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Abstract

Distributed and parallel computing environments are
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work to the case of clusters of servers with highes
interconnections.
In Borealis, as in Aurora, a query network is dextlion

becoming cheap and commonplace. The availability ofof operators that are linked together in a dataftbagram.

large numbers of CPU’s makes it possible to process
data at higher speeds. Stream-processing systesslso
becoming more important, as broad classes of agfiins
require results in real-time.

Since load can vary in unpredictable ways, expigiti
the abundant processor cycles requires effectiveanyc
load distribution techniques. Although load distiion
has been extensively studied for the traditiondl-pased
systems, it has not yet been fully studied in thretext of
push-based continuous query processing.

Our operators extend the relational operators @l @éth
the ordered and infinite nature of streams. A Bbse
guery network cannot have loops; however, the dupan
operator can branch to multiple downstream opesator
(result sharing) and can be combined by operatatls w
multiple inputs (e.g., Join, Union).

Query optimization in this setting is to a largetesn
concerned with mapping the operators in a querywordt
to machines in a distributed environment. As tbadl
changes, this mapping will need to change in otdeteal

In this paper, we present a correlation based loadWith new hot spots. The process of forming theiahi

distribution algorithm that aims at avoiding oveald and
minimizing end-to-end latency by minimizing loadace
and maximizing load correlation. While finding thptimal

mapping and of dynamically redistributing operatsrshe
topic of this paper.
While load balancing and load sharing have been

solution for such a problem is NP-hard, our greedy Studied extensively in traditional parallel andtudisited

algorithm can find reasonable solutions in polynahtime.
We present both a global algorithm for initial load
distribution and a pair-wise algorithm for dynamicad
migration.

1. Introduction

Stream-based continuous query processing fits gelar
class of new applications, such as sensor netwhrkation
tracking, network management and financial datdyaisa
In these systems, data from external sources ftbvaigh
a network of continuous query operators. Sinceastre
based applications usually involve large volumesdafa
and require timely response,
substantially from the additional horsepower oftritisited
environments [6].

Borealis [1] is a new distributed stream processing

engine that is being developed at Brandeis, Broand
MIT as a follow on to the Aurora project [2]. Baies
attempts to provide a single infrastructure fortritisited

stream processing that can span diverse processinﬁ

elements that can be as small as sensors andgasdar
servers. As a first step in this direction, wetnies this
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they could benefi

systems [11, 16], the load distribution problem has yet
been fully studied in the context of push-base@astr
processing. Traditional load distribution strategguse total
load information in decision making because theg ar
designed for pull-based systems where load fludnat
occurs as different queries are presented to thkesy In a
push-based system, load fluctuation occurs in thieah
rates of the streams. In this case, even wheratkeage
load of a machine (or node) is not very high, aenathy
experience a temporary load spike and data prowgssi
latencies can be significantly affected by the dareof the
spike. Thus, to minimize data processing latensiesieed
an approach that can avoid temporary overload ashras
tpossible.

For instance, consider two operator chains withstyur
input data. Let each operator chain contain twantidal
operators with a selectivity of one. When the ageraput
rates of the two input streams are the same, tleeage
loads of all operators are the same. Now consider t
operator mapping plans on two nodes. In the filzh pwe
ut each of the two connected operator chains erséime
ode (call this theonnected plan In the second plan, we
place each component of a chain on different nqdak
this thecut plar). There is no difference between these two
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This is because moving operators will result in penary
poor performance due to the execution suspensidhose
operators, but if the load time series of two notdase
large correlation coefficient, then their load lsveare
naturally balanced even when the load changes. By
maximizing the average load correlation betweematle
pairs, we can minimize the number of load migration
needed.
Later, we will see that minimizing the average load
Figure 1: Comparison of different operator mapping variance also helps in maximizing the average load
planswith fluctuating load correlation, and vice versa. Thus, the main goalwfload
plans from the load balancing point of view. Howeve distribution algorithms is to produce a balanceerafor

suppose the load burst of the two input streampérapat ~Mapping plan where the average load variance igmizad
different times, i.e., when the input rate of tistfchain is ~ OF the average node load correlation is maximifedding
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high, the input rate for the second chain is lowd aice
versa. Then the above two mapping plans can riesuétry

the optimal solution for such a problem requirekaristive
search and is, similar to the graph partitioninglgpem, NP

different performance. Figure 1 shows an examplecOmplete [10]. In this paper, we propose a greéggrahm

performance graph for this kind of workload in wiithe
burst duration and the normal duration are botle&oads,
and the high (bursty) input rate is twice the lavorfnal)
input rate.

Putting connected operators on different nodeghis
case, achieves much better performance than putizm

on the same node (ignoring bandwidth consideratfons

that finds a sub-optimal solution in polynomial &mOur
experimental results show that the performance wf o
algorithm is very close to the optimal solution.

In this paper, we present both a global operatqvpimay
algorithm and some pair-wise load redistributiogogithms.
The global algorithm is mainly used for initial aptor
placement. After global distribution, we will usaipwise

now). The main difference between these two mappinglgorithms to adapt to load changes. The advantdge

plans is that since the two input bursts are oyshafse, the

cut plan ensures that the load variation on eade i®very
small. Inthe connected plan, it is much larg€his simple
example shows that the average load level is retotily
important factor in load distribution. The variati@f the
load is also a key factor in determining the perfance of
a push-based system.

using pair-wise algorithms is that it does not fegLas
much load migration as the global algorithm.

