Providing Resiliency to Load Variations
in Distributed Stream Processing -

Ying Xing, Jeong-Hyon Hwang, Ugur Cetintemel, and Stan Zdonik

Department of Computer Science, Brown University
{yX, jhhwang, ugur, shz}@cs.brown.edu

ABSTRACT techniques to bear on these problems, enabling the scalability and

Scalability in stream processing systems can be achieved by using"’“"”lil"’lg’iIity that these appli_cations demand [7, 171"t4l 23]. d
a cluster of computing devices. The processing burden can, thus, Modern stream processing systems [3, 13, 6] often support a data

be distributed among the nodes by partitioning the query graph.'ﬂow architecture in which streams of da_ta pass through specialized
The specific operator placement plan can have a huge impact Onopgr_ators th_at process and refine the input to_ produce _rgsul_ts for
performance. Previous work has focused on how to move query waiting applications. These operators are typically modifications

operators dynamically in reaction to load changes in order to keep ©f the familiar operators of the relational algebra (e.g., filter, join,
the load balanced. Operator movement is too expensive to allevi-un'on)' Figure lillustrates a typical configuration in which a query

ate short-term bursts; moreover, some systems do not support théW_e_t"VOrk is distr!bu?ed across multiple machines (nod_es). The spe-
ability to move operators dynamically. In this paper, we develop cific operator distribution pattern has an enormous impact on the

algorithms for selecting an operator placement plan that is resilient pelrjfprmgnc% of the resulting sy_stem. h fund
to changes in load. In other words, we assume that operators can- Istributed stream processing systems have two fundamen-

not move, therefore, we try to place them in such a way that the tal characteristics that differentiate them from traditional parallel
resulting system will be able to withstand the largest set of input data_base SVSte'“.”S- First, stream processing ta_sks are ang-runnlng
rate combinations. We call thisrsilientplacement. continuous queries rather than short-lived one-time queries. In tra-

This paper first formalizes the problem for operators that exhibit ditional para_lllel $ystems, _th_e optimization goal is ofter_l minimizing
linear load characteristics (e.g., filter, aggregate), and introducesthe completion '_[lme_ofaflnlte task. In contrast, a continuous query
a resilient placement algorithm. We then show how we can extend has no cor_npl_et_lon time; therefore, we are more concerned with the
our algorithm to take advantage of additional workload information 'at€ncy of individual results.

(such as known minimum input stream rates). We further show how Second, the data in stream processing systems is pushed ffom
this approach can be extended to operators that exhibit non-lineareXternal data sources. Load information needed by task allocation

load characteristics (e.g., join). Finally, we present prototype- and algorithms is _often not availabl_e in advance or varies _significan_tly
simulation-based experiments that quantify the benefits of our ap- @1d over all ime-scales. Medium and long term variations arise

proach over existing techniques using real network traffic traces. typically due to application-specific behaviour; e.g., flash-crowds
reacting to breaking news, closing of a stock market at the end of

a business day, temperature dropping during night time, etc. Short-
1. INTRODUCTION term variations, on the other hand, happen primarily because of
speed streaming data must be processed with very low latency.influence of the network interconnecting data sources. Figure 2
Financial data analysis, network traffic monitoring and intrusion illustrates such variations using three real-world traces [1]: a wide-
detection are prime examples of such applications. In these do-2area packet traffic trace (PKT), a wide-area TCP connection trace
mains, one observes increasing stream rates as more and more dafd CP), and an HTTP request trace (HTTP). The figure plots the
is captured electronically putting stress on the processing ability of Normalized stream rates as a function of time and indicates their
stream processing systems. At the same time, the utility of results Standard deviation. Note that similar behaviour is observed at other
decays quickly demanding shorter and shorter latencies. Clustersiime-scales due to the self-similar nature of these workloads [9].
of inexpensive processors allow us to bring distributed processing A common way to deal with time-varying, unpredictable load

variations in a distributed setting is dynamic load distribution. This

*This work has been supported by the NSF under grants IIS-
0086057 and 11S-0325838.

Permission to copy without fee all or part of this material srded provided
that the copies are not made or distributed for direct commlediantage,
the VLDB copyright notice and the title of the publicatiortdts date appear,
and notice is given that copying is by permission of the VerygeaData
Base Endowment. To copy otherwise, or to republish, to postervers
or to redistribute to lists, requires a fee and/or speciahjgsion from the
publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

Data
sources

Figure 1: Distributed Stream Processing.

