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Abstract 

 
Distributed and parallel computing environments are 

becoming cheap and commonplace. The availability of 
large numbers of CPU’s makes it possible to process more 
data at higher speeds.  Stream-processing systems are also 
becoming more important, as broad classes of applications 
require results in real-time. 

Since load can vary in unpredictable ways, exploiting 
the abundant processor cycles requires effective dynamic 
load distribution techniques. Although load distribution 
has been extensively studied for the traditional pull-based 
systems, it has not yet been fully studied in the context of 
push-based continuous query processing.  

In this paper, we present a correlation based load 
distribution algorithm that aims at avoiding overload and 
minimizing end-to-end latency by minimizing load variance 
and maximizing load correlation. While finding the optimal 
solution for such a problem is NP-hard, our greedy 
algorithm can find reasonable solutions in polynomial time. 
We present both a global algorithm for initial load 
distribution and a pair-wise algorithm for dynamic load 
migration.  
 

1. Introduction 

Stream-based continuous query processing fits a large 
class of new applications, such as sensor networks, location 
tracking, network management and financial data analysis. 
In these systems, data from external sources flows through 
a network of continuous query operators. Since stream-
based applications usually involve large volumes of data 
and require timely response, they could benefit 
substantially from the additional horsepower of distributed 
environments [6]. 

Borealis [1] is a new distributed stream processing 
engine that is being developed at Brandeis, Brown, and 
MIT as a follow on to the Aurora project [2].  Borealis 
attempts to provide a single infrastructure for distributed 
stream processing that can span diverse processing 
elements that can be as small as sensors and as large as 
servers.  As a first step in this direction, we restrict this 

work to the case of clusters of servers with high-speed 
interconnections. 

In Borealis, as in Aurora, a query network is a collection 
of operators that are linked together in a dataflow diagram.  
Our operators extend the relational operators to deal with 
the ordered and infinite nature of streams.  A Borealis 
query network cannot have loops; however, the output of an 
operator can branch to multiple downstream operators 
(result sharing) and can be combined by operators with 
multiple inputs (e.g., Join, Union). 

Query optimization in this setting is to a large extent 
concerned with mapping the operators in a query network 
to machines in a distributed environment.  As the load 
changes, this mapping will need to change in order to deal 
with new hot spots.  The process of forming the initial 
mapping and of dynamically redistributing operators is the 
topic of this paper. 

While load balancing and load sharing have been 
studied extensively in traditional parallel and distributed 
systems [11, 16], the load distribution problem has not yet 
been fully studied in the context of push-based stream 
processing.  Traditional load distribution strategies use total 
load information in decision making because they are 
designed for pull-based systems where load fluctuation 
occurs as different queries are presented to the system.  In a 
push-based system, load fluctuation occurs in the arrival 
rates of the streams.  In this case, even when the average 
load of a machine (or node) is not very high, a node may 
experience a temporary load spike and data processing 
latencies can be significantly affected by the duration of the 
spike. Thus, to minimize data processing latencies we need 
an approach that can avoid temporary overload as much as 
possible. 

For instance, consider two operator chains with bursty 
input data. Let each operator chain contain two identical 
operators with a selectivity of one. When the average input 
rates of the two input streams are the same, the average 
loads of all operators are the same. Now consider two 
operator mapping plans on two nodes. In the first plan, we 
put each of the two connected operator chains on the same 
node (call this the connected plan). In the second plan, we 
place each component of a chain on different nodes (call 
this the cut plan). There is no difference between these two 
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plans from the load balancing point of view. However, 
suppose the load burst of the two input streams happens at 
different times, i.e., when the input rate of the first chain is 
high, the input rate for the second chain is low and vice 
versa. Then the above two mapping plans can result in very 
different performance. Figure 1 shows an example 
performance graph for this kind of workload in which the 
burst duration and the normal duration are both 5 seconds, 
and the high (bursty) input rate is twice the low (normal) 
input rate.  

Putting connected operators on different nodes, in this 
case, achieves much better performance than putting them 
on the same node (ignoring bandwidth considerations for 
now). The main difference between these two mapping 
plans is that since the two input bursts are out of phase, the 
cut plan ensures that the load variation on each node is very 
small.  In the connected plan, it is much larger.  This simple 
example shows that the average load level is not the only 
important factor in load distribution. The variation of the 
load is also a key factor in determining the performance of 
a push-based system.  

In this paper, we propose a new load distribution 
algorithm that not only balance the average load among the 
processing nodes, but also minimize the load variance on 
each node. The latter goal is achieved by exploiting the 
ways in which the stream rates correlate across the 
operators. More specifically, we represent operator load as 
fixed length time series. The correlation of two time series 
is measured by the correlation coefficient, which is a real 
number between -1 and 1. Its intuitive meaning is that when 
two time series have a positive correlation coefficient, then 
if the value of one time series at certain index is relatively 
large (in comparison to its mean), the value of the other 
time series at the same index also tends to be relatively 
large. On the other hand, if the correlation coefficient is 
negative, then when the value of one time series is 
relatively large, the value of the other tends to be relatively 
small. Our algorithm is inspired by the observation that if 
the correlation coefficient of the load time series of two 
operators is small, then putting these operators together on 
the same node helps in minimizing the load variance.  

The intuition of correlation is also the foundation of the 
other idea in our algorithm: when making operator 
allocation decisions, we try to maximize the correlation 
coefficient between the load statistics of different nodes. 

This is because moving operators will result in temporary 
poor performance due to the execution suspension of those 
operators, but if the load time series of two nodes have 
large correlation coefficient, then their load levels are 
naturally balanced even when the load changes. By 
maximizing the average load correlation between all node 
pairs, we can minimize the number of load migrations 
needed. 