The rest of this paper is organized as follows.tise@
introduces the system model and formalizes the lpnob
Our algorithms are presented in Section 3. Sec#on
analyzes the computation complexity of these allgms.
The experiment results are presented in Sectid®ebtion

algorithm that not only balance the average loadrajrthe
processing nodes, but also minimize the load veeamn
each node. The latter goal is achieved by exphpitime
ways in which the stream rates correlate across
operators. More specifically, we represent operaiad as
fixed length time series. The correlation of twmei series
is measured by the correlation coefficient, whishaireal
number between -1 and 1. Its intuitive meanindné tvhen
two time series have a positive correlation cogdfit, then
if the value of one time series at certain indexeistively
large (in comparison to its mean), the value of ditieer
time series at the same index also tends to béivedia
large. On the other hand, if the correlation caogffit is

negative, then when the value of one time series i

relatively large, the value of the other tends ¢orblatively
small. Our algorithm is inspired by the observattbat if
the correlation coefficient of the load time ser@stwo
operators is small, then putting these operataystter on
the same node helps in minimizing the load variance
The intuition of correlation is also the foundatiohthe

other idea in our algorithm: when making operator

allocation decisions, we try to maximize the catiein
coefficient between the load statistics of diffdremdes.

future directions are summarized in Section 7.

2. Problem Description

th@.1. System M odel and Assumptions

In this paper, we assume a physical architectura of

loosely coupled shared-nothing homogeneous computer

cluster. All computers are connected by a high lbadith
network. We assume that the network bandwidth tsano
limited resource and network transfer delays ad aglthe
CPU overhead for data stream transfer are negtdi®],
[9]. For applications with very high steam ratbattmay
stress the network, connected operators can besuleted
into super-operators or clusters such that highdvédth

Sinks are internal to a super-operator and thusnalocross

real network links. Operator clustering in the @t of
fluctuating workload is itself a very challengirapic and is
a part of our ongoing work. In this paper, we assuhat
necessary operator clustering has been done savéhain
directly distribute super operators without network
bandwidth concern.

In Borealis, most operators (e.gilter, Aggregate Join)
provide interfaces that allow them to be moved lon fty.
For practical purposes, we consideQL-readand SQL-



write boxes to be immovable since their effective staie

be huge. When moving a set of operators, theicigi@n A0>13 > o4 —»
is first suspended. Then, the metadata (e.g., tpera

description and topology) and the operator states iGput _

queues and the internal operator data structures) a A”<23 >l o
transferred to the receiving node. The receivingleno

instantiates these operators with the given infeionaand o3 > o5 >
then resumes their execution. In this paper, warasshat A<4

all operators with very large states (e.g., databpsre
allocated by some other algorithm according tostozage
capacities of the nodes. We only consider the nmgpand
migration of movable operators whose state size is
relatively small. Even in this case, the operatigration
time is usually much longer than the end-to-endadat varS == ZS _( j
processing time. »

Figure 2: Stream with attribute A feeding different filters
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Given two load time serlegl: (S11, slz, ., 80 and S =
(221, 92 .. S0, their covariance co®, S) and correlation
In this paper, we consider CPU utilization as ty&tem coefficientp are defined as follows:
load. The load of nodes and operators is measured 1 & 1 & 1&
periodically over fixed-length time periods. In &ggeriod, covs,S,) :EZ%SZi ‘(Z%j{kzszi]’
the load of an operator is defined as the fraatibthe CPU . Cov(s, S,) =
time needed by that operator over the length ofpigod. el
In other words, if the average tuple arrival raieperiodi - Jvars, Qjvars,
for operatoro is A (0) and the average tuple processing time  In this paper, the variance of the load time sedkan
of o is p(0), then the load of in periodi is A(0) p(o). The  operator/node is also called tHead variance of that
load of a node in a given period is defined asstima of the ~ operator/node. The correlation coefficient of tbad time
loads of all its operators in that period. series of two operators/nodes is also called lbed
We define the tuple arrival rate of a stream as thecorrelation of the two operators/nodes. The mean of the
number of tuples that would arrive on the streanenvho  load time series of an operator/node is calledabherage
node in the system is overloaded. If the statisticsload (or simply load) of that operator/node. Load balag
measurement period is large enough, such “ideaksra algorithms attempt to balance the average loatiehbdes.
become independent of the scheduling policy. Orother Our algorithm is based on the observation that load
hand, the actual number of tuples that enter elmehra per  correlations vary among operators. This variat®a result
time interval is usually dependent on the schedulin of more than the fluctuation of different inputeat It also
algorithm, especially when some node becomes cageid.  results from the nature of the queries. For example
The ideal tuple arrival rates can be approximatelyconsider a stream with attribute feeding different filter
computed from the system input stream rates and theperators as depicted in Figute The boxes in the figure
selectivities of the operators. If no global infation is represent operators and the arrows represent tia@nts.
available for such computation, an upstream nocreteth It is not difficult to tell that no matter how theput stream
its downstream nodes the ideal rates of its outpraams so  rate fluctuates, operatosl, o2 ando3 always have pair-
that the downstream nodes can compute the idezd @ft wise load correlation 1, and operat@4 ando5 always

2.2. Load M easurement

their internal data streams locally. have a load correlation of -1. In addition, operat! and
. 06 tend to have a negative load correlation, andatpes
2.3. Statistics M easurement 05 ando6 tend to have a positive load correlation.

