
TrajMetrix: A Trajectory Compression Benchmarking
Framework∗

Kyuseo Park
†

, Jeremy Birnbaum
†
, Paul Olsen Jr.

†
, Yuchao Ma

†
, Jayadevan Vijayan

†
,

S. S. Ravi
†
, Jeong-Hyon Hwang

†
, Jonathan Muckell

‡
, Catherine T. Lawson

§

University at Albany – State University of New York, USA
{kpark, jbirn, polsen, yma, appu, ravi, jhh}@cs.albany.edu,

jonmuckell@gmail.com, lawsonc@albany.edu

ABSTRACT
Trajectory compression algorithms enable efficient transmis-
sion, storage, and processing of trajectory data by eliminat-
ing redundant information. While a large number of com-
pression algorithms have been developed, there is no com-
prehensive and convenient benchmarking system for evalu-
ating these algorithms. We will demonstrate TrajMetrix,
our system that meets the above need. We will show how
TrajMetrix can be used to gain insights into the benefits and
drawbacks of various compression algorithms given different
compression requirements.

From the knowledge attained by using TrajMetrix, we de-
veloped SQUISH-E (Spatial QUalIty Simplification Heuris-
tic - Extended). This algorithm uses a priority queue to
preferentially remove points based on the error introduced
by their removal. Through live demonstrations that use
both synthetic and real data sets, we will show the ability of
SQUISH-E to effectively bound compression error with low
computational overhead.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Experimentation, Measurement, Performance

∗This work has been supported by the National Science
Foundation under CAREER award IIS-1149372 as well as
the Research and Innovative Technology Administration of
the U.S. Department of Transportation through the Region
2 - University Transportation Research Centers Program.
†Department of Computer Science
‡Department of Informatics
§Department of Geography and Planning

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.
Copyright is held by the owner/author(s).

SIGSPATIAL ’13, Nov 05-08 2013, Orlando, FL, USA
ACM 978-1-4503-2521-9/13/11.
http://dx.doi.org/10.1145/2525314.2525326

Keywords
trajectory, compression, benchmarking

1. INTRODUCTION
The proliferation of GPS-equipped mobile devices has led

to the rapid production of trajectory data. To efficiently
store and process these data, a variety of trajectory com-
pression algorithms have been developed [1, 2, 3, 4, 5, 9,
10]. These algorithms have different trade-offs in terms of
compression time and compression ratio, thereby making it
difficult to select the most suitable algorithm in practical
situations. We are not aware of any standardized bench-
marking framework for comparing trajectory compression
algorithms.

We developed TrajMetrix, a system for efficiently and ac-
curately evaluating trajectory compression algorithms. Tra-
jMetrix allows users to easily examine various compression
algorithms, evaluation metrics, and trajectory data sets. It
also facilitates the incorporation of new compression algo-
rithms and metrics. TrajMetrix evaluates compression al-
gorithms on a fair basis despite their inherent differences
(e.g., one algorithm may maximize compression ratio given
an error tolerance, whereas another may achieve a target
compression ratio while minimizing one type of error). Tra-
jMetrix also provides trajectory generators that take advan-
tage of realistic traffic flow models or that enable a tight
control over the variation of traffic speed and direction. Fur-
thermore, TrajMetrix supports large-scale evaluations that
fully utilize the collective capability of a server cluster.

The lessons learned by using TrajMetrix enabled us to de-
velop SQUISH-E (Spatial QUalIty Simplification Heuristic -
Extended) [7], an enhanced version of our previous SQUISH
algorithm [6]. SQUISH-E uses a priority queue of points,
where the priority of each point is set to an upper bound
of the error that would be introduced by removing that
point. Points of the lowest priority are then removed from
the queue as long as a user-specified error requirement is
met. In this way, SQUISH-E enables fast and effective com-
pression with provable guarantees on compression error.