— PKT (std = 0.16)
—— TCP (std = 0.48)
- HTTP (std = 0.59) |

normalized stream rate (1 = average)

0 600 1200 1800 2400 3000 3600
time (seconds)

input stream ra r,
overloaded

0) >
input stream ratr;

Figure 3: Feasible set on input stream rate space.

a greedy operator distribution algorithm that can find suboptimal
solutions without actually computing the feasible set size of any

operator distribution plan. The contributions of this work can be

Figure 2: Stream rates exhibit significant variation over time.

approach is suitable for medium-to-long term variations since they
persist for relatively long periods of time and are thus rather easy
to capture. Furthermore, the overhead of load redistribution is
amortized over time. Neither of these properties holds in the pres-
ence of short-term load variations. Capturing such transient varia-
tions requires frequent statistics gathering and analysis across dis-
tributed machines. Moreover, reactive load distribution requires
costly operator state migration and multi-node synchronization. In
our stream processing prototype, the base overhead of run-time op-
erator migration is on the order of a few hundred milliseconds.
Operators with large states will have longer migration times de-
pending on the amount of state transferred. Also, some systems
do not provide support for dynamic operator migration. As a re-
sult, dealing with short-term load fluctuations by frequent operator
re-distribution is typically prohibitive.

In this paper, we explore a novel approach to operator distri-
bution, namely that of identifying operator distributions that are
resilientto unpredictable load variations. Informally, a resilient
distribution is one that does not become overloaded easily in the
presence of bursty and fluctuating input rates. Standard load dis-
tribution algorithms optimize system performance with respect to
a single load point, which is typically the load perceived by the
system in some recent time period. The effectiveness of such an
approach can become arbitrarily poor and even infeasible when the
observed load characteristics are different from what the system
was originally optimized for. Resilient distribution, on the other
hand, does not try to optimize for a single load point. Instead, it
enables the system to “tolerate” a large set of load points without
operator migration.

It should be noted that static, resilient operator distribution is
not in conflict with dynamic operator distribution. For a system
that supports dynamic operator migration, the techniques presente
here can be used to place operators with large state size. Lighter-
weight operators can be moved more frequently using a dynamic
algorithm (e.g., the correlation-based scheme that we proposed ear
lier [23]). Moreover, resilient operator distribution can be used to
provide a good initial plan.

We focus on static operator distribution algorithms. More specif-
ically, we model the load of each operator as a function of the sys-
tem input stream rates. For given input stream rates and a given
operator distribution plan, the system is either feasible (none of the

summarized as follows:

1. We formalize the resilient operator distribution problem for
systems with linear load models, where the load of each op-
erator can be expressed as a linear function of system in-
put stream rates. We identify a tight superset of all possible
feasible sets called thideal feasible set When this set is
achieved, the load from each input stream is perfectly bal-
anced across all nodes (in proportional to the nodes’ CPU
capacity).

2. The ideal feasible set is in general unachievable. We pro-
pose two novel operator distribution heuristics to make the
achieved feasible set as close to the ideal feasible set as pos-
sible. The first heuristic tries to balance the load of each in-
put stream across all nodes. The second heuristic focuses on
the combination of the “impact” of different input streams on
each node to avoid creating bottlenecks. We then present a
resilient operator distribution algorithm that seamlessly com-
bines both heuristics.

. We present a generalization of our approach that can trans-
form a nonlinear load model into a linear load model. Using
this transformation, our resilient algorithm can be applied to
any system.

4. We present algorithm extensions that take into account the

communications costs and knowledge of specific workload
characteristics (i.e., lower bound on input stream rates) to
optimize system performance.

Our study is based on extensive experiments that evaluate the rel-
ative performance of our algorithm against several other load distri-
bution techniques. We conduct these experiments using both a sim-
ulator and the Borealis distributed stream processing prototype [2]
on real-world network traffic traces. The results demonstrate that
our algorithm is much more robust to unpredictable or bursty work-
doads than traditional load distribution algorithms.