Later, we will see that minimizing the average load 
variance also helps in maximizing the average load 
correlation, and vice versa. Thus, the main goal of our load 
distribution algorithms is to produce a balanced operator 
mapping plan where the average load variance is minimized 
or the average node load correlation is maximized. Finding 
the optimal solution for such a problem requires exhaustive 
search and is, similar to the graph partitioning problem, NP 
complete [10]. In this paper, we propose a greedy algorithm 
that finds a sub-optimal solution in polynomial time. Our 
experimental results show that the performance of our 
algorithm is very close to the optimal solution. 

In this paper, we present both a global operator mapping 
algorithm and some pair-wise load redistribution algorithms. 
The global algorithm is mainly used for initial operator 
placement. After global distribution, we will use pair-wise 
algorithms to adapt to load changes. The advantage of 
using pair-wise algorithms is that it does not require as 
much load migration as the global algorithm.  

The rest of this paper is organized as follows. Section 2 
introduces the system model and formalizes the problem. 
Our algorithms are presented in Section 3. Section 4 
analyzes the computation complexity of these algorithms. 
The experiment results are presented in Section 5. Section 
6 discusses related work. Finally, the conclusions and 
future directions are summarized in Section 7.  

2. Problem Description 

2.1. System Model and Assumptions 

In this paper, we assume a physical architecture of a 
loosely coupled shared-nothing homogeneous computer 
cluster. All computers are connected by a high bandwidth 
network. We assume that the network bandwidth is not a 
limited resource and network transfer delays as well as the 
CPU overhead for data stream transfer are negligible [8], 
[9].  For applications with very high steam rates that may 
stress the network, connected operators can be encapsulated 
into super-operators or clusters such that high bandwidth 
links are internal to a super-operator and thus, do not cross 
real network links. Operator clustering in the context of 
fluctuating workload is itself a very challenging topic and is 
a part of our ongoing work. In this paper, we assume that 
necessary operator clustering has been done so that we can 
directly distribute super operators without network 
bandwidth concern. 

In Borealis, most operators (e.g., Filter, Aggregate, Join) 
provide interfaces that allow them to be moved on the fly.  
For practical purposes, we consider SQL-read and SQL-
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Figure 1: Comparison of different operator mapping 
plans with fluctuating load 



write boxes to be immovable since their effective state can 
be huge.  When moving a set of operators, their execution 
is first suspended. Then, the metadata (e.g., operator 
description and topology) and the operator states (the input 
queues and the internal operator data structures) are 
transferred to the receiving node. The receiving node 
instantiates these operators with the given information and 
then resumes their execution. In this paper, we assume that 
all operators with very large states (e.g., databases) are 
allocated by some other algorithm according to the storage 
capacities of the nodes. We only consider the mapping and 
migration of movable operators whose state size is 
relatively small.  Even in this case, the operator migration 
time is usually much longer than the end-to-end data 
processing time.  

2.2. Load Measurement 

In this paper, we consider CPU utilization as the system 
load. The load of nodes and operators is measured 
periodically over fixed-length time periods. In each period, 
the load of an operator is defined as the fraction of the CPU 
time needed by that operator over the length of the period. 
In other words, if the average tuple arrival rate in period i 
for operator o is 

�
 (o) and the average tuple processing time 

of o is p(o), then the load of o in period i is 
�
(o) p(o).  The 

load of a node in a given period is defined as the sum of the 
loads of all its operators in that period. 

We define the tuple arrival rate of a stream as the 
number of tuples that would arrive on the stream when no 
node in the system is overloaded. If the statistics 
measurement period is large enough, such “ideal” rates 
become independent of the scheduling policy. On the other 
hand, the actual number of tuples that enter each stream per 
time interval is usually dependent on the scheduling 
algorithm, especially when some node becomes overloaded.  

The ideal tuple arrival rates can be approximately 
computed from the system input stream rates and the 
selectivities of the operators. If no global information is 
available for such computation, an upstream node can tell 
its downstream nodes the ideal rates of its output streams so 
that the downstream nodes can compute the ideal rates of 
their internal data streams locally.  

2.3. Statistics Measurement 

We measure the load of each operator periodically and 
only keep the statistics for the most recent k periods. Each 
statistics measurement period should be long enough so that 
the measured load is independent of the scheduling policy 
and any high frequency load fluctuation is smoothed out. 
The total time of the k statistics measurements is called the 
statistics window of the system. It should be selected large 
enough to avoid load migration thrashing. The k load 
values of an operator/node form a load time series for the 
operator/node. 

Given a load time series S = (s1, s2 ,… , sk),  its mean and 
variance are defined as follows:  
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Given two load time series S1 = (s11, s12, … , s1k) and S2 = 
(s21, s22, … s2k), their covariance cov(S1, S2) and correlation 
coefficient ρ are defined as follows: 
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 In this paper, the variance of the load time series of an 
operator/node is also called the load variance of that 
operator/node. The correlation coefficient of the load time 
series of two operators/nodes is also called the load 
correlation of the two operators/nodes. The mean of the 
load time series of an operator/node is called the average 
load (or simply load) of that operator/node. Load balancing 
algorithms attempt to balance the average load of the nodes.  

Our algorithm is based on the observation that load 
correlations vary among operators. This variation is a result 
of more than the fluctuation of different input rates.  It also 
results from the nature of the queries. For example, 
consider a stream with attribute A feeding different filter 
operators as depicted in Figure 2.  The boxes in the figure 
represent operators and the arrows represent data streams. 
It is not difficult to tell that no matter how the input stream 
rate fluctuates, operators �1, �2 and �3 always have pair-
wise load correlation 1, and operators o4 and o5 always 
have a load correlation of -1. In addition, operators o4 and 
o6 tend to have a negative load correlation, and operators 
o5 and o6 tend to have a positive load correlation.  

Such query-determined correlations are stable or 
relatively stable in comparison to input-determined 
correlations. This feature is important to our algorithms 
because we use the correlations to determine the locations 
of the operators. If the correlations are highly volatile, the 
decisions made may soon loose their effectiveness.  