Our demonstrations will exhibit the aforementioned bene-
fits of TrajMetrix and SQUISH-E. Using both synthetic and
real data sets, we will also show the different benefits of tra-
jectory compression algorithms and their dependence on the
characteristics of trajectory data.

The remainder of this demonstration proposal is organized
as follows: Section 2 presents an overview of TrajMetrix.
Section 3 explains the SQUISH-E algorithm. Section 4 de-

scribes the demonstration environment, interface, and spe-
cific demonstration scenarios.

2. SUMMARY OF TRAJMETRIX
This section summarizes the evaluation metrics (Sec-

tion 2.1), compression algorithms (Section 2.2), and data
generators (Section 2.3) supported by TrajMetrix as well as
the architecture of TrajMetrix (Section 2.4).

2.1 Metrics
A trajectory of length n contains points Pi(xi, yi, ti) for

i ∈ {1, 2, · · · , n}, where xi and yi are the longitude and
latitude of a moving object at time ti. TrajMetrix provides
metrics for evaluating compression algorithms that produce,
given a trajectory T , a compressed representation T ′ of T .
These metrics include compression time (i.e., the amount of
time it takes to compress trajectory data), compression ra-
tio (i.e., the size of the original trajectory T divided by the
size of the compressed representation T ′), and error metrics
defined as follows: (1) The spatial error of T ′ with respect
to a point Pi in T is defined as the distance between (xi, yi)
and (x′i, y

′
i), where x′i and y′i are obtained from T ′ as esti-

mates of xi and yi. (2) While spatial error ignores temporal
data, the Synchronized Euclidean Distance (SED) between
point Pi(xi, yi, ti) and its estimation P ′i (x

′
i, y
′
i, ti) is defined

as the distance between (xi, yi) and (x′i, y
′
i), where x′i and

y′i are obtained from T ′ for time point ti. (3) Both speed
and heading errors are determined in a way similar to SED,
except that they capture the difference in speed and heading
between the actual and estimated movements.

2.2 Compression Algorithms
TrajMetrix supports various trajectory compression algo-

rithms [1, 3, 4, 5, 9, 10] (refer to [7] for details of these al-
gorithms). Uniform Sampling achieves a target compression
ratio whereas Douglas-Peucker and Opening Window ensure
spatial error within a specified bound. Dead Reckoning, TD-
TR, and OPW-TR limit SED under a specified bound. Our
SQUISH-E algorithm is summarized in Section 3. New com-
pression techniques can also be incorporated into TrajMetrix
if they are implemented using our API [8].

2.3 Trajectory Generators
In addition to supporting real-world data sets, TrajMetrix

provides two trajectory generators. The first one, called
Gaussian Generator, varies the speed and direction of mov-
ing objects according to statistics obtained from actual tra-
jectories. This generator enables a tight control over varia-
tions in speed and direction. Therefore, it can be effectively
used for evaluating the reliability of trajectory compression
algorithms. Another trajectory generator overcomes a limi-
tation of the Brinkhoff generator which cannot produce long,
densely sampled trajectories (refer to [8] for further details
of these two generators).

2.4 Architecture of TrajMetrix
TrajMetrix consists of a master server which controls the

overall system and worker servers that evaluate compression
algorithms for a subset of trajectories (Figure 1). As further
explained in Section 4.3, the master reads a configuration file
that specifies the location of trajectory data, the compres-
sion algorithms to evaluate (Section 2.2), as well as evalu-