The rest of the paper is organized as follows: In Section 2, we in-
troduce our distributed stream processing model and formalize the
problem. Section 3 presents our optimization approach. We dis-
cuss the operator distribution heuristics in detail in Section 4 and
present the resilient operator distribution algorithm in Section 5.
Section 6 discusses the extensions of this algorithm. Section 7 ex-
amines the performance of our algorithm. We discuss related work
in Section 8 and present concluding remarks in Section 9.

nodes are overloaded) or overloaded. The set of all feasible input2- MODEL & PROBLEM STATEMENT

rate combinations definesf@asible setFigure 3 illustrates an ex-

ample of a feasible set for two input streams. For unpredictable 2.1 SyStem Model

workloads, we want to make the system feasible for as many in-

We assume a computing cluster that consists of loosely coupled,

put rate points as possible. Thus, the optimization goal of resilient shared-nothing computers because this is widely recognized as the
operator distribution is to maximize the size of the feasible set. most cost-effective, incrementally scalable parallel architecture to-
In general, finding the optimal operator distribution plan requires day. We assume the available CPU cycles on each machine for
comparing the feasible set size of different operator distribution stream data processing are fixed and known. We further assume
plans. This problem is intractable for a large number of opera- that the cluster is interconnected by a high-bandwidth local area
tors or a large number of input streams. In this paper, we presentnetwork, thus bandwidth is not a bottleneck. For simplicity, we

;
Iy Table 1: Notation.

r n number of nodes
[P » .03 . .0 » m number of operators
. d number of system input streams
. N; theith node
Figure 4: Example query graph. o; fhe jth operator
A T 1y, the kth input stream
|n|t|r;1_llyb?ssume tha(tjthe EPU fo;erhead for data c\?vmml:nlcargl_on IS o= (cn,-omT available CPU capacity vector
gﬁiﬁzosiﬁosn;réﬁgen 6t(;t at of data processing. We relax this as- [—— (1, ra)T System input stream rate vector
A " load coefficient ofNV; for I
Thg tasks to be distributgd on the mach.ines are data-flow-style ljé'; load coefficient ob; for 1:
acyclic query graphs (e.g., in Figure 1), which are commonly used T ={ny node load coefficient matrix
for stream processing (e.g., [3, 13, 6]). In this paper, we conside To— I = ot load coefficient matr
each continuous query operator as the minimum task allocation B { jk}mxd operatoroad coetlicient matrix
unit. A={aij}, m operator allocation matrix
workload set
2.2 Load Model F(A) feasible set ofd
We assume there arenodes (V;,i = 1,--- ,n), m operators (ZJT total C'?IU C:pac']ffy of at” rc')?des
(0j,j = 1,-+-,m), andd input streams I, k = 1,---,d) in the b = /ZSL;”; (OCC}% C)Oi,é?i?s” -
system. In general, an operator may have multiple input streams W= {1;’;} TIAL \1NeigTht7matrgix k L
and multiple output streams. Thate of a stream is defined as inxd
the number of data items (tuples) that arrive at the stream per unit] o
time. We define theostof an operator (with respect to an input Table 2: Three example operator distribution plans.
stream) as the average number of CPU cycles needed to process L° Plan A L™
an input tuple from that input stream per unit time. Hedectivity 14 0 @ 1 1 0 0 20 0
of an operator (with respect to an input and an output stream) is 6 0 0 011 0 16
defined as the ratio of the output stream rate to the input stream rate. 0 9 ®) (1010) (14 9)
We define thdoad of an operator per unit time as the CPU cycles 0o 7 0 101 6 7
needed by the operator per unit time to process its input tuples. We (c) ((1) (1) (1) (1)) < (154 g)
can thus write the load of each operator as a function of operator

costs, selectivities and system input stream rateg(= 1, - - -, d).

