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Abstract—There has been proliferation of data centers that
provide both computation and storage resources at diverse
geographic locations. In a variety of wide area applications,
data can be replicated to serve users with lower latency. This
paper presents a technique that can effectively reduce the overall
data access delay through gradual migration of data replicas.
In contrast to previous solutions that either randomly select
replica locations or process a large log of past data accesses, this
new technique maintains only a small, decentralized summary of
recent data accesses while achieving near optimal performance.
This paper also includes an evaluation study that substantiates
the effectiveness of the developed technique, and plans for
extending the current research outcomes.

I. INTRODUCTION

Recent increases in computational resources have driven the
amount of digital data to expand at a nearly exponential rate.
Major Internet companies such as Google, Yahoo, Amazon
and Facebook now operate scores of data centers to meet their
enormous data processing needs [1], [2]. Further, more than
one thousand data centers are currently in operation, enabling
elastic, pay-by-use provision of hardware and software at
various geographic locations [3]. To manage large volumes of
online data even across data centers, several storage systems
have been developed [4], [S], [6]. These systems typically
replicate data to offer fast and highly available services to
users. In such a context, an important challenge is to determine
the locations of data replicas such that the overall data access
latency is minimized.

Determining replica locations as stated above enables
prompt data access. In addition to this benefit, such replica
placement may facilitate fast transfer of large data objects
since low-latency network connections tend to have high
bandwidth [7], [8]. As each data service can be completed
quickly, the overall user requests may also be handled by
a relatively small number of servers, thereby reducing the
resource usage. In applications where users need to obtain data
within a time limit (e.g., 300ms [4]), users may have time to
access a second or more replicas if they cannot access the first
replica. If such an approach is infeasible due to high network
latency, each user must attempt to access multiple replicas in
parallel, incurring a higher network cost.

Existing storage systems either ignore the aforementioned
replica placement problem [4], [5], [6] or strive to solve the
problem by analyzing the user locations with high computa-
tional or spatial overhead [9], [10], [11], [12], [13], [14], [15],

[16] (Section V for details). In actual systems [4], [5], [6],
a large number of users may access data replicas. Thus, the
problem needs to be solved in an efficient and highly scalable
manner.

In this paper, we propose a new replica placement technique
which gradually migrates data replicas to reduce the overall
data access delay. To identify more advantageous replica
locations, this approach maintains, for each data replica, a
small data structure that summarizes recent data accesses.
These summaries are periodically collected at a node and then
processed to identify the most beneficial replica locations (i.e.,
those that are expected to minimize the overall data access
delay). If the benefit of the new locations is substantially larger
than that of the previous locations, data replicas are created
at the new locations and the replicas at the previous locations
are discarded.

Our evaluation demonstrates that our replica placement
technique can reduce the overall data access latency by more
than 35% compared to random replica placement in various
contexts. It also shows that the average access delay achieved
by our technique is close to the lowest average access delay
found by examining all possible replica placement scenarios.

The contribution of this paper can be summarized as fol-
lows:

o We developed an efficient, highly scalable replica place-
ment solution that can achieve near optimal data access
delay.

o We devised a technique that can summarize information
about user populations with low spatial and computa-
tional overhead.

o We present evaluation results that demonstrate the utility
of our replica placement technique.

The remainder of this paper is organized as follows. In
Section II, we provide a formal definition of the data replica
placement problem. Next, we present our solution to the
problem in Section III. In Section IV, we present preliminary
evaluation results while comparing our replica placement
algorithm with other alternatives. We summarize related work
in Section V and conclude in Section VI.

II. PROBLEM STATEMENT

This section defines the problem of determining appropriate
locations to store data replicas. Section II-A describes the



assumptions made in this paper. Section II-B provides a formal
definition of the replica placement problem.

A. Assumptions

We assume a wide area distributed system that needs to
manage data objects [4], [5]. We also assume that multiple
(e.g., 30) data centers can be used to run the system. To
simplify exposition, we focus on the problem of replicating
one data object at a small number (e.g., 3) of data centers
such that users at diverse locations can obtain the closest
data replica with low latency. Here, the closest data replica
is defined as the data replica that can be accessed with the
lowest latency. A solution to this problem can be applied to
a group of data objects by treating accesses to any object of
the group as accesses to a virtual object that represents all the
objects of the group.