2.4. Optimization Goal 

Our goal in load distribution is to minimize the average 
end-to-end data processing latency. In this paper, we 
consider two kinds of load distributions: initial operator 
mapping and dynamic operator redistribution. For the 

 
 

 

 

 

 

Figure 2: Stream with attribute A feeding different filters 
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former one, we try to find an operator mapping plan that 
can minimize the average end-to-end latency. For the latter 
one, we try to achieve a good balance between the load 
migration overhead and the quality of the new operator 
mapping plan. 

We have already seen that in a push-based system, 
minimizing average end-to-end latency can be achieved by 
minimizing average load variance or maximizing average 
load correlation. Then our operator mapping problem can 
be formalized as the follows:  

 

Assume that there are n nodes in the system. Let Xi 
denote the load time series of node Ni and � ij denote the 
correlation coefficient of Xi and Xj for nji ≤≤ ,1 . We want 

to find an operator mapping plan with the following 
properties: 

(1)  EX1 
�  EX2 

� … �  EXk 

 (2)  �
=

n

i

Xi
n 1

var
1  is minimized or 

 (3) �
≤<≤ nji

ij
1

ρ is maximized 

 

Finding the optimal solution of this problem requires 
comparison of all possible mapping plans and is NP hard. 
Thus, our goal is to find a reasonable heuristic solution. 

3. Algorithm  

3.1. Theoretical Underpinnings 

Before discussing our algorithm, it is beneficial to know 
how to minimize average load variance in the ideal case. In 
this section, we assume that the total load time series X of 
the system is fixed, and it can be arbitrarily partitioned 
across n nodes (this is usually unachievable). We want to 
find the load partition with minimum average load variance. 
The result is illustrated by the following theorem: 

 
Theorem 1: Let the total load of the system be denoted 

by time series X. Let Xi be the load time series of node i, 
ni ≤≤1 , i.e. X = X1 + X2 + … + Xn. Then among all load 

balanced mapping plans with EX1 = EX2 … = EXn, the 
average load variance 
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Proof: Let � ij be the correlation coefficient between Xi and 
Xj. Since X = X1 + X2 + … + Xn, we have  
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The above equality holds if and only if � ij=1 and 

ji XX varvar =  for all nji ≤≤ ,1 . Using condition 

nEXEXEX === �21
, we have that � iXvar is 

minimized if and only if ....21 nXXX === �  

Notice that in the ideal case, when the average load 
variance of the system is minimized, the average load 
correlation of the system is also maximized. Naturally, we 
want to know whether the average load variance is 
monotonically decreasing with the average load correlation. 
If so, minimizing average load variance and maximizing 
average load correlation are then the same. Unfortunately, 
such a conclusion does not hold in general. It is very easy 
to find an counter example through simulation. However, in 
the case of n = 2, we can prove that when � 12 > 0, the lower 
bound of the average load variance is a monotone 
decreasing function of the load correlation coefficient. The 
conclusion is shown as follows: 

 
Theorem 2: Given load time series X and X1, X2, with X 

= X1 + X2, if � 12 > 0 then 
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The proof is similar to Theorem 1 and is omitted. From 

this conclusion, we can see that the smaller the correlation 
coefficient, the larger the lower bound of the average load 
variance, which means the more room we have for further 
optimization. Because correlation coefficients are bounded 
between [-1, 1], it is very easy to use them to check whether 
a given mapping plan is near optimal and to determine 
whether redistributing operators between a node pair is 
necessary. This observation is a very important foundation 
for one of our optimization techniques. 

3.2. Algorithm Overview 

In this section, we present a greedy algorithm which not 
only balances the load of the system, but also tries to 
minimize the average load variance and maximize the 
average load correlation of the system. 

Our algorithm can be divided into two parts. First, we 
use a global algorithm to make the initial operator 
distribution. Then, we switch to a dynamic load 
redistribution algorithm which moves operators between 
nodes in a pair-wise fashion. In the global algorithm, we 
only care about the quality of the resulting mapping plan 
without considering how much load is moved. In the pair-
wise algorithm, we try to find a good tradeoff between the 
amount of load moved and the quality of the resulting 
mapping plan.  

Both algorithms are based on the basic load-balancing 
scheme. Thus, if the load of the system does not fluctuate, 
our algorithm reduces to a load balancing algorithm with a 
random operator selection policy. When the load of the 
system fluctuates, we can get load-balanced operator-
distribution plans with smaller average load variance and 



larger average load correlation than the traditional load 
balancing algorithms. 

Since it is easier to understand how to minimize the 
average load variance between a node pair than among all 
nodes in the system, we will first discuss the pair-wise 
algorithm, and then the global algorithm. 

3.3. Pair-wise Algorithm 

For simplicity, we assume that there is a centralized 
coordinator in the system and the load information of all 
nodes is reported periodically to the coordinator. After each 
statistics collection period, the coordinator orders all nodes 
by their average load. Then the i th node in the ordered list is 
paired with the (n-i+1)th node in the list. In other words, the 
node with the largest load is paired with the node with the 
smallest load; the node with the second largest load is 
paired with the node with the second smallest load, and so 
on. If the load difference between a node pair is greater 
than a predefined threshold � , operators will be moved 
between the nodes to balance their average load. When 
necessary, this pair-wise load distribution scheme can be 
easily extended to a decentralized implementation.  

Now, given a selected node pair, we will focus on how 
to move operators to minimize their average load variance. 
As we know that there is a tradeoff between the amount of 
load moved and the quality of the resulting mapping plan, 
we will first discuss an algorithm that moves the minimum 
amount of load, and then discuss an algorithm that achieves 
the best operator mapping quality, and finally, present an 
algorithm that balances the two goals well.  
 

3.3.1. One-way Correlation Based Load Balancing.  
In this algorithm, only the more loaded node is allowed to 
offload to the less loaded node. Therefore, the load 
movement overhead is minimized.  