Example 1 Consider the simple query graph shown in Figure 4. express the load functions of the operators and nodes as:
Assume the rate of input streaf is rj, for k = 1, 2, and operator
o; has cost; and selectivitys; for j = 1, - - -, 4. The load of these
operators is then computed as

load(oj) = Iljiri+---+14ra, j=1,---,m,
load(N;) = lfri+---+lyra, i=1,---,n,
wherel$,, is theload coefficienof operatoro; for input streami,

load(o1) = cim and!}, is theload coefficienof node N; for input streaml,. As
load(02) = casim shown in Example 1 above, the load coefficients can be computed
load(os) = csr2 using the costs and selectivities of the operators and are assumed to
load(os) = cassra . be constant unless otherwise specified. Putting the load coefficients
Our operator distribution algorithm is based orireear load together, we get thiwad coefficient matrices
modelwhere the load of each operator can be written as a linear Lo = {15} L=
function, i.e. Ik mxar tkInxd: _ _
load(0;) = ljnz1 + - + Ljaza, j=1,---,m, th;tt follows from the definition of the operator allocation matrix

wherezy,--- , x4 are variables and;; are constants. For sim-

plicity of exposition, we first assume that the system input stream L" = AL®,

rates are variables and the operator costs and selectivities are con- L LR,

stant. Under this assumption, all operator load functions are linear Zlik = Zlﬂv ;o k=1,-d

i=1 j=1

functions of system input stream rates. Assuming stable selectivity,
operators that satisfy this assumption include union, map, aggre- Example 2 We now present a simple example of these defini-
gate, filter etc. In Section 6.2, we relax this assumption and discusstions using the query graph shown in Figure 4. Assume the follow-
systems with operators whose load cannot be written as linear func-ing operator costs and selectivities;= 14, co= 6, c3= 9, c4= 14
tions of input stream rates (e.qg., time-window based joins). ands;= 1, s3= 0.5. Further assume that there are two nodes in the
e . system,N; and N», with capacities”; and Cs, respectively. In
2.3 Definitions and Notations T)::lble 2, we show the correZponding operator Iancji coeffigient ma-
We now introduce the key notations and definitions that are used trix L° and, for three different operator allocation plans (Plan (a),

in the remainder of the paper. We also summarize them in Table 1. Plan (b), and Plan(c)), the resulting operator allocation matrices
We represent the distribution of operators on the nodes of the and node load coefficient matrices.

system by theperator allocation matrix Next, we introduce further notations to provide a formal def-

A={aij},wm inition for the feasible set of an operator distribution plan. Let

wherea;; = 1 if operatoro; is assigned to nod®’; anda;; = 0 R = (r1,---,r4)" be the vector of system input stream rates.
otherwise. The load of nodeV; can then be written a6}’ R, whereL]' is the
Given an operator distribution plan, the load of a node is defined ith row of matrix L. LetC' = (C4,---,C,)" be the vector of

as the aggregate load of the operators allocated at that node. Weavailable CPU cycles (i.e., CPU capacity) of the nodes. Tkgis

20 pan@ "4 Pan 74 Pan(c
c, c,
7 7
G G,
% 9) 9 ;;/
7
> 7 >
®c n% ¢ cn S Gn
20 14 6 14 6

Figure 5: Feasible sets for various distribution plans.

feasible if and only ifL}' R < C;. Therefore, the system is feasi-
ble if and only if L™ R < C. The set of all possible input stream
rate points is called theorkload setand is referred to byD. For

example, if there are no constraints on the input stream rates, then

D={R:R >0}

Feasible Set Definition Given a CPU capacity vector C, an
operator load coefficient matrik°, and a workload seD, the fea-
sible set of the system under operator distribution pfa(denoted
by F(A)) is defined as the set of all points in the workload Bet
for which the system is feasible, i.e.,

F(A)={R:Re D, ALR<C}.

a larged or largem.

3. OPTIMIZATION FUNDAMENTALS

Given the intractability of ROD, we explore a heuristic-driven
strategy. We first explore the characteristics of an “ideal” plan us-
ing a linear algebraic model and its corresponding geometrical in-
terpretation. We then use this insight to derive our solution.

3.1 Feasible Set and Node Hyperplanes

We here examine the relationship between the feasible set
size and the node load coefficient matrix. Initially, we assume
no knowledge about the expected workload and thusDet=
{R: R > 0} (we relax this assumption in Section 6.1). The fea-
sible set that results from the node load coefficient makrixis
defined by

F'(I™={R:ReD,L"RL C}.

This is a convex set in the nonnegative space beldwperplanes,
where the hyperplanes are defined by

l;-anl + -+ l?de =}

Note that theith hyperplane consists of all points that render
node N; fully loaded. In other words, if a point is above this hy-
perplane, thenV; is overloaded at that point. The system is thus

i=1,--,n.