In this paper, we assume that for each user, it suffices to
access only one data replica. If data objects can be newly
added or updated, accessing only one data replica leads to
fast data acquisition at the expense of consistency. We plan
to incorporate into our future study quorum-based approaches
in which users need to access multiple data replicas to ensure
stronger consistency [4], [6]. This paper also assumes that
each user accesses the closest data replica. For example, a
user may contact all the replica locations and use whichever
replica it can obtain first. A user may also identify or estimate
(Section III), before actual data transfer, a replica location that
can transmit data with the lowest latency.

Another assumption made in the paper is that data objects
are read much more frequently than updated. Thus, the cost
of propagating updates among data replicas is ignored. We
also assume that candidate replica locations (e.g., data centers)
are considered only when they can handle the expected user
requests. For this reason, load balancing is not studied in this

paper.
B. Formal Definition

Let C denote the set of available data centers and U/ denote
the user clients that will access a data object o within a period
of time P after replicas of o are created. If o is replicated at
data centers R C C, the time it takes for user © € U to read
o can be expressed as follows:

l(u,0) = Icréi%l(u7 ¢)
where [(u, c) represents the latency between user u and data
center ¢ € R. The above definition is based on the assumption
that users access the closest replica (Section II-A).

Given a target degree of replication k, the goal of the replica
placement problem is to find a set R of k replica locations (i.e.,
R C C and |R| = k) that minimize the following objective
function:

(o) =Y lu,0) =

ueU

min /(u, c).

min i(u, c)

ueU

Since the average access delay is %, R that minimizes /(o)

also achieves the minimum average access delay.

To solve the above problem in real systems, several chal-
lenges must be addressed. First, it is infeasible to know in
advance the users that will access data after data replicas are
created. If such future data usage is estimated based on past
data accesses, we need to determine an appropriate time period
for which the past data usage is analyzed. Further, the system
may serve a large number (e.g., tens of millions) of users, thus
we require a technique that can summarize data accesses with
low spatial and computational overhead. Next, replicas may
serve different user populations if each user contacts only a
subset of replica locations (e.g., those that are close in the
network). In such cases, information about data accesses needs
to be processed efficiently even across data centers. Finally,
the replica placement problem is known to be NP-hard [17],
thus a low-cost solution to the problem is highly required.

III. REPLICA PLACEMENT ALGORITHM

This paper considers the problem of determining replica
locations that minimize the average data access delay. If k&
replica locations need to be determined, a natural approach
would be to group user locations into k clusters and then
deploy a data replica at (or near) the centroid of each cluster.

To enable the above clustering-based approach, we assign
synthetic coordinates to each node in the system such that
the round-trip time between two arbitrary nodes is close
to the distance between the nodes in the coordinate space
(Section III-A). With these coordinates, users can be treated
as points in a Euclidean space and can be clustered according
to proximity in the network.

As discussed in Section II-B, a large number of users may
access a data replica. In this case, it would be impractical
to collect information about all the users across data replicas
and store it at a central server. Thus, our approach maintains
for each replica, an efficient data structure summarizing the
coordinates of the users that have recently accessed the replica
(Section III-B). These summaries are periodically transferred
from replica locations to a node and then processed to de-
termine replica locations that would most reduce the average
access delay (Section III-C). The overhead of the aforemen-
tioned approach is analyzed in Section III-D.

A. Network Coordinate Systems

A network coordinate system embeds nodes (both servers
and clients) into a virtual multi-dimensional space based on
the network latencies between the nodes. This embedding is
conducted such that the actual round-trip time between two
arbitrary nodes is close to the distance between the nodes in
the virtual space (Section V-A).

RNP [18] (Retrospective Network Positioning) is our prior
work that improves both the network latency prediction accu-
racy and coordinate stability over Vivaldi [19], a representative
network coordinate system. RNP achieves a prediction error
typically lower than 10 ms for a majority of node pairs even
if it runs on unstable platforms such as PlanetLab [20]. One
immediate advantage of using RNP is that if a user node knows
the coordinates of replica locations, it can predict the closest



Algorithm 1: Macro-clustering(R)

1 obtain m micro-clusters from each replica location in R.