Let N1 denote the more loaded node and N2 denote the 
less loaded node. Let the load of N1 be L1 and the load of 
N2 be L2. Our greedy algorithm will selects operators from 
N1 one by one with total selected load less than (L1 – L2)/ 2 
until no more operators can be selected. The operator 
selection policy is inspired by the following observation: 

Assume we have only two operators and two nodes. Let 
the load time series of the operators be S1 and S2 
respectively and the load correlation coefficient of the two 
operators be � 12. Putting the operators on different nodes 
will results in an average load variance of (varS1 + varS2)/2 
and putting the operators on different nodes will results in 
average load variance of var(S1+S2)/2. From the definition 
of correlation coefficient, we have that  
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Obviously, to minimize average load variance, when � 12 < 0, 
it is better to put the operators together on the same node, 
and when � 12 > 0, it is better to separate them onto different 
nodes.  

Now consider moving operators from N1 to N2 following 
this intuition. Let � (o, N) denote the correlation coefficient 

between the load time series of operator o and the total 
(sum of) load time series of all operators on N except o. 
Then from N1’s point of view, it is good to move out an 
operator that has a large � (o, N1), and from N2’s point of 
view, it is good to move in an operator that has a small � (o, 
N2). Considering both nodes together, we prefer to move 
operators with large � (o, N1) - � (o, N2). Define   
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as the score of operator o with respect to N2. Our greedy 
operator selection policy then selects operators from N1 one 
by one with the largest score first.  

As the score function in this algorithm is based on the 
correlation coefficients, and the load can only be moved 
from one node to the other, this algorithm is called the one-
way correlation-based load balancing algorithm. 
 

3.3.2 Two-way Correlation-Based Redistribution. 
In this algorithm, we redistribute all operators on a given 
node pair without considering the former locations of the 
operators. With this freedom, it is possible to achieve the 
best operator mapping quality. 

The operator selection policy in this algorithm is also a 
score based greedy algorithm. We first start from two 
“empty” nodes (nodes with non-movable operators only), 
and then assign movable operators to these nodes one by 
one. In order to balance the load of the two nodes, for each 
assignment, we select the less loaded node as the receiver 
node. Then from all operators that have not been assigned 
yet, we compute their score with respect to the receiver 
node and assign the operator with the largest score to that 
node. This process is repeated until all operators are 
assigned. Finally, we use the above one-way algorithm to 
further balance the load of the two nodes.   

The score function used here is the same as the score 
function used in the one way algorithm. It can also be 
generalized into the following form:  
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where S(o, Ni) is called the score of operator o with respect 
to node Ni, i = 1,2. The intuition behind the use of S(o, Ni) 
is that the larger the score, the better it is to put o on Ni 
instead of on the other node.  

As this algorithm will move operators in both directions, 
it is called the two-way correlation-based operator 
redistribution algorithm.  

The final mapping achieved by this algorithm can be 
much better than the one-way algorithm. However, as it 
does not consider the former locations of the operators, this 
algorithm tends to move more load than necessary, 
especially when the former mapping is relatively good. In 
the following section, we present an algorithm that can get 
a good operator mapping plan by only moving a small 
fraction of operators from the existing mapping plan. 
 

3.3.3. Two-way Correlation-Based Selective Exchange. 
In this algorithm, we allow both nodes to send load to each 



other. However, only the operators whose score is greater 
than certain threshold 

�
 can be moved. The score function 

used is the same as the one in the one-way algorithm. 
Recall that if the score of an operator on node Ni , i = 1,2, is 
greater than zero, then it is better to put that operator on Nj 
( ij ≠ ) instead of on Ni. Thus, by choosing 

�
 > 0, we only 

move operators that are good candidates. By varying the 
threshold 

�
, we can control the tradeoff between the amount 

of load moved and the quality of the resulting mapping plan. 
If 

�
 is large, then only a small amount load will be moved. 

If 
�
 is small (still greater than zero), then more load will be 

moved, but better mapping quality can be achieved.  
The details of the algorithm are as follows: (1) Balance 

the load of the two nodes using the above one-way 
algorithm. (2) From the more loaded node2, check whether 
there is an operator whose score is greater than 

�
. If so, 

move this operator to the less loaded node. (3) Repeat step 
(2) until no more operators can be moved or the number of 
iterations equals to the number of operators on the two 
nodes. (5) Balance the load of the nodes using the one-way 
algorithm.  

As this algorithm only selects good operators to move, it 
is called two-way correlation-based selective operator 
exchange algorithm. 
 

3.3.4 Improved Two-way Algorithms. In all above 
algorithms, operator migration is only triggered by load 
balancing. In other words, if an existing operator mapping 
plan is balanced, then no operator can be moved even if the 
load variance of some nodes is very large. To solve this 
problem and also maximize the average load correlation of 
the system, we add a correlation improvement step after 
each load balancing step in the above two-way algorithms.  

Recall that if the load correlation coefficient of a node 
pair is small, then it is possible to further minimize the 
average load variance of the node pair. Thus, in the 
correlation improvement step, we move operators within a 
node-pair if their load correlation coefficient is below a 
certain threshold � . Because we want to avoid unnecessary 
load migrations, the correlation improvement step is only 
triggered when some node is likely to get temporarily 
overloaded. The details of this step are as follows:  

We define the “divergent load level” of each node as its 
average load plus its load standard deviation (i.e., square 
root of load variance). For each node with divergent load 
level more than one (it is likely to get temporarily 
overloaded), apply the following steps: (1) compute the 
load correlation coefficients between this node and all other 
nodes. (2) Select the minimum correlation coefficient. If it 
is less than � , then apply one of the two way algorithms on 
the corresponding node pair (without moving the operators).  
(3) Compute the new correlation coefficient. If it is greater 
than the old one, then move the operators.  

                                                           
2 The load of the nodes cannot be exactly the same. 

Notice that this is only for the two-way algorithms since 
no operators can be moved in the one-way algorithm when 
load is balanced. The resulting algorithms are called 
improved two-way algorithms.  