Execution Engine

Parser Coordinator

evaluation
plan

master

configuration file

Communication Layer

network

Execution Engine

Communication Layer

evaluation task

DefaultExecutor

Uniform Sampling

Communication Layer

GuaranteedCompressionRatio
Executor TD-TR

…

GUI
control

results Result
Aggregator

evaluation result

evaluation result

trajectories

evaluation task evaluation result evaluation task evaluation result

worker worker

Figure 1: TrajMetrix Architecture

ation metrics (e.g., compression time, SED) and result ag-
gregation methods (e.g., average, maximum). After parsing
the configuration file, the master reads the relevant trajec-
tory data from the file system and then assigns evaluation
tasks to available workers in the cluster. Each evaluation
task involves a subset of trajectories, a compression algo-
rithm, evaluation metrics, aggregation methods, the target
compression ratio (e.g., 5.0), and either a DefaultExecutor

or a GuaranteedCompressionRatioExecutor.
The DefaultExecutor and GuaranteedCompressionRa-

tioExecutor are for accurately evaluating compression al-
gorithms on a fair basis despite their differences. A Defaul-

tExecutor runs an algorithm, such as Uniform Sampling,
which compresses trajectories while guaranteeing a speci-
fied compression ratio. If the compression time is too short
(e.g., 1 millisecond) to be considered a reliable measurement,
the DefaultExecutor repeatedly runs the compression algo-
rithm up to a predefined amount of time (e.g., 1 second) and
then uses the average compression time obtained over these
recent executions. For algorithms such as Douglas-Peucker
and TD-TR, which ensure a specified error bound, the Guar-
anteedCompressionRatioExecutor varies the error bound
using binary search until the compression ratio is within the
desired range (e.g., between 4.5 and 5.5).

In addition to the compression time mentioned above, er-
ror metrics are measured by comparing each original tra-
jectory and the compressed representation of that trajec-
tory (Section 2.1). The error metric values are then ag-
gregated for each result aggregation method (e.g., average,
maximum). These aggregated results are then sent back to
the master and then further aggregated before they are pre-
sented to the user. TrajMetrix has an extensible architecture
that facilitates the incorporation of new compression algo-
rithms, error metrics, and result aggregation methods (refer
to [8] for further details).

3. SQUISH-E
The key idea of SQUISH-E is to use a priority queue Q,

where the priority of each point is defined as an upper bound
of the SED error that would be introduced by removing that
point [7]. SQUISH-E can remove a point with the lowest
priority from Q in O(log |Q|) time, where |Q| denotes the
number of points stored in Q. Therefore, SQUISH-E usually
achieves both fast and accurate compression.

Algorithm 1: SQUISH-E(T, λ, µ)

input : trajectory T , lower bound λ on compression
ratio, and an additional parameter µ

output : trajectory T ′

1 initialize β to a small integer value; // Q’s initial
capacity

2 for each point Pi ∈ T do
3 if i

λ
≥ β then

4 β ← β + 1; // increase the capacity of Q

5 set priority(Pi,∞, Q); // enqueue Pi with priority ∞
6 Pi.ρ← 0;
7 if i > 1 then // Pi is not the first point
8 Pi−1.succ← Pi;
9 Pi.pred← Pi−1;

10 adjust priority(Pi−1, Q); // Algorithm 3

11 if |Q| = β then // Q is full
12 reduce(Q); // Algorithm 2

13 while min priority(Q) ≤ µ do // the lowest priority ≤ µ
14 reduce(Q); // Algorithm 2

15 return trajectory T ′ consisting of the points in Q
sorted in their original order ;

variable description
Q priority queue
β capacity of Q
P.pred P ’s closest predecessor among the points in Q
P.succ P ’s closest successor among the points in Q
P.ρ the maximum of the priorities that the neigh-

boring points of P had when they were removed
from Q

Table 1: Variables used in SQUISH-E

Algorithm 1 shows the operation of SQUISH-E. Table 1
summarizes the variables used in SQUISH-E. Given a tra-
jectory T and parameters λ and µ, SQUISH-E compresses
T while striving to minimize SED and achieve the compres-
sion ratio of λ (lines 1-12). Then, it further compresses T
as long as this compression does not increase SED beyond µ
(lines 13-14). Therefore, setting µ to 0 causes this algorithm
to minimize SED, ensuring the compression ratio of λ. We
refer to this case as SQUISH-E(λ). SQUISH-E(µ) denotes
another case where λ is set to 1 (i.e., SQUISH-E maximizes
compression ratio while keeping SED under µ).