We measure the load of each operator periodicaity a ~ Such query-determined correlations are stable or
only keep the statistics for the most recemteriods. Each ~ relatively stable in comparison to input-determined
statistics measurement period should be long ensaghat ~ correlations. This feature is important to our aitjons
the measured load is independent of the schedplitigy because we use the correlations to determine tatidms
and any high frequency load fluctuation is smootoed  Of the operators. If the correlations are highlyaute, the
The total time of thé statistics measurements is called the decisions made may soon loose their effectiveness.
statistics wmdov_\of the syst_em. _It should pe selected Iarge2 4. Optimization Goal
enough to avoid load migration thrashing. Tkeload

values of an operator/node form a load time seeghe Our goal in load distribution is to minimize theessge
operator/node. end-to-end data processing latency. In this papes,
Given a load time serie®3= (s, $,... , §, its mean and consider two kinds of load distributions: initiap@rator

variance are defined as follows: mapping and dynamic operator redistribution. Foe th



former one, we try to find an operator mapping pthat The above equality holds if and only ;=1 and

can minimize the average end-to-end latency. Fedatier var X; = var X for all 1<i,j<n . Using condition
one, we try to achieve a good balance betweendaé | :

O . = == , we have that s
migration overhead and the quality of the new ofera EX, =BX, =...=BX, 2varxl
mapping plan. minimized ifand only ifx , = X, =..= X .=

We have already seen that in a push-based system, Notice that in the ideal case, when the average loa

minimizing average end-to-end latency can be aelidywy
minimizing average load variance or maximizing ager
load correlation. Then our operator mapping problean
be formalized as the follows:

Assume that there are n nodes in the system. Let *

denote the load time series of node Ni apdienote the
correlation coefficient of Xand X fori<i, j<n. We want

to find an operator mapping plan with the following

properties:
(1) EX=EX=~...~ EX
) 15 . is minimized or
nizﬂ:varm
(3) Z’Oij is maximized

I<i<j<n
Finding the optimal solution of this problem recsr

comparison of all possible mapping plans and isH€Rl.
Thus, our goal is to find a reasonable heuristiatam.

3. Algorithm

3.1. Theoretical Underpinnings

Before discussing our algorithm, it is beneficalknow
how to minimize average load variance in the ideale. In
this section, we assume that the total load timiesX of
the system is fixed, and it can be arbitrarily parned

variance of the system is minimized, the averagmd lo
correlation of the system is also maximized. Ndlyrave
want to know whether the average load variance is
monotonically decreasing with the average loadedation.

f so, minimizing average load variance and maxingz
average load correlation are then the same. Unfataly,
such a conclusion does not hold in general. Iteiy/ \easy

to find an counter example through simulation. Hegvein

the case oh = 2, we can prove that whem, > 0, the lower
bound of the average load variance is a monotone
decreasing function of the load correlation coéfit. The
conclusion is shown as follows:

Theorem 2: Given load time series X and, X, with X
= Xl + X2, ifplz > 0 then
var X

l+p12

< var X, +var X, < var X.

The proof is similar to Theorem 1 and is omittecor
this conclusion, we can see that the smaller theeketion
coefficient, the larger the lower bound of the aggr load
variance, which means the more room we have fahéur
optimization. Because correlation coefficients hoeinded
between [-1, 1], it is very easy to use them tackhghether
a given mapping plan is near optimal and to deteemi
whether redistributing operators between a node {zai

acrossn nodes (this is usually unachievable). We want tonecessary. This observation is a very importanhdation

find the load partition with minimum average loaatiance.
The result is illustrated by the following theorem:

Theorem 1: Let the total load of the system be denoted

for one of our optimization techniques.
3.2. Algorithm Overview

In this section, we present a greedy algorithm tviriot

by time series X. Let; ¥e the load time series of node i, only balances the load of the system, but alsc tt@e

1<i<n,i.e. X=X + X+ ... + X,. Then among all load
balanced mapping plans withX; = EX; ... = EX,, the
average load variance

lz var X,
n =
is minimized if and only if
X
X1=X2=...:Xn=?.

Proof: Let p; be the correlation coefficient betwexnand
X. SinceX = X; + Xz + ... + X;, we have

> pyAfvar X, Jvar X (@)

1<i<j<n

Since -1l<p <1 and JvarX; JvarX; < (varX; +varx;)/2 we
have that

var X =Y var X; +2
i=1

var X
n

n
D var X, 2
i=1

minimize the average load variance and maximize the
average load correlation of the system.

Our algorithm can be divided into two parts. Finste
use a global algorithm to make the initial operator
distribution. Then, we switch to a dynamic load
redistribution algorithm which moves operators lesw
nodes in a pair-wise fashion. In the global aldwnt we
only care about the quality of the resulting magppian
without considering how much load is moved. In faér-
wise algorithm, we try to find a good tradeoff betm the
amount of load moved and the quality of the resglti
mapping plan.

Both algorithms are based on the basic load-baignci
scheme. Thus, if the load of the system does notuhte,
our algorithm reduces to a load balancing algorithith a
random operator selection policy. When the loadthef
system fluctuates, we can get load-balanced operato
distribution plans with smaller average load var@rand



larger average load correlation than the traditioload
balancing algorithms.

Since it is easier to understand how to minimize th
average load variance between a node pair than guaibn
nodes in the system, we will first discuss the jpage
algorithm, and then the global algorithm.

3.3. Pair-wise Algorithm

For simplicity, we assume that there is a centedliz
coordinator in the system and the load informatidrall
nodes is reported periodically to the coordinafdter each
statistics collection period, the coordinator oedall nodes
by their average load. Then tHenode in the ordered list is
paired with thef-i+1)" node in the list. In other words, the
node with the largest load is paired with the nedh the
smallest load; the node with the second largestl lisa
paired with the node with the second smallest |@ed, so
on. If the load difference between a node pair resatgr
than a predefined threshold operators will be moved
between the nodes to balance their average loacenWh
necessary, this pair-wise load distribution scherar be
easily extended to a decentralized implementation.