3.4. Global Operator Distribution 

In this section we discuss a global algorithm which 
distributes all operators on n nodes without considering the 
former location of the operators. This algorithm is used to 
achieve a good initial operator distribution when the system 
starts. Because we need load statistics to make operator 
distribution decisions, the algorithm should be applied after 
a statistics collection warm up period. 

The algorithm consists of two major steps. In the first 
step, we distribute all operators using a greedy algorithm 
which tries to minimize the average load variance as well as 
balance the load of the nodes. In the second step, we try to 
maximize the average load correlation of the system.  

The greedy algorithm is similar to the one used in the 
two-way operator redistribution algorithm. This time, we 
start with n “empty” nodes (i.e., nodes with non-movable 
operators only). The movable operators are assigned to the 
nodes one by one. Each time, the node with the lowest load 
is selected as the receiver node and the operator with the 
largest score with respect to this node is assigned to it. 
Finally, the load of the nodes is further balanced using one 
round of the pair-wise one-way correlation-based load 
balancing algorithm.  

The major difference between the global algorithm and 
the former pair-wise algorithm is that the score function 
used here is generalized to consider n nodes together. The 
score function of operator o with respect to Node Ni , i = 
1, …, n, is defined as follows: 
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The intuition behind S(o, Ni) is that the larger the score, the 
better it is, on average, to put operator o on node Ni instead 
of putting it elsewhere. It is easy to verify that the score 
functions used in the pair-wise algorithms are just special 
cases of this form.  

After all operators are distributed, a pair-wise 
correlation improvement step is then used to maximize the 
average load correlation of the system. First, we check 
whether the average load correlation of all node pairs is 
greater than a given threshold � .  If not, the node pair with 
the minimum load correlation is identified and the two-way 
operator redistribution algorithm is used to obtain a new 
mapping plan. The new mapping plan is accepted only if 
the resulting correlation coefficient is greater than the old 
one. Notice that if this process is repeated without change, 
the same node pair with the same set of operators on each 
node can be selected repeatedly. To avoid this problem, all 
selected node pairs are remembered in a list. When the 
process is repeated, only node pairs that are not in the list 
can be selected. If a new mapping plan is adopted by a 
node pair, then all node pairs in the list that include either 



of these nodes are removed from the list. This process is 
repeated until the average load correlation of the system 
becomes greater than �  or the number of iterations reaches 
the number of node pairs in the system.  

4. Complexity Analysis 

In this section, we analyze the computation complexity 
of the above algorithms and compare it with a traditional 
load balancing algorithm. The basic load balancing scheme 
of the two algorithms are the same. The later algorithm 
always selects operators with the largest average load first.  

4.1. Statistics Collection Overhead  

Assume each node has m operators on average and each 
load sample takes D bytes. Then the load statistics of each 
node takes (m+1)kD bytes on average. Since the standard 
load balancing algorithm only uses the average load of each 
statistics window, the storage needed for statistics by the 
correlation based algorithm is k times that of the traditional 
load balancing algorithm.  

On a high bandwidth network, the network delay for 
statistics transfer is usually negligible with regard to the 
load distribution time period. For example, we test the 
statistics transfer time on an Ethernet with 100Mbps 
connection between the machines. Establishing the TCP 
connection takes 2ms on average. When m = 20, k = 20, the 
statistics transfer time is 1ms per node on average. 
Considering the TCP connection time together with the 
data transfer time, the difference between the correlation 
based algorithm and the traditional load balancing 
algorithm is not significant. 

4.2. Computation Complexity  

First, consider the one-way correlation based load 
balancing algorithm. In each load distribution period, it 
takes O(nlogn) time to order the nodes and select the node 
pairs. For a given node pair, before selecting each operator, 
the scores of the candidate operators must be computed. 
Computing the correlation coefficient of a time series takes 
time O(k). Thus, in a pair-wise algorithm, computing the 
score of an operator also takes time O(k). There are O(m) 
operators on the sender node, thus the total operator 
selection time is at most O(m2k). In the traditional load 
balancing algorithm, it is not necessary to compute the 
scores of the operators, thus the operator selection time of 
the one-way correlation based algorithm is O(k) times that 
of the traditional load balancing algorithm.  

In the asymptotic sense, the two-way correlation based 
load balancing algorithms also takes time O(m2k) to 
redistribute the operators. But their computation time is 
several times that of the one-way algorithm as they consider 
twice as many operators as the later one considers.  

For the global algorithm, the score computation takes 
O(nk) time for each operator. As there are mn operators all 
together, its operator distribution time is O(m2n3k). Thus 
the computation time of the greedy operator distribution 

step of the correlation based global algorithm is O(nk) 
times that of the traditional load balancing algorithm.  

Finally, consider the computation complexity of the 
correlation improvement steps. In the pair-wise algorithms, 
computing the divergent load level of all nodes takes time 
O(nk). If a node is temporarily overloaded, selecting a node 
pair takes time O(nk), and to redistribute load between 
them takes time O(m2k). There are at the most n 
temporarily overloaded nodes. Thus the whole process 
takes time at most O(n2k+ m2nk) 

In the global algorithm, it takes time O(n2k) to compute 
the correlation matrix in the first iteration. In the following 
iterations, whenever operators are redistributed between a 
node pair, it take O(nk) time to update the correlation 
matrix. Selecting a node pair takes time O(n2). 
Redistributing operators on a node pair takes time O(m2k). 
Thus, each complete iteration takes time O(nk + n2 + m2k). 
There are at most n(n-1) iterations. The total correlation 
improvement step takes time at most O(n3k + n4 + m2n2k). 

Although the correlation based algorithms are in 
polynomial time. They can still be very expensive when m, 
n, k are large. Thus, we must work with reasonable m, n, k 
to make these algorithms feasible. 