In SQUISH-E, variable β stores the capacity of Q. Ini-
tially, β is set to a small integer value (line 1); we have
chosen the value 4 in our implementation. The value of β
increases whenever i

λ
≥ β, where i denotes the number of

points retrieved so far from trajectory T (lines 3 and 4).
Each point Pi from trajectory T (line 2) is initially inserted
into Q with a priority of ∞ (line 5). If Pi is not the first
point (line 7), then Pi is registered as the closest successor of
its previous point Pi−1 (line 8), and Pi−1 is registered as the
closest predecessor of Pi (line 9). Then, the priority of Pi−1

is adjusted to the SED error that would be introduced by its
removal (line 10). When Q is full (i.e., |Q| = β), SQUISH-E
reduces Q by removing a point with the lowest priority (lines
11 and 12). Reducing Q in this way ensures that Q keeps
only β − 1 points and effectively limits the growth of SED
error. Once all of the points in T are processed, SQUISH-
E keeps removing a point with the lowest priority from Q
until every point remaining in Q has a priority higher than
µ (lines 13 and 14). SQUISH-E ensures that the resulting

Algorithm 2: reduce(Q)

input : priority queue Q
1 P ← remove min(Q); // lowest-priority point removed
2 P.pred.succ← P.succ;
3 P.succ.pred← P.pred;
4 P.succ.ρ← max(priority(P), P.succ.ρ);
5 P.pred.ρ← max(priority(P), P.pred.ρ);
6 adjust priority(P.pred,Q); // Algorithm 3
7 adjust priority(P.succ,Q); // Algorithm 3

Algorithm 3: adjust priority(P,Q)

input : point P , priority queue Q
1 if P.pred 6= null and P.succ 6= null then
2 p← P.ρ+ SED(P, P.pred, P.succ);
3 set priority(P, p,Q);

compression ratio is no less than λ and the SED error is no
larger than the lowest priority of the points remaining in Q
(refer to [7] for formal proofs).

Algorithms 2 and 3 show the details of reducing Q. This
process first removes a point P with the lowest priority from
Q. It then adjusts variables for P ’s predecessor and succes-
sor including their priorities (refer to [7] for further details).

4. DEMONSTRATION DETAILS
This section describes the demonstration environment

(Section 4.1), interface (Section 4.2), and specific demon-
stration scenarios (Section 4.3).

4.1 System Setup
We will form a cluster of four Mac Minis, each of which has

a 2.3GHz Quad-Core Intel i7 CPU, 8GB RAM, and a 1TB
Serial ATA Drive. These machines will store trajectories
obtained from both GPS devices and the data generators
mentioned in Section 2.3.

4.2 Demonstration Interface
Conference attendees will interact with TrajMetrix using

the GUI shown in Figure 2. The Directories section of the
GUI provides a directory hierarchy from which data sets
can be selected. When a directory is chosen, details of the
trajectories within that directory and its sub-directories will
be shown in the Trajectories panel. If a user presses the
Compress button, then the system will compress the selected
trajectories and the Charts panel will show on the fly results
as the evaluation proceeds.

4.3 Demonstration Scenarios
We will demonstrate the benefits of TrajMetrix and

SQUISH-E as follows:
System Usability. We will demonstrate the steps of run-
ning the TrajMetrix master and workers and show that the
overall benchmark can be easily set up using a configura-
tion file. The sample configuration file in Figure 3 specifies
the directory containing trajectory collections (line 1) and
the directory for storing output trajectories (line 2). It also
specifies the compression algorithms to evaluate for the com-
pression ratios of 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 (lines
3-7). In this example, compression algorithms that achieve a