Now, given a selected node pair, we will focus @awh
to move operators to minimize their average loadavae.
As we know that there is a tradeoff between the larmof
load moved and the quality of the resulting mappfen,
we will first discuss an algorithm that moves th@imum
amount of load, and then discuss an algorithmdbhieves
the best operator mapping quality, and finally,ser@ an
algorithm that balances the two goals well.

3.3.1. One-way Correlation Based L oad Balancing.
In this algorithm, only the more loaded node i®wkd to

between the load time series of operatoand the total
(sum of) load time series of all operators Mrexcepto.
Then fromN's point of view, it is good to move out an
operator that has a larg€o, N;), and fromN,’s point of
view, it is good to move in an operator that hasrallp(o,
N,). Considering both nodes together, we prefer toveno
operators with largg(o, N;) - p(0, Ny). Define

5(0) = 2@ Nl);p(o, N,)
as the score of operatorwith respect toN,. Our greedy
operator selection policy then selects operatansfi; one
by one with the largest score first.

As the score function in this algorithm is basedtioa
correlation coefficients, and the load can only rheved
from one node to the other, this algorithm is chlleeone-
way correlation-based load balancing algorithm

3.3.2 Two-way Correlation-Based Redistribution.

In this algorithm, we redistribute all operators argiven
node pair without considering the former locatiaisthe
operators. With this freedom, it is possible toiach the
best operator mapping quality.

The operator selection policy in this algorithmaiso a
score based greedy algorithm. We first start fromo t
“empty” nodes (nodes with non-movable operatorsyonl
and then assign movable operators to these nodedHyn
one. In order to balance the load of the two noftesgach
assignment, we select the less loaded node asted/er
node. Then from all operators that have not besigiasd
yet, we compute their score with respect to theeiver
node and assign the operator with the largest soothat
node. This process is repeated until all operatmms
assigned. Finally, we use the above one-way algurito

offload to the less loaded node. Therefore, thed loa further balance the load of the two nodes.

movement overhead is minimized.
Let N; denote the more loaded node awddenote the
less loaded node. Let the loadf beL; and the load of

N, beL,. Our greedy algorithm will selects operators from

N; one by one with total selected load less than-(L,)/ 2

The score function used here is the same as the sco
function used in the one way algorithm. It can als®
generalized into the following form:

S(o,N,) = PN ;p(o.Nz)

_p(OvNi),

until no more operators can be selected. The operat where§o, N) is called the score of operatwith respect

selection policy is inspired by the following obgation:

to nodeN,, i = 1,2. The intuition behind the use&{b, N;)

Assume we have only two operators and two nodets. Leis that the larger the score, the better it isubgon N;

the load time series of the operators Be and S
respectively and the load correlation coefficiehtre two

operators bep;,. Putting the operators on different nodes it

will results in an average load variance of &ar vars,)/2

and putting the operators on different nodes wfults in
average load variance of v&8rfS;)/2. From the definition
of correlation coefficient, we have that

+ +
RIS 1) VIS VIS, ), varS: .

Obviously, to minimize average load variance, whegr< 0,
it is better to put the operators together on times node,

instead of on the other node.
As this algorithm will move operators in both ditieas,
is called the two-way correlation-based operator
redistribution algorithm

The final mapping achieved by this algorithm can be
much better than the one-way algorithm. However,tas
does not consider the former locations of the dpesathis
algorithm tends to move more load than necessary,
especially when the former mapping is relativelyodioln
the following section, we present an algorithm ttamh get
a good operator mapping plan by only moving a small

and wherp,> 0, it is better to separate them onto different fraction of operators from the existing mappingrpla

nodes.
Now consider moving operators fray to N, following
this intuition. Letp(o, N) denote the correlation coefficient

3.3.3. Two-way Correlation-Based Selective Exchange.
In this algorithm, we allow both nodes to send lt@aeach



other. However, only the operators whose scorerésitgr Notice that this is only for the two-way algorithrsisice
than certain threshold can be moved. The score function no operators can be moved in the one-way algorian
used is the same as the one in the one-way algorith load is balanced. The resulting algorithms are ecall

Recall that if the score of an operator on nbidei = 1,2, is
greater than zero, then it is better to put thatrafr onN,
(j#i) instead of orN;. Thus, by choosing > 0, we only

move operators that are good candidates. By varifieg

improved two-way algorithms

3.4. Global Operator Distribution

In this section we discuss a global algorithm which

thresholds, we can control the tradeoff between the amountdistributes all operators amnodes without considering the

of load moved and the quality of the resulting magmplan.
If ¢ is large, then only a small amount load will be v
If 6 is small (still greater than zero), then more loall be
moved, but better mapping quality can be achieved.
The details of the algorithm are as follows: (1)&&e

former location of the operators. This algorithnuiged to
achieve a good initial operator distribution whba system
starts. Because we need load statistics to makeatope
distribution decisions, the algorithm should be legapafter

a statistics collection warm up period.

the load of the two nodes using the above one-way The algorithm consists of two major steps. In thst f

algorithm. (2) From the more loaded nddeheck whether
there is an operator whose score is greater thdh so,
move this operator to the less loaded node. (3eRestep
(2) until no more operators can be moved or thebemof
iterations equals to the number of operators on tie
nodes. (5) Balance the load of the nodes usingleeway
algorithm.