)]] feasible at a point if and only if the point is on or below all of the
In Figure 5, we show the feasible sets (the shaded regions) of thepyperplanes defined by R = C. We refer to these hyperplanes
distribution plans of Example 2. We can see that different operator gsnode hyperplanes
distribution plans can result in very different feasible sets. For instance, in Figure 5, the node hyperplanes correspond to the
lines above the feasible sets. Because the node hyperplanes collec-
2.4 Problem statement)) tively determine the shape and size of the feasible set, the feasible

and maintain quality of service (i.e., consistently produce low 1a- o, equivalently, by constructing a “good” node load coefficient ma-
tency results), we aim to maximize the size of the feasible set of the iy

system through intelligent operator distribution. We formally state L .
3.2 Ideal Node Load Coefficient Matrix

the corresponding optimization problem as follows:
We now present and prove a theorem that characterizeteah

The Resilient Operator Distribution (ROD) problem: Given o ;
node load coefficient matrix.

a CPU capacity vector C, an operator load coefficient matfrfx

and a workload seD, find an operator allocation matrixl* that
achieves the largest feasible set size among all operator allocation
plans, i.e., find

THEOREM 1. Given load coefficient matrit® = {i%,}

and node capacity vectaf = (C1,--- ,C,)", among alln by d

matricesL” = {l}} }, .., that satisfy the constraint

n m

E : n 2 : o
lik = ljk7

i=1 j=1

the matrixL™* = {I3;"},, .., with

A*:argmax/~~-/ 1dry---drg.
A

@

F(A)

In the equation above, the multiple integral o¥&rA) represents
the size of the feasible set df. Note that4A*may not be unique.
ROD is different from the canonical linear programming and
nonlinear programming problems with linear constraints on feasi-
ble sets. The latter two problems aim to maximize or minimize a
(linear or nonlinear) objective function on a fixed feasible set (with
fixed linear constraints) [10, 15], whereas in our problem, we at-
tempt to maximize the size of the feasible set by appropriaiety
structingthe linear constraints through operator distribution. To the
best of our knowledge, our work is the first to study this problem in FIL™)
the context of load distribution. ProOF All node load coefficient matrices must satisfy con-
A straightforward solution to ROD requires enumerating all pos- Straint 1. Itis easy to verify thal™* also satisfies this constraint.
sible allocation plans and comparing their feasible set sizes. Unfor- Now, it suffices to show that.™* has the largest feasible set size
tunately, the number of different distribution plan®i8/n!. More- among allL™ that satisfy constraint 1.
over, even computing the feasible set size of a single plan (i.,a FromL™R < C, we have that
dimensional multiple integral) is expensive since the Monte Carlo

C.
» =, —, wherel;, =
ik kCT’ k

>, Cr=> i,
j=1 i=1

achieves the maximum feasible set size, i.e.,

[[v,

L™ = argmax
LTL

T T r C
integration method, which is commonly used in high dimensional " 1d ! _1
integration, requires at leag(2%) sample points [19]. Asare- (L=~ f . <@--nt oo,
sult, finding the optimal solution for this problem is intractable for LT T4 Cn

4 pan@ "t Panw "t Pan(e Letxy = lyr/Cr. In the new coordinate system with axis
C,+C, C,+C C +C to xx, the corresponding node hyperplanes are defined by
2 1 2
16 16 16 L Lia i
il ooy g — =1
lll'1+ +ldmd CT, ?) ,
) The corresponding ideal hyperplane is defined by
0 C +C, =I’10 C, +C, :rlo C+C, 1, 1+ -+ xg =1
20 20 20 By the change of variable theorem for multiple integrals [21],
Figure 6: Ideal hyperplanes and feasible sets. we have that the size of the original feasible set equals the size
of the normalized feasible set multiplied by a constantvhere
which can be written as c=C% /H‘,f:1 I . Therefore, the goal of maximizing the original
Liry + -+ lgrqg < Cr. 2) feasible set size can be achieved by maximizing the normalized
_ _ N feasible set size.
Thus, any feasible point must belong to the set We now define our goal more formally using our algebraic

model: Let matrix
W = {wik}nxd = {l;ﬂk/l?k* nxd "

F*Z{R:RGD, l1r1+~~~+ldrd§CT}.