2 use weighted K-means to cluster the m * & micro-clusters
into k macro-clusters.

3 for each macro-cluster ¢ among the k macro-clusters do

4 find data center d whose d.coord is closest to
c.coord.
5 create a data replica at data center d

replica with a high accuracy although it has never accessed
the replicas before.

In this paper, we use RNP to assign network coordinates
to nodes with low overhead. A node that communicates with
a remote node adjusts its coordinates based on the round-trip
time to the remote node and the coordinates of the remote
node. Based on such coordinates, nodes in the system can be
treated as points and can be clustered based on the network
latency (rather than the geographic distance) between them.

B. Per-Replica User Coordinate Clustering

K-means clustering is a representative method that can be
used to cluster data points. However, it can not be directly
applied to a continuous stream of data points that represent
the coordinates of the nodes that access data. Thus, we have
devised a two-phase online clustering approach.

During the first phase, for each server that currently holds
a data replica, the coordinates of the clients that access this
server are classified into m micro-clusters. For a micro-cluster
i, only four variables are maintained: (1) count; for the
number of data accesses by the clients whose coordinates
belong to the cluster, (2) weight; for the overall amount of
data exchanged with the users, (3) a multi-dimensional vector
sum,; for the sum of coordinate values for each dimension,
and (4) another vector sum?2; for the sum of squares of
coordinate values for each dimension. It should be noticed that
the centroid of the cluster can be expressed as sum;/count;
and the standard deviation of the coordinates in the cluster can
also be computed from count;, sum,; and sum?2;.!

Whenever a client accesses the replica, a micro-cluster *
whose centroid is closest to the coordinates of the client can
be easily determined since i* = arg min; |sum;/count; — ul,
where u is the coordinates of the user. If the distance between
uw and sum;«/count;« is within the standard deviation (i.e.,
u is sufficiently close to the centroid of the cluster i*) the
variables of cluster ¢* are updated using u. Otherwise, a new
cluster is created based on the coordinates of the new user and
then two closest clusters are merged.

C. Determination of Replica Locations
Whenever k replica locations need to be determined, the
micro-clusters described in Section III-B are sent to a central

'The standard deviation of random variable X can be calculated using
E[X?] - (E[X]?)

[ Symbol | Meaning
R the set of data centers that currently hold data replicas
m the number of micro-clusters per data replica
n the number of all clients accessing the data
k the target degree of replication
c.coord the network coordinates of the centroid of a macro cluster ¢
d.coord the network coordinates of the a data center d

TABLE I
SYMBOLS AND THEIR MEANINGS

[ | online [ offfine
bandwidth overhead O(km) O(n)
computation overhead O((km)F x1log(km)) | O(nF xlogn) [23]
TABLE II

COMPLEXITY COMPARISON BETWEEN ONLINE AND OFFLINE
CLUSTERING

server. This server then merges the micro-clusters into k
macro-clusters each of which represents a major user popula-
tion. As Algorithm 1 shows, the central server forms macro-
clusters by running a weighted K-means algorithm [21]. This
algorithm only differs with the regular K-means algorithm in
that each micro-cluster is treated as a data pseudo-point and the
distance between two pseudo-points is defined as the distance
between the centroids of the corresponding micro-clusters.

When the weighted clustering is completed, the centroid of
each macro cluster is conceptually the location that can serve
the users within the cluster with the minimum average latency.
Thus, for each macro-cluster, the closest data center is selected
as a new location to host a data replica (lines 3-5).

The process described above is conducted periodically (e.g.,
everyday or every week). Since the cost of migrating data may
not be ignored (e.g., $.1 per GB [22]), our approach carries
out data migration only when the gain in the quality of service
(e.g., reduction in latency) compared to the migration cost is
higher than a certain threshold. This approach can also vary the
number of replicas by setting the parameter k. Such adjustment
is needed when it is desirable to create more replicas as the
demand of an object increases or to discard replicas as the
demand decreases.