As this algorithm only selects good operators to/enat
is called two-way correlation-based selective operator
exchange algorithm

3.34 Improved Two-way Algorithms. In all above
algorithms, operator migration is only triggered lmad
balancing. In other words, if an existing operattapping
plan is balanced, then no operator can be moved iétee
load variance of some nodes is very large. To sthi®
problem and also maximize the average load coioelatdf
the system, we add a correlation improvement sfegr a
each load balancing step in the above two-way lgos.
Recall that if the load correlation coefficient @fnode
pair is small, then it is possible to further miiden the

average load variance of the node pair. Thus, & th

correlation improvement step, we move operatorfiwit
node-pair if their load correlation coefficient ielow a

certain threshold. Because we want to avoid unnecessary

load migrations, the correlation improvement stepmly
triggered when some node is likely to get tempoyrari
overloaded. The details of this step are as follows

We define the “divergent load level” of each nodeta
average load plus its load standard deviation, (§guare
root of load variance). For each node with divetdead
level more than one (it is likely to get temponaril
overloaded), apply the following steps: (1) comptte
load correlation coefficients between this node alhdther
nodes. (2) Select the minimum correlation coeffitidf it
is less thar®, then apply one of the two way algorithms on
the corresponding node pair (without moving therafmes).
(3) Compute the new correlation coefficient. Ifstgreater
than the old one, then move the operators.

% The load of the nodes cannot be exactly the same.

step, we distribute all operators using a greedyrithm
which tries to minimize the average load variansevall as
balance the load of the nodes. In the second stefry to
maximize the average load correlation of the system

The greedy algorithm is similar to the one usedhia
two-way operator redistribution algorithm. This &mwe
start withn “empty” nodes (i.e., nodes with non-movable
operators only). The movable operators are assitmdide
nodes one by one. Each time, the node with thedblead
is selected as the receiver node and the operatbrthe
largest score with respect to this node is assigoed.
Finally, the load of the nodes is further balanasihg one
round of the pair-wise one-way correlation-baseddlo
balancing algorithm.

The major difference between the global algorithmd a
the former pair-wise algorithm is that the scoradiion
used here is generalized to considarodes together. The
score function of operatar with respect to Nodé; , i
1, ...,n, is defined as follows:

S(ON) ==Y po.N,) = p(O.N,)

The intuition behindo, N) is that the larger the score, the
better it is, on average, to put operatan node\; instead
of putting it elsewhere. It is easy to verify tithe score
functions used in the pair-wise algorithms are gtcial
cases of this form.

After all operators are distributed, a pair-wise
correlation improvement step is then used to maénthe
average load correlation of the system. First, \eck
whether the average load correlation of all nodesps
greater than a given threshad If not, the node pair with
the minimum load correlation is identified and the-way
operator redistribution algorithm is used to obtaimew
mapping plan. The new mapping plan is accepted inly
the resulting correlation coefficient is greatearihthe old
one. Notice that if this process is repeated wittahange,
the same node pair with the same set of operatorsach
node can be selected repeatedly. To avoid thislgmglall
selected node pairs are remembered in a list. When
process is repeated, only node pairs that aremtie list
can be selected. If a new mapping plan is adoptea b
node pair, then all node pairs in the list thafude either



of these nodes are removed from the list. This ggsds
repeated until the average load correlation of giigtem
becomes greater thaghor the number of iterations reaches
the number of node pairs in the system.

4. Complexity Analysis

In this section, we analyze the computation compjex
of the above algorithms and compare it with a tradal
load balancing algorithm. The basic load balanscigeme
of the two algorithms are the same. The later igor
always selects operators with the largest averaag first.

4.1. Statistics Collection Overhead

Table 1: Computation time with different n

20
3.4sec

50
0.9min

n 10
Computation Time 0.5sec

step of the correlation based global algorithmGOgk)
times that of the traditional load balancing altuori.

Finally, consider the computation complexity of the
correlation improvement steps. In the pair-wiseodtgms,
computing the divergent load level of all nodesetakime
O(nk). If a node is temporarily overloaded, selectingpde
pair takes timeO(nk), and to redistribute load between
them takes timeO(n?k). There are at the mosh
temporarily overloaded nodes. Thus the whole pces

Assume each node hasoperators on average and each takes time at mo$d(n’k+ mnk)

load sample takeB bytes. Then the load statistics of each

In the global algorithm, it takes tin@(n’k) to compute

node takesni+1)kD bytes on average. Since the standardthe correlation matrix in the first iteration. Ihet following

load balancing algorithm only uses the average tfaghch
statistics window, the storage needed for stasistig the
correlation based algorithm kstimes that of the traditional
load balancing algorithm.

iterations, whenever operators are redistributetivben a
node pair, it takeO(nk) time to update the correlation
matrix. Selecting a node pair takes timé&(n?).
Redistributing operators on a node pair takes @aerk).

On a high bandwidth network, the network delay for Thus, each complete iteration takes ti®@k + n”+ nk).

statistics transfer is usually negligible with redjdo the
load distribution time period. For example, we tés¢
statistics transfer time on an Ethernet with 100Mbp
connection between the machines. Establishing tG@ T
connection takes 2ms on average. Wimen 20,k = 20, the

There are at most(n-1) iterations. The total correlation
improvement step takes time at me$n’k + n* + m’n’k).
Although the correlation based algorithms are
polynomial time. They can still be very expensivieewwm,
n, kare large. Thus, we must work with reasonablen, k

in

statistics transfer time is 1ms per node on averageto make these algorithms feasible.

Considering the TCP connection time together wiib t
data transfer time, the difference between theetation

4.3. Parameter Selection

based algorithm and the traditional load balancing Obviously, the global algorithm and the centralipeit-

algorithm is not significant.

