
Algorithms for Compressing GPS Trajectory Data: An
Empirical Evaluation

Jonathan Muckell
Dept. of Informatics

University at Albany–SUNY
Albany, NY 12222

jonmuckell@gmail.com

Jeong-Hyon Hwang
Dept. of Computer Science
University at Albany–SUNY

Albany, NY 12222
jhh@cs.albany.edu

Catherine T. Lawson
Dept. of Geography &

Planning
University at Albany–SUNY

Albany, NY 12222
lawsonc@albany.edu

S. S. Ravi
Dept. of Computer Science
University at Albany–SUNY

Albany, NY 12222
ravi@cs.albany.edu

ABSTRACT
The massive volumes of trajectory data generated by inexpensive
GPS devices have led to difficulties in processing, querying, trans-
mitting and storing such data. To overcome these difficulties, a
number of algorithms for compressing trajectory data have been
proposed. These algorithms try to reduce the size of trajectory data,
while preserving the quality of the information. We present re-
sults from a comprehensive empirical evaluation of many compres-
sion algorithms including Douglas-Peucker Algorithm, Bellman’s
Algorithm, STTrace Algorithm and Opening Window Algorithms.
Our empirical study uses different types of real-world data such as
pedestrian, vehicle and multimodal trajectories. The algorithms are
compared using several criteria including execution times and the
errors caused by compressing spatio-temporal information, across
numerous real-world datasets and various error metrics.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—Spatial
databases and GIS

General Terms
Algorithms and Applications

Keywords
Trajectories, Compression, Error Metrics

1. INTRODUCTION
In recent years, the number of GPS-enabled devices sold has
drastically increased, following an impressive exponential trend.
Canalys, an information technology firm that studies market pat-
terns, reported a 116% increase in the number of GPS units sold

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’10 , November 2-5, 2010. San Jose, CA, USA
Copyright 2010 ACM 978-1-4503-0428-3/10/11 ...$10.00

between 2006 and 2007 [4]. Location-based services and applica-
tions built from GPS-equipped mobile devices is a rapidly expand-
ing consumer market. In 2009, there was an estimated 27 million
GPS-equipped smart phones sold, bringing the world-wide GPS
user-base to at least 68 million in the consumer market alone [5].

Data generated from GPS units are commonly used in a variety
of business and public sector applications, such as supply-chain
management and traffic modeling [7, 9, 12]. These efforts are be-
ing hampered by the sparse nature of data collection strategies, the
sheer volume of the data, and technical issues associated with the
use of the data. The enormous volume of data can easily over-
whelm human analysis. If data is collected at 10 second intervals, a
calculation due to Meratnia and de By [11] shows that without any
data compression, 100 Mb of storage capacity is required to store
just over 400 objects for a single day. This motivates the need for
automated methods to compress and analyze the data. As a result,
database support for storing and querying GPS traces is an area of
active research [1, 15].

Transportation mode is defined as the method of traveling be-
tween locations (e.g, walking, bus, rail or airplane). The character-
istics of a GPS trace (i.e., changes in direction, accuracy, speed and
acceleration) differ substantially based on the transportation mode
of the moving object. In this empirical study, we identify three data
profiles based primarily on the transportation mode: buses, urban
pedestrians and multimodal travel (involving modes such as walk-
ing, vehicle, subway or rail). Understanding how well each algo-
rithm compresses traces from different transportation modes assists
in matching the appropriate compression technique to business and
organizational requirements.

Various metrics have been previously defined in the literature to
measure the information loss associated with compression. How-
ever, to the best of our knowledge, no previous work has compared
these metrics across a wide range of compression algorithms and
across different transportation modes. In this research, seven dif-
ferent compression algorithms presented in the literature are com-
pared on the basis of their actual execution times as well as sev-
eral error metrics. These metrics allow the determination of the
strengths and weakness of each algorithm on the different trans-
portation modes.

Table 1: Summary of GPS Trajectory Algorithms
Algorithm Running Time Error Metrics
Uniform Sampling O(n) N/A
Douglas-Peucker O(n logn) Spatial Distance
TD-TR O(n2) Time Distance Ra-

tio
OPW-TR O(n2) Time Distance Ra-

tio
OPW-SP O(n2) Time Distance Ra-

tio, Max Speed
Bellman’s O(n2) Spatial Distance
STTrace O(n2) Synchronized Eu-

clidean Distance,
Heading, Speed

A more detailed version of this paper is available as a technical
report [13].