4.3. Parameter Selection 

Obviously, the global algorithm and the centralized pair-
wise algorithm can not scale when n is large. However, we 
can partition the whole system into either overlapping or 
non-overlapping sub-domains. In each domain, both the 
global and the pair-wise algorithm can be applied locally.  

In addition, as the pair-wise algorithm is repeated 
periodically, we must make sure that its computation time is 
small in comparison to the load distribution period. 
Obviously, when m is large, a lot of operators must have 
very small average load. As it is not necessary to consider 
each operator with small load individually, the operators 
can be clustered into super-operators such that the load of 
each super-operator is no less than certain threshold. By 
grouping operators, we can control the number m on each 
node.  

Moreover, we can also choose k to achieve a tradeoff 
between the computation time and the performance of the 
algorithm. For larger k, the correlation coefficients are 
more accurate, and thus the distribution plans are better. At 
the other extreme, when k is 1, our algorithm reduces to 
load balancing with a random operator selection policy.  

Finally, we would like to point out that it is not hard to 
find reasonable m, k, and domain size n. For example, we 
tested the algorithms on a machine with an AMD Athlon™ 
3200+ 2GHz processor and 1GB memory. When m=10, 
k=10, the computation time of the pair-wise operator 
redistribution algorithm is only 6ms for each node pair. If 

Table 1: Computation time with different n 

n 10 20 50 
Computation Time  0.5sec 3.4sec 0.9min 



the load distribution interval is 1 second, the pair-wise 
algorithms only take a small fraction of the CPU time in 
each distribution period. Since the pair-wise algorithm can 
be easily extended to a decentralized and asynchronous 
implementation, it is potentially scalable. The computation 
time of the global algorithm with different n is shown in 
Table 1. Note that the global algorithm runs infrequently 
and on a separate node.  It would only be used to correct 
global imbalances.  

5. Experiments 

In this section, we present experimental results based on 
a simulator that we built using the CSIM library [12].  

5.1. Experimental Setup 

5.1.1. Queries. For these experiments, we use several 
independent linear operator chains as our query graphs. The 
selectivity of each operator is randomly assigned based on a 
uniform distribution and, once set, never changes. The 
execution cost of each operator is at most 0.1 second. We 
also treat all operators in the system as movable. 
 

5.1.2. Workload. We used two kinds of workloads for our 
experiments. The first models a periodically fluctuating 
load for which the average input rate of each input stream 
alternates periodically between a high rate and a low rate. 
Within each period, the duration of the high rate interval 
equals the duration of the low rate interval. In each interval, 
the inter-arrival times follow an exponential distribution 
with a mean set to the current average data rate. We 
artificially varied the load correlation coefficients between 
the operators from –1 to 1 by aligning data rate modes of 
each input stream with a different offset. 

The second workload is based on the classical On-Off 
model that has been widely used to model network traffic 
[3, 18]. We further simplified this model as follows: each 
input stream alternates between an active period and an idle 
period. During an active period, data arrives periodically 
whereas no data arrives during an idle period. The 
durations of the active and idle periods are generated from 
an exponential distribution. This workload models an 
unpredictably bursty workload. In order to get different 
load correlations from -1 to 1, we first generate some input 
streams independently and then let the other input streams 
be either the opposite of one of these streams (when steam 
A is active, its opposite stream is idle and vise versa) or the 
same as one of these streams with the initial active period 
starting at a different time. 

We use the periodically fluctuating workload to evaluate 
the global algorithm alone and to compare the pair-wise 
algorithms with the global algorithm. The bursty workload 
is used to test both algorithms together, as the global load 
distribution easily becomes ineffective under such 
workload. 
   

5.1.3. Algorithms.  We compare the above correlation 
based algorithms with a traditional load balancing 

algorithm which always selects the operator with largest 
load first, and a randomized load balancing algorithm 
which randomly picks the operators. Each of the latter two 
algorithms has both a global version and a pair-wise 
version. Operators are only moved from the more loaded 
nodes to the less loaded nodes.  
  

5.1.4 Experiments. Unless specified, the operators are 
randomly placed on all nodes when a simulation starts. All 
experiments have an initial warm up period, when the load 
statistics can be collected. In this period, a node only 
offloads to another node if it is overloaded. The receiver 
node is selected using the same algorithm described in 
Section 3.3. After the warm up period, different load 
distribution algorithms are applied and the end-to-end 
latencies at the output are recorded.  

We test each algorithm at different system load levels.  
The system load level is defined as the ratio of the sum of 
the busy time of all nodes over the product of the number 
of nodes and the simulation duration. For each simulation, 
we first determine the system load level, then compute the 
average rate of each input streams (to achieve the given 
load level) as follows: (1) Randomly generate a rate from a 
uniform distribution. (2) Compute the system load level 
using the generated steam rates. (3) Multiply each stream 
rate by the ratio of the given system load level over the 
computed system load level. 

 To avoid bias in the results, we repeated each 
experiment five times with different random seeds, and we 
report the average result. In order to make the average end-
to-end latency of different runs comparable, we make each 
operator chain contain the same number of operators each 
with the same processing delay. In this setting, the end-to-
end processing delay of all output tuples is the same. (i.e., 
no dependency on the randomly generated query graph). 

Table 2: Simulation Parameters 

Number of nodes (n) 20 

Average # of operators per node (m) 10 

Number of operators in each chain 10 

Operator selectivity distribution U (0.8, 1.2) 

Operator processing delay (per tuple) 1ms 

Input rate generating distribution U(0.8, 1.2) 

Input rate fluctuation period 10sec 

Input rate fluctuation ratio (high rate/low rate) 4 

Operator migration time 200ms 

Network bandwidth 100Mbps 

Statistics window Size 10sec 

# of samples in statistics window (k) 10 

Load distribution period 1sec 

Load balancing threshold (� ) 0.1 

Score threshold for operator exchange (
�
) 0.2 

Correlation improvement threshold (� ) 0.8 

 



Because the average end-to-end latency depends on the 
number of operators in each chain as well as the processing 
delay of each operator, we use the ratio of the average end-
to-end latency over the end-to-end processing delay as the 
normalized performance measurement. This ratio is called 
the latency ratio.  