4.2. Computation Complexity

wise algorithm can not scale whars large. However, we
can partition the whole system into either overlagpor
non-overlapping sub-domains. In each domain, bboth t

First, consider the one-way correlation based loadglobal and the pair-wise algorithm can be applazlly.

balancing algorithm. In each load distribution pdri it

In addition, as the pair-wise algorithm is repeated

takesO(nlogn) time to order the nodes and select the nodeperiodically, we must make sure that its computatime is

pairs. For a given node pair, before selecting ergrator,
the scores of the candidate operators must be dechpu
Computing the correlation coefficient of a timeigertakes

small in comparison to the load distribution period
Obviously, whenm is large, a lot of operators must have
very small average load. As it is not necessargowsider

time O(k). Thus, in a pair-wise algorithm, computing the each operator with small load individually, the miers

score of an operator also takes ti@€). There areO(m)

can be clustered into super-operators such thatot of

operators on the sender node, thus the total aperat each super-operator is no less than certain thigsBy

selection time is at mosD(ntk). In the traditional load
balancing algorithm, it is not necessary to compilte
scores of the operators, thus the operator setetiioe of
the one-way correlation based algorithmOg&) times that
of the traditional load balancing algorithm.

In the asymptotic sense, the two-way correlatioseba
load balancing algorithms also takes tin@n’k) to
redistribute the operators. But their computationet is
several times that of the one-way algorithm as ttasider
twice as many operators as the later one considers.

For the global algorithm, the score computationetak
O(nkK) time for each operator. As there an@ operators all
together, its operator distribution time @&m‘n’k). Thus
the computation time of the greedy operator distrin

grouping operators, we can control the numimeon each
node.

Moreover, we can also choogeto achieve a tradeoff
between the computation time and the performancthef
algorithm. For largerk, the correlation coefficients are
more accurate, and thus the distribution plandateer. At
the other extreme, whekis 1, our algorithm reduces to
load balancing with a random operator selectiorcgol

Finally, we would like to point out that it is nbard to
find reasonablen, k, and domain size. For example, we
tested the algorithms on a machine with an AMD &V
3200+ 2GHz processor and 1GB memory. Winexil0,
k=10, the computation time of the pair-wise operator
redistribution algorithm is only 6ms for each nogpkr. If



the load distribution interval is 1 second, therése
algorithms only take a small fraction of the CPbhdiin
each distribution period. Since the pair-wise alfjon can
be easily extended to a decentralized and asynchgson
implementation, it is potentially scalable. The qgatation
time of the global algorithm with different is shown in
Table 1. Note that the global algorithm runs infrequently
and on a separate node. It would only be usedbtec
global imbalances.

5. Experiments

In this section, we present experimental resultedan
a simulator that we built using the CSIM libran2]1

5.1. Experimental Setup

5.1.1. Queries. For these experiments, we useveral

independent linear operator chains as our quenyhgral he
selectivity of each operator is randomly assignaskl on a
uniform distribution and, once set, never changise

execution cost of each operator is at most 0.1rgkcd/e

also treat all operators in the system as movable.

5.1.2. Workload. We used two kinds of workloads for our
experiments. The first models a periodically flattng
load for which the average input rate of each irgitdam
alternates periodically between a high rate andvarhte.
Within each period, the duration of the high rateeival
equals the duration of the low rate interval. loleaterval,
the inter-arrival times follow an exponential dilstrtion

Table 2: Simulation Parameters

Number of nodesn) 20
Average # of operators per nods) ( 10
Number of operators in each chain 10
Operator selectivity distribution U (0.8,1.2
Operator processing delay (per tuple) ims
Input rate generating distribution u(0.8, 1.2
Input rate fluctuation period 10sec
Input rate fluctuation ratio (high rate/low rate 4
Operator migration time 200ms
Network bandwidth 100Mbps
Statistics window Size 10sec
# of samples in statistics window) ( 10
Load distribution period 1sec
Load balancing threshold)( 0.1
Score threshold for operator exchangle ( 0.2
Correlation improvement thresholé) ( 0.8

algorithm which always selects the operator wittgéast
load first, and a randomized load balancing albanit
which randomly picks the operators. Each of theetatwo
algorithms has both a global version and a paiewis
version. Operators are only moved from the moreléoa
nodes to the less loaded nodes.

5.1.4 Experiments. Unless specified, the operators are
randomly placed on all nodes when a simulationstal

with a mean set to the current average data rate. Wexperiments have an initial warm up period, whea Ittad

artificially varied the load correlation coefficienbetween
the operators from —1 to 1 by aligning data ratedesoof
each input stream with a different offset.

statistics can be collected. In this period, a naaddy
offloads to another node if it is overloaded. Tleeaiver
node is selected using the same algorithm described

The second workload is based on the classical @n-OfSection 3.3. After the warm up period, differentado

model that has been widely used to model netwaKidr
[3, 18]. We further simplified this model as follsweach
input stream alternates between an active periddaaridle
period. During an active period, data arrives pdidally

distribution algorithms are applied and the encibo-
latencies at the output are recorded.

We test each algorithm at different system loaclev
The system load levat defined as the ratio of the sum of

whereas no data arrives during an idle period. Thethe busy time of all nodes over the product of tikenber

durations of the active and idle periods are gaadr&dom
an exponential distribution. This workload models a
unpredictably bursty workload. In order to get eifint
load correlations from -1 to 1, we first generadens input
streams independently and then let the other isprems
be either the opposite of one of these streamsr(\steam
A'is active, its opposite stream is idle and visesagor the
same as one of these streams with the initial @qirriod
starting at a different time.

We use the periodically fluctuating workload to kexzie
the global algorithm alone and to compare the piEe
algorithms with the global algorithm. The burstyrkload
is used to test both algorithms together, as tbeajlload
distribution easily becomes ineffective under
workload.

5.1.3. Algorithms. We compare the above correlation
based algorithms with a traditional

load balancing

of nodes and the simulation duration. For each sitian,
we first determine the system load level, then camphe
average rate of each input streams (to achievegitren
load level) as follows: (1) Randomly generate & fedm a
uniform distribution. (2) Compute the system loavdl
using the generated steam rates. (3) Multiply estcbam
rate by the ratio of the given system load levetrothe
computed system load level.