In other words F'*is the superset of any feasible set. It then suffices

to show thatF”’ (L") = F™*. wir, = (I5/lk) / (C:/Cr) is the percentage of the load from
There aren constraints inL"*R < C (each row is one con- streaml;, on nodeN; divided by the normalized CPU capacity of
straint). For theth row, we have that N;. Thus, we can view;; as the “weight” of streand, on node
N; and view matrixi¥” as a normalized form of a load distribution
llﬁrl N ld&Td <0, plan. MatrixW is also called theveight matrix
Cr Cr Note that the equations of the node hyperplanes in the normal-

which is equivalent to inequality 2. Since allconstraints are the ized space is equivalent to
/ n* *
same, we have thadt'(L"*) = F*. O Wit 4+ Wiaga =1, Gi=1,-- ,n.
Intuitively, Theorem 1 says that the load coefficient matrix that Our goal is then to make the normalized node hyperplanes close to
balances the load of each streperfectlyacross all nodes (in pro- the normalized ideal hyperplane, i.e. make
portion to the relative CPU capacity of each node) achieves the
maximum feasible set size. Such a load coefficient matrix may not
be realizable by operator distribution, i.e., there may not exist an fori; = 1,--- ,n.
operator allocation matrixi such thatAL® = L"* (the reason For brevity, in the rest of this paper, we assume that all terms,
why L™ is referred to as “ideal”). Note that the ideal coefficient such as hyperplane and feasible set, refer to the ones in the normal-
matrix is independent of the workload set ized space, unless specified otherwise.
When the ideal node load coefficient matrix is obtained, all node
hyperplanes overlap with the ideal hyperplane. The largest feasible4_ HEURISTICS
set achieved by the ideal load coefficient matrix is calleddieal
feasible sefdenoted byf™™). It consists of all points that fall below
theideal hyperplanalefined by

Wi = (wi1, - ,wiq) closeto(l,---,1),

We now present two heuristics that are guided by the formal anal-
ysis presented in the previous section. For simplicity of exposition,
we motivate and describe the heuristics from a geometrical point of
hiri+---+lagra=Cr. view. We also formally present the pertinent algebraic foundations

. . . as appropriate.
We can compute the size of the ideal feasible set as:

4.1 Heuristic 1: MaxMin Axis Distance

d
V(F*) = //1 dry---dry = % . H l_ Recall that we aim to make the node hyperplanes converge to the
e d! ooy Uk ideal hyperplane as much as possible. In the first heuristic, we try
to push the intersection points of the node hyperplanes (along each
Figure 6 illustrates the ideal hyperplane (represented by the thick axis) to the intersection point of the ideal hyperplane as much as
lines) and the feasible sets of Plan (a), (b) and (c) in Example 2. It possible. In other words, we would like to make tods distance
is easy to see that none of the shown distribution plans are ideal.of each node hyperplane as close to that of the ideal hyperplane as
In fact, no distribution plan for Example 2 can achieve the ideal possible. We define the axis distance of hyperplama axisa as

feasible set. the distance from the origin to the intersection point@nda. For
. . . . example, this heuristic prefers the plan in Figure 7(b) to the one in
3.3 Optimization Guidelines Figure 7(a).
The key high-level guideline that we will rely on to maximize Note that the axis distance of ti#h node hyperplane on thigh
feasible set size is to make the node hyperplanes as close to thexis is1/w;x, and the axis distance of the ideal hyperplane is one
ideal hyperplane as possible. on all axes (e.g. Figure 7(a)). Thus, from the algebraic point of

To accomplish this, we first normalize the ideal feasible set by view, this heuristic strives to make each entryl&f as close to 1
changing the coordinate system. The normalization step is neces-as possible.
sary to smooth out high variations in the values of load coefficients ~ Becausé&_, lj;, is fixed for eactk, the optimization goal of mak-
of different input streams, which may adversely bias the optimiza- ing w; close to one for alk is equivalent to balancing the load of
tion. each input stream across the nodes in proportion to the nodes’ CPU

X2 A X2
1 ith node hyperplane
Wiz # jth node hyperplane

l1 ideal hyperplane 1
Wi,

0 1 > f—— >

L1 Ax 1 X1 @
j1 W|1
@ (b) Figure 8: lllustrating MaxMin Plane Distance.