Figure 2: TrajMetrix Graphical User Interface

1 input=~/TrajMetrix/Datasets/
2 output=~/TrajMetrix/Compressed/
3 executor=DefaultExecutor({UniformSampling,
4 SQUISH_lambda}, {5.0, 10.0, 15.0, 20.0, 25.0, 30.0})
5 executor=GuaranteedCompressionRatioExecutor({TDTR,
6 DouglasPeucker, OpeningWindow, OPWTR, DeadReckoning,
7 SQUISH_mu}, {5.0, 10.0, 15.0, 20.0, 25.0, 30.0}, 0.5)
8 metrics=({SED, SpatialError, SpeedError, HeadingError,
9 CompressionTime}, {Average, Maximum})

Figure 3: Example Configuration File

target compression ratio (i.e., SQUISH-E(λ), UniformSam-
pling) will be evaluated using a DefaultExecutor (lines 3-
4). Other algorithms that strive to maximize compression
ratio under a certain error bound (e.g., Douglas-Peucker,
SQUISH-E(µ), and TD-TR) will be evaluated using a Guar-

anteedCompressionRatioExecutor (lines 5-7). This exam-
ple also specifies evaluation metrics and aggregation meth-
ods used for the benchmark (lines 8-9).
Result Reliability. We will demonstrate the ability of Tra-
jMetrix to accurately measure the compression time of each
algorithm through trials repeated for a predefined amount
of time.
Evaluation Scalability. We will demonstrate that Tra-
jMetrix can effectively reduce the overall evaluation time as
it uses more machines.
Analysis of Compression Algorithms. We will demon-
strate unique characteristics of trajectory compression algo-
rithms. In particular, we will show that (1) both TD-TR
and SQUISH-E achieve the smallest SED, while SQUISH-
E is substantially faster than TD-TR, (2) Douglas-Peucker
leads to the smallest spatial error, and (3) trajectories with
significantly varying speed and direction cause large com-
pression errors across all compression algorithms.

5. REFERENCES
[1] D. Douglas and T. Peucker. Algorithms for the

Reduction of the Number of Points Required to

Represent a Line or its Caricature. The Canadian
Cartographer, 10(2):112–122, 1973.

[2] R. Gotsman and Y. Kanza. Compact Representation
of GPS Trajectories over Vectorial Road Networks. In
SSTD, pages 241–258, 2013.

[3] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An
Online Algorithm for Segmenting Time Series. In
ICDM, pages 289–296, 2001.

[4] N. Meratnia and R. A. de By. Spatiotemporal
Compression Techniques for Moving Point Objects. In
EDBT, pages 765–782, 2004.

[5] J. Muckell, J.-H. Hwang, C. T. Lawson, and S. S.
Ravi. Algorithms for Compressing GPS Trajectory
Data: An Empirical Evaluation. In SIGSPATIAL GIS,
pages 402–405, 2010.

[6] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson,
F. Ping, and S. S. Ravi. SQUISH: An Online
Approach for GPS Trajectory Compression. In
COM.Geo, pages 13.1–13.8, 2011.

[7] J. Muckell, P. W. O. Jr., J.-H. Hwang, C. T. Lawson,
and S. S. Ravi. Compression of Trajectory Data: A
Comprehensive Evaluation and New Approach.
Accepted to GeoInformatica (July 2013).

[8] J. Muckell, P. W. O. Jr, J.-H. Hwang, S. S. Ravi, and
C. T. Lawson. A Framework for Efficient and
Convenient Evaluation of Trajectory Compression
Algorithms. Accepted to COM.Geo, 2013.

[9] M. Potamias, K. Patroumpas, and T. Sellis. Sampling
Trajectory Streams with Spatio-temporal Criteria. In
SSDBM, pages 275–284, 2006.

[10] G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson,
and D. Vaccaro. On-line Data Reduction and the
Quality of History in Moving Objects Databases. In
MobiDE, pages 19–26, 2006.