D. Cost Analysis

Table II compares our online clustering approach with
an offline approach in terms of the network bandwidth and
computation overhead. In our online clustering approach, only
k * m micro-clusters need to be sent to the central server.
On the other hand, offline clustering requires transferring the
coordinates of all the user clients that have accessed the
replicas. In our current implementation, the size of each micro-
cluster is less than 1KB. If 100 micro-clusters are maintained
for each of three replicas, each replica placement involves
transferring 300 micro-clusters (i.e., less than 300KB of data).
If such micro-clusters were formed based 1 million user
accesses, offline clustering would require transferring more
than tens of megabytes of data.



According to [23], the complexity of offline clustering can
be expressed as O(n* x logn) where n denotes the number
of data points (i.e., the number of users that have accessed
the data replicas). In our online clustering, only km pseudo
node coordinates (i.e., micro-clusters) are clustered, leading to
O((km)* x1og(km)) computational overhead. The difference
in the computational overhead between the offline and online
clustering approaches becomes more significant, as the replicas
are accessed more frequently (i.e., n increases) and the degree
of replication and the number of micro-clusters decreases (i.e.,
k and m decrease, respectively).

IV. EVALUATION

This section demonstrates preliminary evaluation results on
the effectiveness of our replica deployment algorithm. The
evaluation settings are described in Section IV-A. Results
obtained by varying the number of data centers, the number
of replicas, and the number of micro-clusters are discussed in
Sections IV-B, IV-C and IV-D, respectively.

A. Settings

To compare our replica placement algorithm with other
alternatives, we have implemented an event-based simulator
in Java. This simulator can emulate communications between
nodes based on real network traffic data collected from 226
PlanetLab nodes [24]. Based on such emulated network com-
munications, the simulator can assign synthetic coordinates to
all the 226 nodes using RNP [18].

When the simulator begins, it selects a number (e.g., 20)
of nodes as locations that may store data replicas. Since
these nodes are dispersed at diverse geographic locations,
each of them is assumed to represent a different data center.
Next, the simulator determines, among the candidate replica
locations (i.e., available data centers), those that will store data
replicas using a certain replica deployment strategy (replica
deployment strategies compared in the paper are explained in
the next paragraph). Then, the simulator treats the remainder of
the nodes as clients that want to access data and calculates the
average of the data access delays that the clients perceive. As
described in Section II, each client in the simulator accesses
the closest replica. All the results presented in this section
were averaged over 30 simulation runs each of which began
with different candidate replica locations.

The replica placement approaches compared in the paper
are as follows (k denotes the target degree of replication):

1) random - This approach randomly selects k data cen-
ters.

2) offline k-means clustering - In this approach, the coor-
dinates of all the clients that access data are recorded at a
server. When replica locations need to be determined, k-
means clustering is applied to the recorded coordinates.
Then, for each of the resulting coordinate clusters, a
candidate replica location closest to the centroid of the
cluster is chosen. This approach incurs high overhead
and is not scalable since the coordinates of all the clients
must be collected at a server.
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Fig. 1. Impact of the number of data centers

3) online clustering - This is the approach proposed in the
paper (Section III).

4) optimal - This is an impractical approach in which for
each possible replica deployment (i.e., each combination
of replica locations), the true average access delay
is calculated by considering all the clients and then
the replica deployment that leads to the lowest access
delay is identified. This exhaustive, impractical approach
shows the true optimum thus included in this paper for
comparison purposes.

B. Impact of the Number of Available Data Centers

The first set of evaluations demonstrates the impact of
the number of available data centers on the average access
delay (Figure 1). In this study, the target degree of replica
is set to 3. In all the replica deployment approaches except
for “random”, the average access delay decreases as more
candidate replica locations are available. The reason behind
this is that in contrast to ‘“random” the other approaches
tend to successfully find more beneficial replica locations as
soon as they become available. Figure 1 clearly demonstrates
the benefit of considering a large number of data centers as
potential locations to store data.

Another crucial observation is that both our online cluster-
ing and the offline k-means clustering algorithms achieve near
optimal performance. While the offline clustering algorithm
incurs high storage and network costs, our online algorithm
maintains (and transfers over the network) only a small amount
of data that summarizes user locations, thereby achieving high
scalability.