Unless otherwise specified, all the experiments are 
based on the simulation parameters summarized in Table 2.  

5.2. Experiments and Results 

5.2.1. The Global Algorithms. First, we compare the three 
global operator allocation algorithms. They are the 
correlation based algorithm (COR-GLB), the randomized 
load balancing algorithm (RAND-GLB) and the largest-
load-first load balancing algorithm (LLF-GLB).  

In the first experiment, the global algorithms are applied 
after the warm up period and no operator is moved after 
that. The latency ratios of these algorithms at different 
system load levels are shown in Figure 3. Obviously, the 
correlation based algorithm performances much better than 
the other two algorithms. Figure 4 depicts the average load 
standard deviation of all nodes in the system after the 
global algorithms are applied. The COR-GLB algorithm 
results in load variance that is much smaller than the other 
two algorithms. This further confirms that small load 
variance leads to small end-to-end latency. We also show 
the lower bound of the average load standard deviation 
(marked by MINIMUM) in Figure 4. It is the standard 
deviation of the overall system load time series divided by 
n (according to Theorem 1).  The results show that the 
average load variance of the COR-GLB algorithm is very 
close to optimal in this experiment.  

In addition, we measured the average load correlation of 
all node pairs after the global distributions. The results of 

one algorithm at different load levels are similar to each 
other and the average results are shown in Table 3. Notice 
that the average load correlation of the RAND-GLB and 
the LLF-GLB algorithms are around zero, showing that 
their performance is not worst case. If an algorithm tends to 
put highly correlated operators (for instance, connected 
operators with fixed selectivity) together, it may result in an 
average load correlation close to -1. This would get much 
worse performance under a fluctuating workload.  

The benefit of having large average load correlation is 
not obvious in the first experiment. The above results seem 
to indicate that when the system load level is lower than 0.5, 
it does not matter which algorithm is used. However, this is 
not true. In the second experiment we show the effect of the 
different average load correlations achieved by these 
algorithms. 

In this experiment, we first set the system load level to 
be 0.5 and use different global algorithms to get initial 
operator distribution plans. Then, we increase the system 
load level to 0.8 and use the largest-load-first pair-wise 
load balancing algorithm to balance the load of the system. 
The latency ratios and the amount of load moved 3 after the 
load increase are shown in Figure 5. Because the COR-
GLB algorithm results in large average load correlation, the 
load of the nodes is naturally balanced even when the 
system load level changes. On the other hand, the RAND-
GLB and the LLF-GLB algorithms are not robust to load 
changes as they only have average load correlations around 
zero. Therefore, the correlation based algorithm is still 
potentially better than the other two algorithms even if the 
current system load level is not high. 
 

5.2.2. The Pair-wise Algorithms. For the pair-wise 
algorithms, we want to test how fast and how well they can 
adapt to load changes. Thus, in the following experiments, 
we let the system start from connected mapping plans 
where a connected query graph is placed on a single node. 

                                                           
3 Whenever an operator is moved, its average load is added to the amount 
of  load moved. 
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Figure 3: Latency ratio of the global algorithms 
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Figure 4: Average load variance of the global algorithms 

Table 3: Average load correlation of the global algorithms 

COR-GLB RAND-GLB LLF-GLB 
0.65 -0.0048 -0.0008 
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Figure 5: Dynamic performance of the global algorithms 



Different pair-wise algorithms are applied after the warm 
up period and the worse case recovery performance of 
these algorithms is compared.  
 
One-way Pair-wise Load Balancing Algorithms: First 
the three one-way pair-wise algorithms are compared. They 
are the correlation based load balancing algorithm (COR-
BAL), the randomized load balancing algorithm (RAND-
BAL) and the largest-load-first load balancing algorithm 
(LLF-BAL). Figure 6 depicts the latency ratios of these 
algorithms at different system load levels. Obviously, the 
COR-BAL algorithm has the best performance. Because the 
amount of load moved for these algorithms is almost the 
same, the result indicates that the operators selected by the 
correlation base algorithm are better than those selected by 
the other two algorithms. The latency ratios of the 
correlation based global algorithm are added in Figure 6 for 
comparison. It shows that the performance of these pair-
wise algorithms is much worse than that of the correlation 
based global algorithm.  
 

Improved two-way pair-wise algorithms: In this 
experiment, we compare two improved correlation based 
two-way algorithms. They are the improved operator 
redistribution algorithm (COR-RE-IMP) and the improved 
selective operator exchange algorithm (COR-SE-IMP). 
The latency ratios of the COR-BAL and the COR-GLB 
algorithms are added in Figure 7 for comparison. The 
results show that the latency ratios of the improved two-
way pair-wise algorithms are much smaller than the one-
way algorithm. Thus, the benefit of getting better operator 
distribution plans exceeds the penalty of moving more 
operators. 

To look at these algorithms more closely, we plot 
several metrics with respect to the simulation time when the 
system load level is 0.9 in Figure 8. Obviously, the COR-
RE-IMP algorithm moves much more load than the COR-
SE-IMP algorithm. Thus although the quality of its final 
plan is closer to that of the global algorithm, its average 
performance is worse than that of the COR-SE-IMP 
algorithm. For different applications, which two-way 
algorithm performs better on average usually depends on 
the workload of the system and the operator migration time.  

We can also see from Figure 8 that the global algorithm 
moves less load than the COR-RE-IMP algorithm but 
achieves better performance. Thus, although it is possible 
to use pair-wise algorithms only, it is still sensible to use a 
global algorithm for initial operator distribution.  
 