To avoid bias in the results, we repeated each
experiment five times with different random seeaisd we
report the average result. In order to make theamesend-
to-end latency of different runs comparable, we enakch
operator chain contain the same number of opera&ach

suchwith the same processing delay. In this setting, ehd-to-

end processing delay of all output tuples is theesa(i.e.,
no dependency on the randomly generated query graph
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Because the average end-to-end latency dependseon
number of operators in each chain as well as thegsising
delay of each operator, we use the ratio of thesaeeend-
to-end latency over the end-to-end processing datathe
normalized performance measurement. This raticaled
thelatency ratio

Unless otherwise specified, all the experiments ar

based on the simulation parameters summarizedhieTa

5.2. Experiments and Results
5.2.1. The Glaobal Algorithms. First, we compare the three

e

Table 3: Average load correlation of the global algorithms
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Figure 5: Dynamic performance of the global algorithms

one algorithm at different load levels are simitareach
other and the average results are shown in TabMdotice
that the average load correlation of the RAND-GL& a
the LLF-GLB algorithms are around zero, showingttha
their performance is not worst case. If an algonitends to

tput highly correlated operators (for instance, eared

operators with fixed selectivity) together, it magult in an
average load correlation close to -1. This would rgach
worse performance under a fluctuating workload.

The benefit of having large average load correfai®
not obvious in the first experiment. The above ltsssteem
to indicate that when the system load level is lotlvan 0.5,
it does not matter which algorithm is used. Howetes is
not true. In the second experiment we show theceffethe
different average load -correlations achieved byséhe
algorithms.

In this experiment, we first set the system loackldo

global operator allocation algorithms. They are thep, 05 and use different global algorithms to getial

correlation based algorithnfCOR-GLB), therandomized
load balancing algorithm(RAND-GLB) and thelargest-
load-first load balancing algorithnfLLF-GLB).

In the first experiment, the global algorithms applied
after the warm up period and no operator is moviter a
that. The latency ratios of these algorithms afedgit
system load levels are shown in Fig@&eObviously, the
correlation based algorithm performances much béttn
the other two algorithms. Figuredepicts the average load
standard deviation of all nodes in the system after
global algorithms are applied. The COR-GLB algarith
results in load variance that is much smaller ttienother
two algorithms. This further confirms that smallatb
variance leads to small end-to-end latency. We slsow
the lower bound of the average load standard dewiat
(marked by MINIMUM) in Figure4. It is the standard
deviation of the overall system load time seriegd#id by
n (according to Theorem 1). The results show that t
average load variance of the COR-GLB algorithm ésyv
close to optimal in this experiment.

In addition, we measured the average load coroglaif
all node pairs after the global distributions. Tresults of

operator distribution plans. Then, we increase dh&tem
load level to 0.8 and use the largest-load-firsir-pése
load balancing algorithm to balance the load ofdymstem.
The latency ratios and tleenount of load movetiafter the
load increase are shown in Figuse Because the COR-
GLB algorithm results in large average load cotielg the
load of the nodes is naturally balanced even when t
system load level changes. On the other hand, ANIR
GLB and the LLF-GLB algorithms are not robust tado
changes as they only have average load correlagicnsd
zero. Therefore, the correlation based algorithmsti#l
potentially better than the other two algorithmemvf the
current system load level is not high.

5.2.2. The Pair-wise Algorithms. For the pair-wise
algorithms, we want to test how fast and how whediytcan
adapt to load changes. Thus, in the following eixpents,
we let the system start from connected mapping splan
where a connected query graph is placed on a simagle.

3 Whenever an operator is moved, its average loaddgd to the amount
of load moved.
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Figure 7: Latency ratio of correlation based algorithms
9 K4 g when system load is 0.9

Different pair-wise algorithms are applied aftee tvarm To look at these algorithms more closely, we plot
up period and the worse case recovery performarice Oseyeral metrics with respect to the simulation tihen the
these algorithms is compared. system load level is 0.9 in Figure 8. Obviouslye BOR-

RE-IMP algorithm moves much more load than the COR-
SE-IMP algorithm. Thus although the quality of fisal
plan is closer to that of the global algorithm, &gerage
performance is worse than that of the COR-SE-IMP
algorithm. For different applications, which twoyva
algorithm performs better on average usually depennl
the workload of the system and the operator mignatime.

We can also see from Figure 8 that the global @lyor
moves less load than the COR-RE-IMP algorithm but
achieves better performance. Thus, although itoissible
to use pair-wise algorithms only, it is still seblsito use a
global algorithm for initial operator distribution.

One-way Pair-wise Load Balancing Algorithms: First
the three one-way pair-wise algorithms are comparéey
are thecorrelation based load balancing algorith(@OR-
BAL), the randomized load balancing algorithiRAND-
BAL) and thelargest-load-first load balancing algorithm
(LLF-BAL). Figure 6 depicts the latency ratios of these
algorithms at different system load levels. Obvigushe
COR-BAL algorithm has the best performance. Bec#luse
amount of load moved for these algorithms is alntbst
same, the result indicates that the operators teeldry the
correlation base algorithm are better than thosectsd by
the other two algorithms. The latency ratios of the
correlation based global algorithm are adde@igure 6for 5.2.3. Sensitivity Analysis. Here, we inspect whether the
comparison. It shows that the performance of thesie correlation based algorithms are sensitive to rhfie
wise algorithms is much worse than that of the edation ~ simulation parameters. In these experiments, thRGDB
based global algorithm. and the COR-SE-IMP algorithms are compared with the
LLF-GLB and the LLF-BAL algorithms when the system
load level is 0.9. We vary the number of nodey the
average number of operators on each noge the size of
the statistics window, the number of samples inheac
statistics windowK), the input rate fluctuation period, and
the input rate fluctuation ratio (high rate / loate).