2. TRAJECTORY-SPECIFIC ERROR MET-
RICS

Algorithms for compressing GPS trajectories attempt to minimize
one or more of the following error metrics: spatial distance, syn-
chronized Euclidean distance (sed), time-distance ratio, speed and
heading (which indicates the direction of the moving object). Ta-
ble 1 lists the seven algorithms compared in this study, along with
their worst-case running times and the metric(s) they attempt to
minimize. The metrics considered by the algorithms serve as a log-
ical mechanism for distinction and classification.

Synchronized Euclidean distance (sed) measures the distance be-
tween two points at identical time stamps [14]. To quantify the
error introduced by the missing points, distance is measured at the
identical time steps. The total error is measured as the sum of the
distance between all points at the synchronized time instants, as
shown below.

sed =

n∑
i=1

√
(xti − x′

ti
)2 + (yti − y′

ti
)2

In the above expression, (xti , yti) and (x′
ti , y

′
ti) represent the co-

ordinates of a moving object at time ti in the uncompressed and
compressed traces respectively. Also, n represents the total num-
ber of points considered.

Another trajectory error metric is the time-distance ratio proposed
by Meratnia and de By [11]. This metric uses both spatial and tem-
poral information to determine whether to store or discard points.
The temporal component is the ratio of two time intervals: the
travel time across the original trajectory and the travel time across
the approximation. The spatial component is the positions of dis-
crete points from both trajectories. Various compression tech-
niques such as the opening window algorithms OPW-TD and OPW-
SP, and the modified version of Douglas-Peucker TD-TR, use the
above time-distance ratio in order to select points for compression.

3. OVERVIEW OF COMPRESSION ALGO-
RITHMS

The Douglas-Peucker Algorithm [6] is a popular line generaliza-
tion heuristic, commonly used to fit a series of line segments to a
curve, thereby reducing storage requirements. Often implemented

in computer graphics applications, the Douglas-Peucker algorithm
is applicable in a variety of geospatial applications. Hershberger et
al. present an implementation of this algorithm with a running time
of O(n logn) where n is the number of original points [8].

Despite the popularity of line generalization algorithms for a wide
range of applications in cartography and computer graphics, Mer-
atnia and de By indicate that such algorithms are not suitable for
GPS trajectory data since both spatial and temporal data should be
taken into account [11]. To fit the dataset more accurately, an al-
gorithm called TD-TR [11] modifies the distance formula of the
Douglas-Peucker algorithm to utilize the temporal component of
the trajectory data stream.

Similar to the Douglas-Peucker and TD-TR algorithms, Opening
Window Algorithms fit numerous line segments to the original GPS
trajectory data. Two points are used to fit each line segment: the
first point in the series, called the anchor, and the third point in
the series called the float. If the distance between the original
and the compressed sequence is greater than the defined error tol-
erance, then either the point causing the maximum error is added
to the compressed series (Normal Opening Window Algorithm or
NOWA) or the point just before the one that causes the maximum
error is added (Before Opening Window or BOPW). If the thresh-
old is not violated, the float slides forward to each subsequent point
in the GPS trace until either a violation occurs or the end of the trace
is reached. Algorithm OPW-TR [11] is a modified opening window
algorithm that incorporates both the spatial distance and the tempo-
ral distance (time-distance error ratio) to determine when the error
threshold is violated. Another algorithm called OPW-SP [11] is
similar to OPW-TR except that an additional condition is included
when deciding whether or not to add a point. This condition allows
a new point to be added when the speed error introduced is greater
then a user-defined tolerance.

Bellman’s algorithm [2, 3], based on dynamic programming, also
fits a sequence of line segments to a curve. The solution produced
by the algorithm is provably optimal; the algorithm minimizes the
root mean square (RMS) error under specific conditions. There-
fore, Bellman’s algorithm can be thought of as providing a very ac-
curate compression of the GPS data, preserving the most important
information. A straightforward implementation of the algorithm
has a worst-case running time of O(n3), where n is the number
of points in the trajectory. This is a serious drawback when large
traces must be compressed. Using additional storage, the running
time of the algorithm can be reduced to O(n2) [10].

The STTrace algorithm [14] is designed to preserve spatio-
temporal, heading and speed information in a trace. A hybrid be-
tween an online and batch approach, STTrace defines a safe area by
first using the previous two points in the series. A vector defining
the speed and direction between the two locations is used to pre-
dict the location of the next point. Two input parameters are used
to make this prediction. One of these parameters is the speed toler-
ance which defines how much the speed can vary while still remain-
ing in the predicted range. The other input parameter is the heading
tolerance that defines how much the heading can vary while still re-
maining in the predicted range.