5.2.3. Sensitivity Analysis. Here, we inspect whether the 
correlation based algorithms are sensitive to different 
simulation parameters. In these experiments, the COR-GLB 
and the COR-SE-IMP algorithms are compared with the 
LLF-GLB and the LLF-BAL algorithms when the system 
load level is 0.9. We vary the number of nodes (n), the 
average number of operators on each node (m), the size of 
the statistics window, the number of samples in each 
statistics window (k), the input rate fluctuation period, and 
the input rate fluctuation ratio (high rate / low rate).   

The results in Figure 9 show that the correlation based 
algorithms are not sensitive to these parameters except 
when m is very small, in which case, the load of the system 
cannot be well balanced. On the other hand, the largest-
load-first load balancing algorithms are sensitive to these 
parameters. They perform badly especially when the 
number of nodes is small, or the average number of 
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Figure 6: Latency ratio of the one-way pair-wise algorithms 
and the correlation based global algorithm 

0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

System Load Level

La
te

nc
y 

R
at

io

COR−BAL
COR−RD−IMP
COR−SE−IMP
COR−GLB

 

Figure 7: Latency ratio of correlation based algorithms 
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Figure 8: Performance of the correlation based algorithms 
when system load is 0.9 



operators on each node is small, or the load fluctuation 
period is long, or the load fluctuation ratio is large,  

Notice that when m is large, the static performance of 
the largest-load-first algorithm is almost as good as the 
correlation based algorithms. This is because when each 
operator has only a small amount of load and the load of all 
operators fluctuate differently, putting a lot of operators 
together can smooth out load variation. However, when the 
dynamic performance is considered, the correlation based 
algorithm still performs better than the largest-load-first 
algorithm because it results in a positive average load 
correlation and can naturally balance the load when the 
load changes.  

In addition, these results show that the correlation based 
algorithms are not very sensitive to the precision of the 
measured correlations. They work pretty well even when 
the size of the statistics window is only half of the load 
fluctuation period (i.e., when load fluctuation period is 20 
in Figure 9). Thus, when the precision of the load 
correlations must be sacrificed to reduce the computation 
overhead, we can still expect relatively good performance.   
 

5.2.4. Bursty Workload. Finally, we use the bursty 
workload to test the robustness of our algorithms. The 
mean of the active period durations and the mean of the idle 
periods are both 5 seconds, and the statistics window size is 
still 10 seconds. As the duration of the active periods and 
the idle periods are exponentially distributed, the measured 
load correlations vary over time, and they are not precise.. 
In this experiment, the global algorithms are combined with 
their corresponding pair-wise algorithms. The combined 
algorithms are identified by the names of the pair-wise 
algorithms with GLB inserted. The experimental results in 
Figure 10 confirm the effectiveness of the correlation based 
algorithms under such workload.  

6. Related Work  

Load distribution is a classical problem in distributed 
and parallel computing systems [7, 11, 20]. In most of the 
traditional systems, load balancing or load sharing is 
achieved by wisely allocating new tasks to processing units 
before their execution [16]. Due to the high overhead of 
load migration, the applications of dynamic load 
distribution algorithms (which redistribute running tasks on 
the fly) are usually restricted to large scientific simulations 
and computations [15, 17]. Stream based data processing 
systems [2, 5, 13] are different from traditional database 
systems in that they are push-based and the tasks in these 
systems are continuous queries. Because the input data 
rates of such systems do not depend on the resource 
utilization, the load distribution algorithms for these 
systems are also different from traditional works.  

Dynamic load balancing has been studied in the context 
of continuous query processing. Shah et al. studies how to 
process a single continuous query operator on multiple 
shared-nothing machines [14]. In this work, load balancing 
is achieved by adjusting the data partitions on the servers 
dynamically. Our work is complementary to theirs since we 
focus on inter-operator load distribution instead of intra-
operator data partition.  

Our previous work [19] studies dynamic load 
distribution in stream processing systems when the network 
transfer delays are not negligible. In this work, connected 
operators are clustered as much as possible to avoid 
unnecessary network transfers. When load redistribution is 
necessary, operators along the boundary of the sub-query 
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Figure 9: Experiments with different parameters 
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Figure 10: Latency ratio of different algorithms with on-
off input model 



graphs are migrated in order to achieve a good balance 
between the operator distribution quality and the load 
migration overhead. Our current work is based on different 
assumptions where we consider frequently fluctuating 
workloads with abundant network resources.  

Another dynamic load management algorithm for 
distributed federated stream processing systems is 
presented in [4]. In this system, the autonomous 
participants do not collaborate for the benefit of the whole 
system. A price must be paid if one node wants to offload 
to another node. Using pre-negotiated pair-wise contracts, 
these participants can handle each other’s excess load.  Our 
work is different from this work in that we consider stream 
processing servers in the same administrative domain where 
all nodes fully cooperate with each other. In addition, our 
algorithm considers the load variation of the operators and 
tries to find load distribution plans with small average load 
variance and large average load correlation. To the best of 
our knowledge, this problem has not been addressed by any 
of the former work yet. 

7. Conclusions and Future Directions  

We have studied in-depth a class of algorithms that 
statically finds a good initial operator placement in a 
distributed environment and that dynamically moves 
operators to adapt to changing loads.  We have shown that 
by considering load correlations and load variations, we 
can do much better than conventional load balancing 
techniques.  This illustrates how the streaming environment 
is fundamentally different from other parallel processing 
approaches.  The nature of the operators and the way that 
data flows through the network can be exploited, as we 
have, to provide a much better solution for minimizing end-
to-end latency. 

The work presented here focuses on high-performance 
computing clusters such as blade computers.  An obvious 
direction for future work is to relax this constraint, and to 
move toward a more heterogeneous computing 
environment in which bandwidth and power consumption 
are important resources that must be conserved as well.  
This will radically change the optimization algorithms.  We 
believe that by starting with the more familiar and, in its 
own right, useful case in this study, we will be better 
informed to tackle the next set of problems. 
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