NINE DATA SETS FROM THREE TRAJECTORY GENERATORS

(compression ratio: 10)

| [US| DR [SQX) [SQ(x) [DP | TD-TR | OPW | OPW-TR | Average |

Gaussian - Random Walk 56.3 | 61.2 51.9 52.1 | 95.1 474 66.1 60.9 61.4

Gaussian - Constant Speed | 15.2 | 16.7 15.0 13.5 | 22.6 10.9 17.5 18.3 16.2

Gaussian - Straight Line 15.1 | 20.0 13.0 11.9 0.0 10.3 0.0 17.0 14.6

BerlinMOD - Bus 10.3 9.3 4.6 34 | 41.8 32 22.7 7.8 12.9

BerlinMOD - Passenger 7.4 8.1 4.1 33 | 382 2.9 21.6 7.0 11.6

BerlinMOD - Truck 37.7 8.5 4.1 3.3 | 70.5 2.8 70.8 7.2 25.6

Brinkhoff - City 1.7 1.3 0.4 0.3 34 0.4 1.1 0.9 1.2

Brinkhoff - Highway 3.0 2.4 1.0 0.7 6.9 0.7 8.0 1.8 3.1

Brinkhoff - Erratic 104 | 149 8.4 11.9 | 20.7 7.2 11.8 11.9 12.1

[Average [17.5 [15.8 [11.4 [11.2 [374 [9.5 [27.5 [14.8 H 17.7]

For this reason, the accuracy results from BerlinMOD in Ta- [2] Jonathan Muckell, Jeong-Hyon Hwang, Vikram Patil, Catherine T.
ble VI are consistent with our previous evaluation results which Lawson, Fan Ping, and S. S. Ravi. SQUISH: an online approach for
used actual GPS trajectory data [2], [3]. The Brinkhoff gener- GPS trajectory compression. In COM.Geo II,.pages 13.1-13.8, 2011.
ator has the limitation that it cannot produce as realistic trajec- (3] Jonathan Muckell, Jeong-Hyon Hwang, Catherine T. Lawson, and S. S.

. . . . Ravi. Algorithms for compressing GPS trajectory data: An empirical
tories as Be.rlmM.OD. HOWGV.CI‘, our extension to Brlnk_hqff can evaluation. In Proceedings of the 18th SIGSPATIAL International
produce trajectories with a tight control over the variation of Conference on Advances in Geographic Information Systems, GIS *10,
speed. In particular, the “Erratic” mode of Brinkhoff produces pages 402-405, New York, NY, USA, 2010. ACM.
trajectories with significantly varying speed. Therefore, when [4] D.H. Douglas and T.K. Peucker. Algorithms for the reduction of the
TD-TR, SQUISH()), and SQUISH(x) compress these trajec- number of points required to represent a line or its caricature. The
tories, the average SED values are relatively high compared C‘f"“‘]’f’" Cartographer, 10(2):112-122, 1973. . .
to when they process trajectories produced in other modes of [5] Ml.chahs Potamias, Kostas .Patrournpas, apd VTlmos Sellis. Samphng
Brinkhoff by BerlinMOD. H th SED val trajectory streams with spatio-temporal criteria. In /8th International

?ln OIL, or by berlin - HOWevVer, ese. va ueS. al:e Conference on Scientific and Statistical Database Management (SS-
still small compared to the case of compressing less realistic DBM’06), pages 275-284, 2006.
tra]?Ctorle.S produced by our Gauss'lan generator. The reason [6] Nirvana Meratnia and Rolf A. de By. Spatiotemportal compression tech-
behind this phenomenon is that Brinkhoff has the advantage niques for moving point objects. In Advances in Database Technology,
of using an underlying network model, which avoids drastic volume 2992, pages 551-562. Springer Berlin / Heidelberg, 2004.
changes in speed and direction. [71 Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani.
An online algorithm for segmenting time series. In Proceedings of the
2001 IEEE International Conference on Data Mining, ICDM 01, pages
VIII. CONCLUSION 289-296, 2001.

Numer.ous traJectory compressmn algorlthms have been [8] Goce Trajcevski, Hu Cao, Peter Scheuermann, Ouri Wolfson, and
proposed in the literature. This paper presents a new bench- Dennis Vaccaro. On-line data reduction and the quality of history in
marking framework that allows users to conveniently and moving objects databases. In Proceedings of the 5th ACM Interna-

; ; 3 : tional Workshop on Data Engineering for Wireless and Mobile Access
efficiently evaluate these algorithms. Due to its extensible and

. . .. (MobiDE’06), pages 19-26, New York, NY, USA, 2006. ACM.
scalable design, this framework facilitates the development K o
. [9] Ralf H Guting, Thomas Behr, and Christian Duntgen. Second: A
and integration of new trajectory compression algorithms, . - e
) . . platform for moving objects database research and for publishing and
an.d enables lf':lrge—scale evaluations of compression a]gorlthms integrating research implementations. In Fachbereich Informatik, 2010.
using a possibly large number of servers. .Furthermorez thls [10] Thomas Brinkhoff. A framework for generating network-based moving
framework can effectively measure the efficiency and reliabil- objects. Geolnformatica, 6:153-180, 2002.
ity of compression algorithms using both realistic and irregular [11] M. Karpinski, A. Senart, and V. Cahill. Sensor networks for smart

trajectories. This paper provides a comprehensive overview of
trajectory compression algorithms and metrics for evaluating
them. Their unique trade-offs and appropriate use cases are
also discussed in detail according to actual evaluation results
from the benchmarking framework. We intend to release the
source code of our benchmarking framework by the summer
of 2013.

IX. ACKNOWLEDGEMENTS
This work has been supported by the National Science
Foundation under CAREER award IIS-1149372 as well as
the Research and Innovative Technology Administration of
the U.S. Department of Transportation through the Region 2 -
University Transportation Research Centers Program.

REFERENCES

[1] Kathryn Zickuhr. Three-quarters of smartphone owners use location-
based services. Technical report, Pew Research Center, 2012.

[12]

[13]

[14]

[15]

[16]

[17]

roads. Pervasive Computing and Communications Workshops, 2006.

J.G. Harper. Traffic violation detection and deterrence: Implications for
automatic policing. Applied Ergonomics, 22(3):189 — 197, 1991.
Dieter Pfoser and Yannis Theodoridis. Generating semantics-based
trajectories of moving objects. In International workshop on emerging
technologies for geo-based applications, pages 59-76, 2000.

Theodoros Tzouramanis, Michael Vassilakopoulos, and Yannis
Manolopoulos. On the generation of time-evolving regional data.
Geolnformatica, 6:207-231, 2002.

Jean-Marc Saglio and José Moreira. Oporto: A realistic scenario
generator for moving objects. Geolnformatica, 5:71-93, 2001.

Jaime Barcel6 et al. Simulation modelling applied to road transport
european scheme tests (SMARTEST) - Review of microsimulation
models. In Institute for Transport Studies, University of Leeds, 1998.

T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press and McGraw Hill, 2009.