The results in Figure 9 show that the correlatiasdul
algorithms are not sensitive to these parametecepx
whenm is very small, in which case, the load of the eyst
cannot be well balanced. On the other hand, thge&ir
load-first load balancing algorithms are sensitigethese
parameters. They perform badly especially when the
number of nodes is small, or the average number of

Improved two-way pair-wise algorithms: In this
experiment, we compare two improved correlationedas
two-way algorithms. They are thé@nproved operator
redistribution algorithm(COR-RE-IMP) and thémproved
selective operator exchange algorithfCOR-SE-IMP).
The latency ratios of the COR-BAL and the COR-GLB
algorithms are added in Figure for comparison. The
results show that the latency ratios of the impdoueo-
way pair-wise algorithms are much smaller than dhe-
way algorithm. Thus, the benefit of getting betgerator
distribution plans exceeds the penalty of movingrano
operators.
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Figure 9: Experimentswith different parameters

operators on each node is small, or the load fat@n
period is long, or the load fluctuation ratio isge,

Notice that wherm is large, the static performance of

the largest-load-first algorithm is almost as goasl the
correlation based algorithms. This is because wéach
operator has only a small amount of load and thd laf all
operators fluctuate differently, putting a lot operators
together can smooth out load variation. Howeveremthe
dynamic performance is considered, the correlakiased
algorithm still performs better than the largesiddfirst
algorithm because it results in a positive averampd
correlation and can naturally balance the load wtien
load changes.

In addition, these results show that the correfabiased
algorithms are not very sensitive to the precisadnthe
measured correlations. They work pretty well evemew
the size of the statistics window is only half bEtload
fluctuation period (i.e., when load fluctuation joer is 20
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Figure 10: Latency ratio of different algorithmswith on-
off input model

5.2.4. Bursty Workload. Finally, we use the bursty
workload to test the robustness of our algorithrike
mean of the active period durations and the meaheoidle
periods are both 5 seconds, and the statisticsomirgize is
still 10 seconds. As the duration of the activeiquks and
the idle periods are exponentially distributed, nheasured
load correlations vary over time, and they are pretcise..
In this experiment, the global algorithms are camabli with
their corresponding pair-wise algorithms. The camebli
algorithms are identified by the names of the pase
algorithms with GLB inserted. The experimental fesin
Figure 10 confirm the effectiveness of the corielabased
algorithms under such workload.

6. Related Work

Load distribution is a classical problem in distrid
and parallel computing systems [7, 11, 20]. In nafsthe
traditional systems, load balancing or load shariag
achieved by wisely allocating new tasks to procegsinits
before their execution [16]. Due to the high oveheof
load migration, the applications of dynamic load
distribution algorithms (which redistribute runnitegsks on
the fly) are usually restricted to large scientsicnulations
and computations [15, 17]. Stream based data sbees
systems [2, 5, 13] are different from traditionatabase
systems in that they are push-based and the tastkese
systems are continuous queries. Because the ingtat d
rates of such systems do not depend on the resource
utilization, the load distribution algorithms forhdse
systems are also different from traditional works.

Dynamic load balancing has been studied in theestnt
of continuous query processing. Shah et al. studi®e to
process a single continuous query operator on phelti
shared-nothing machines [14]. In this work, loathbaing
is achieved by adjusting the data partitions ongshevers
dynamically. Our work is complementary to theinscg we
focus on inter-operator load distribution insteddirdgra-
operator data partition.

Our previous work [19] studies dynamic load
distribution in stream processing systems whem#terork

in Figure 9). Thus, when the precision of the load transfer delays are not negligible. In this worknieected

correlations must be sacrificed to reduce the cdatjmn
overhead, we can still expect relatively good penfance.

operators are clustered as much as possible tod avoi
unnecessary network transfers. When load redigtobus
necessary, operators along the boundary of thegaaby



graphs are migrated in order to achieve a goodnbala
between the operator distribution quality and tladl
migration overhead. Our current work is based dfeint

assumptions where we consider frequently fluctgatin

workloads with abundant network resources.

(3]
[4]

Another dynamic load management algorithm for 5

distributed federated stream processing systems
presented in [4]. In this system,
participants do not collaborate for the benefitled whole
system. A price must be paid if one node wantsftioaxl

to another node. Using pre-negotiated pair-wisetreots,
these participants can handle each other’s exoasls |IOur
work is different from this work in that we considgream
processing servers in the same administrative dombere
all nodes fully cooperate with each other. In addit our
algorithm considers the load variation of the opersand
tries to find load distribution plans with smallexage load
variance and large average load correlation. Tobtst of
our knowledge, this problem has not been addrelsgechy
of the former work yet.

7. Conclusions and Future Directions
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operators to adapt to changing loads. We have shbat
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can do much better than conventional load balancindlz]

techniques. This illustrates how the streamingrenment
is fundamentally different from other parallel pessing
approaches. The nature of the operators and tlyetived
data flows through the network can be exploited was
have, to provide a much better solution for minimigend-
to-end latency.
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Conference2003.

[14] M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, fdndl

The work presented here focuses on high-performance

computing clusters such as blade computers. Anoabv
direction for future work is to relax this constrgi and to
move toward a more heterogeneous

This will radically change the optimization algtits. We
believe that by starting with the more familiar arnal its
own right, useful case in this study, we will bettee
informed to tackle the next set of problems.
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