4. DATA COLLECTION METHODS
For this research, two distinct datasets were collected; one dataset
was obtained from a fleet of buses in Albany, New York (Public-
Transit dataset); another was obtained from 24 volunteers at the

Figure 1: Algorithm Execution Time across different compres-
sion algorithms and travel modes. Input GPS trajectories con-
sist of 30,000 points.

New York Metropolitan Transportation Council (NYMTC dataset).

The Public-Transit dataset was obtained from GPS units on-board
buses traveling in Albany, New York, over a period of 12 weeks
during from October to December, 2009. Forty one buses were
tracked during this time period, operating on four different routes.
The data for the buses was separated for each day the bus was
tracked, resulting in over 3144 trajectories. GPS devices were orig-
inally installed in these vehicles in order to measure the on-time
performance and to determine an optimal routing of buses for the
public transportation system in Albany. Bus routes were fairly con-
stant over the time period in which the buses were monitored, but
traffic, weather and other variables caused significant variation for
each bus across the different traces. The on-time performance of
the buses was between 60 and 70 percent, indicating significant
deviation from the bus schedule.

In the second dataset, twenty four volunteers at the New York
Metropolitan Transportation Council (NYMTC) were recruited and
asked to carry GPS units for one weekday. Each GPS unit was con-
figured to automatically log the person’s position every 5 seconds
along with date, time, speed, etc. Each respondent was asked to
turn on the GPS unit at the beginning of each day and carry the unit
with them at all times. The GPS unit was only turned off at the end
of the day when the person came home and didn’t plan to go out
again.

5. PERFORMANCE COMPARISON
5.1 Comparison Based on Execution Times
The actual execution time of each algorithm across the three travel
modes are shown in Figure 1. Since higher compression ratios typ-
ically result in slower run-times, a common compression ratio of
7 was chosen for each trace; therefore, the final size of the com-
pressed trace is (1/7)th the original size. There was no significant
difference in the run-time performance for any algorithm among
the different travel modes when the common compression ratio of
7 was used.

Substantial differences in the run-time performance among the dif-
ferent algorithms was observed. STTrace was by far the slowest
algorithm, with an execution time of about 40 seconds; not sur-

Figure 2: Difference in spatiotemporal error across different
compression algorithms and travel modes. Error is measured
using median synchronized Euclidean distance.

prisingly, uniform sampling was the fastest, with an execution time
of about 0.002 seconds. STTrace incurs significant computational
overhead due to the calculation of the points that define the safe
area polygons and the test to determine whether additional points
reside within the convex hull of the polygons. In contrast, uniform
sampling is very fast since it simply chooses every ith point from
the original trace. In our experiments, i was set to 7 to achieve a
compression ratio of 7.

5.2 Comparison Based on Error Metrics
A comparison of the algorithms with respect to the median syn-
chronized Euclidean distance (sed) error metric (shown in Figure 2)
demonstrates significant differences among the various algorithms,
as well as the three travel modes. All algorithms were compared at
a common compression ratio of seven, and on the same input data
size of 5, 000 points. On average, the bus dataset had the highest
degree of error, followed by the pedestrian travel mode; the multi-
modal dataset had the least amount of error. The bus dataset has two
properties that make compression difficult. First, GPS units inside
the bus have an obstructed view of the sky, leading to horizontal di-
lution of precision (HDOP). This causes the location data to be less
accurate. The second reason is that it is common for buses to stop
either due to traffic or due to designated stops. High error, com-
bined with frequent stops, causes random fluctuations and noise to
be introduced into the GPS trajectory, resulting in less redundancy
and higher measured error between the original and the compressed
traces.

The pedestrian dataset had a higher median sed error rate than the
multimodal dataset. The reason for this is similar to the bus dataset,
in that GPS units in a complex urban environment, such as New
York City, often have low accuracy due to the urban canyon effect
that occurs from the reflection of GPS signals off tall buildings.
Furthermore, pedestrians can often change directions and walk in-
side buildings, which causes difficulties when compressing the tra-
jectories. In contrast, the multimodal dataset has individuals that
are sometimes outside of urban areas, traveling in cars or trains.
Travel on major roadways and trains leads to less fluctuation in
movement, speed and heading.

For the seven algorithms, the results of the median difference in

Figure 3: Difference in median speed error across different
compression algorithms and travel modes.

speed between the original trajectory and the compressed trajectory
are shown in Figure 3. Similar to the sed error metric results, the
bus dataset had the highest error rate compared to pedestrian and
multimodal datasets. This is most likely due to the near constant
fluctuations in speed that occur due to bus stops and traffic condi-
tions. Furthermore, unlike the pedestrian dataset, buses are capable
of a high rate of speed, allowing the amount of speed change to
be far greater than an individual traveling by foot. The multimodal
data contained traces with more or less uniform velocities, thereby
reducing the amount of error compared to the bus dataset.