C. Impact of the Degree of Replication

In this evaluation, we fix the number of data centers to 20,
and vary the degree of replication from 1 to 7 (Figure 2). In
all replica deployment approaches, the average access delay
decreases as the number of replicas increases. Such reduction
in access delay was achieved since the distance from a client
to the closest replica tends to decrease with more replicas.
However, such reduction in access delay also decreases as the
number of replicas increases (particularly after 4). Figure 2
shows that the performance of our online clustering algorithm
is comparable to that of offline k-means clustering and slightly
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worse than that of the optimal deployment found through
exhaustive search. It also shows that it consistently achieves
at least 35% lower average access delay compared to random
placement.

D. Impact of the Number of Micro-Clusters

As illustrated in Section III, our online clustering algorithm
maintains a number of micro-clusters per replica. Figure 3
shows the impact of the number of micro-clusters on the
average access delay. As the number of micro-clusters for
each replica increases, our online clustering algorithm can
summarize the coordinates of the users with finger granularity,
thus can more accurately estimate beneficial replica locations
(those that lead to low data access latency). In our evaluation,
the average access delay was nearly minimized when 4 micro-
clusters are maintained for each replica. Based on this result
obtained with 226 nodes, we anticipate that still a small
number of micro-clusters would be needed even if a large
number of clients are served. We intend to examine the impact
of number of micro-clusters in a substantially larger setting.

V. RELATED WORK

This paper presents an approach that determines appropriate
replica locations based on a summary of user locations. This
section provides an overview of related work.

A. Network Coordinate Systems

Several techniques have been developed to assign synthetic
coordinates to nodes such that the round-trip time between

arbitrary nodes can be estimated from the coordinates [18],
[19], [25]. An early approach called GNP (Global Network
Positioning) first embeds tens of landmark nodes into an
Euclidean coordinate space based on the round-trip times
between the nodes and then allows other nodes to determine
their coordinates by communicating with the landmarks [25].
Vivaldi is a decentralized approach in which each node adjusts
its coordinates using the round-trip time to a remote node
and the remote node’s coordinates [19]. The replica deploy-
ment technique presented in this paper assigns coordinates
to nodes using our RNP (Retrospective Network Positioning)
technique [18]. In contrast to GNP, RNP does not require pre-
configured landmarks. RNP can also more accurately predict
network latencies than Vivaldi by consuming information
differently according to the reliability of the information.

B. Data/Server Replication in Wide Area Applications

Data replication has been extensively studied in the context
of web applications and content distribution networks. Pallis
et al. design a greedy heuristic for content replication [26]. In
their approach, only data movement cost (latency, bandwidth)
between servers are considered and minimized through a
gradual optimized greedy algorithm. Sivasubramanian et al.
also develop a data placement approach that takes into account
the system load as well as the read-write ratio of data [10].
This approach tries to place a master server to a position near
users that intensively update data, and other replica servers
based on the system load and the read-write ratio. Chandy et
al. [11] solves the problem from a different perspective by
splitting each data object and tries to place the pieces onto
servers in a greedy way that minimizes data access latency.
A recent study compares 10 representative data placement
heuristics [12].

Server replication has also been studied by various re-
searchers [13], [14], [15], [16]. Qiu et al. present several server
replica placement approaches and a naive greedy algorithm
that effectively reduces latency at a high computation cost [13].
Szymaniak et al. present an offline replica placement approach
that uses network coordinates [14], [15]. In this approach, the
coordinate space is divided into many small cells and then a
number of most crowded cells (i.e., those to which the largest
number of clients belong) are chosen as locations to place
servers. This approach has an inherent limitation of ignoring
all the cells except for the most crowded cells, thus may not
perform adequately [13].

A main difference of the above techniques compared to ours
is that they record information about each individual client,
thus are fundamentally limited in scalability. In contrast, our
approach maintains only small amounts of data summarizing
locations of users that have recently accessed data. Despite
such summarization, our approach achieves near optimal per-
formance (Section IV).

VI. CONCLUSION

We have presented a data replica placement algorithm that
can efficiently achieve near optimal data access delay. This



approach continually determines most advantageous replica
locations by using a small, decentralized summary which is
updated with low overhead for each data access. To the best
of our knowledge, this is the first work that can effectively
determine replica locations despite a large number of accesses
to data replicas.

In this paper, we have focused on reducing the overall
data access delay. We intend to extend this work by taking
into account other aspects including load balancing and data
availability. We also plan to carry out more realistic evaluation
study based on data accesses in actual applications.
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