6. DISCUSSION AND CONCLUSION
We believe that this empirical study fills a gap in the literature, by
comparing numerous algorithms on the same dataset using differ-
ent error metrics. By comparing these different algorithms side-
by-side, trade-offs between accuracy and computation time can be
evaluated on an equal footing. By understanding how well these
compression algorithms work on traces corresponding to different
transportation modes, application-specific compression can be used
to determine the best algorithm for a specific context.

A key finding of this study is the substantial difference in the com-
pression performance based on the travel mode. This suggests that
there is no one-size-fits-all approach in selecting a compression al-
gorithm. Application-specific algorithms are needed to match the
best algorithm to the type of information utilized by the application
or business process.

In this work, the effectiveness of the compression techniques was
measured using metrics that indicate how well spatiotemporal in-
formation is preserved and the actual run-times of the techniques.
Since compressed representations are also used to process queries,
it is of interest to study the effectiveness of the compression tech-
niques using application-specific metrics that quantify the differ-
ences in the responses to queries on uncompressed and compressed
representations.

Acknowledgments
We thank the reviewers of ACM SIGSPATIAL GIS 2010 for their
comments. Special thanks to Professor Siwei Lyu (Computer Sci-
ence Department, University at Albany) for his assistance in var-
ious stages of this work. This work is supported in part by the

Research and Innovative Technology Administration of the U.S.
Department of Transportation through the Region 2 - University
Transportation Research Centers (UTRC) Program and the Uni-
versity at Albany through the Faculty Research Awards Program
(FRAP) - Category A.

7. REFERENCES
[1] P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Erickson,

M. Isard, S. HarPeled, J. Hershberger, C. Jensen, and
L. Kavraki. Algorithmic Issues in Modeling Motion. ACM
Computing Surveys, 34:550–572, 2002.

[2] R. Bellman and S. Dreyfus. Applied Dynamic Programming.
Princeton University Press, Princeton, NJ, 1962.

[3] R. E. Bellman. On the Approximation of Curves by Line
Segments Using Dynamic Programming. CACM, 4(6):284,
1961.

[4] Canalys. Worldwide Mobile Navigation Device Market More
Than Doubles. Technical report, Canalys Research Release,
2007.

[5] Canalys. North America Overtakes EMEA as Largest
Satellite Navigation Market. Technical report, Canalys
Research Release, 2009.

[6] D. Douglas and T. Peucker. Algorithms for the Reduction of
the Number of Points Required to Represent a Line or its
Caricature. The Canadian Cartographer, 10(2):112–122,
1973.

[7] S. P. Greaves and M. A. Figliozzi. Commercial Vehicle Tour
Data Collection Using Passive GPS Technology: Issues and
Potential Applications. Transportation Research Record,
2049:158–166, 2008.

[8] J. Hershberger and J. Snoeyink. Speeding Up the
Douglas-Peucker Line Simplification Algorithm, 1992.

[9] C. Jones and J. Sedor. Improving the Reliability of Freight
Travel. Public Roads, 70(1), 2006.

[10] J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley, Reading, MA, 2005.

[11] N. Meratnia and R. A. de By. Spatiotemportal Compression
Techniques for Moving Point Objects. In Advances in
Database Technology, volume 2992, pages 551–562.
Springer, Berlin/Heidelberg, 2004.

[12] J. Muckell, Q. Cao, P. Mackenzie, D. Messier, and J. Salvo.
Toward an Intelligent Brokerage Platform: Mining Backhaul
Opportunities in Telematics Data. Transportation Research
Record, 2097:1–8, 2009.

[13] J. Muckell, J. Hwang, C. Lawson, and S. Ravi. Algorithms
for Compressing GPS Trajectory Data: An Empirical
Evaluation. Technical Report SUNYA-CS-10-06, Computer
Science Department, University at Albany – SUNY, 2010.

[14] M. Potamias, K. Patroumpas, and T. Sellis. Sampling
Trajectory Streams with Spatiotemporal Criteria. In 18th Intl.
Conf. on Scientific and Statistical Database Management
(SSDBM’06), pages 275–284, 2006.

[15] H. Zhu, J. Su, and O. H. Ibarra. Trajectory Queries and
Octagons in Moving Object Databases. In Proc. 11th CIKM,
pages 413–421. ACM Press, 2002.