Figure 7: lllustrating MaxMin Axis Distance.

[

capacities. This goal can be achieved by maximizing the minimum
axis distance of the node hyperplanes on each axis, i.e., we want to
maximize

o
)

o
o

o
~

1
min , fork=1,--- d.
i Wik

We therefore refer to this heuristic ddaxMin Axis Distance
(MMAD). The arrows in Figure 7(b) illustrate how MMAD pushes

I
N

Feasible Set Size / Ideal Feasible Set Size

o

the intersection points of the node hyperplanes that are closest to 0z 04 0608 '

the origin to that of the ideal hyperplane.

It can be proven that when the minimum axis distance is maxi-
mized for axisk, all the node hyperplane intersection points along
axis k converge to that of the ideal hyperplane. In addition, the

o

Figure 9: Relationship betweenr and the feasible set size.

The plane distance of thiéh hyperplane is computed as:

achieved feasible set size is bounded by 1 _ 1
d Vw’L21++wz2d HWZH?
V(F")- H min ! where||[W;|| denotes the second norm of tith row vector oflV.
k=1 Thus, the value we would like maximize is:
from below, wherel/ (F*) is the ideal feasible set size (we omit r = min HV%/_H .
v i

the proof for brevity). Therefore, MMAD tries to maximize a lower
bound for feasible set size, and this lower bound is close to the ideal By maximizingr, we maximize the size of the partial hyper-
value when all axis distances are close to 1. sphere, which is a lower bound on the feasible set size. To further
On the downside, the key limitation of MMAD is that it does examine the relationship betweerand the feasible set size, we
not take into consideration how to combine the weights of differ- generated random node load coefficient matrices and plotted the
ent input streams at each node. This is best illustrated by a sim-ratios of their feasible-set-size / ideal-feasible-set-size vs. the ratio
ple example as depicted by Figure 8. Both plans in Figure 8 are of v/ r* (r*is the distance from the origin to the ideal hyperplane).
deemed equivalent by MMAD, since their axis intersection points Figure 9 shows the results of 10000 random load coefficient matri-
are exactly the same. They do, however, have significantly differ- ces with 10 nodes and 3 input streams. We see a trend that both the
ent feasible sets. Obviously, if the largest weights for each input upper bound and lower bound of the feasible-set-size ratio increase
stream are placed on the same node (e.g., the one with the lowestvhenr/ »* increases. The curve in the graph is the computed lower
hyperplane in Figure 8(a)), the corresponding node becomes thebound using the volume function of hyperspheres, which is a con-
bottleneck of the system because it always has more load than thestant times-? [22]. For differentn andd, the upper bound and
other node. Next, we will describe another heuristic that addresseslower bound differs from each other; however, the trend remains

this limitation. intact. This trend is an important ground for the effectiveness of
MMPD.
4.2 Heuristic 2: MaxMin Plane Distance Intuitively, by maximizingr, i.e., minimizing the largest weight

Intuitively, MMAD pushes the intersection points of the node vector norm of the nodes, we avoid having nodes with large weights

hyperplanes closer to those of the ideal hyperplane using the axisariging from multiple input streams. I_\Iodes_ with relatively larger
distance metric. Our second heuristic. on the other hand pushesWelghts often have Ia.rger load/capacity ratios than other nodes at
' ! many stream rate points. Therefore, MMPD can also be said to

the node hyperplanes directly towards the ideal hyperplane using . . .
; . ; . balance the load of the nodes (in proportion to the nodes’ capacity)
theplane distancenetric. The plane distance of an hyperplans for multiple workload points Notice that this approach sharply

the distance from the origin th. Our goal is thus to maximize the nirasts with traditional load balancin hemes that optimize f
minimum plane distance of all node hyperplanes. We refer to this contrasts aditional foad balancing schemes that optimize for
single workload points.

heuristic adMaxMin Plane DistancéMMPD).

Another way to think about this heuristic is to imagine a partial
hypersphere that has its center at the origin and its radecual 5. THE ROD ALGORITHM
the minimum plane distance (e.g., Figure 8). Obviously, MMAD We now present a greedy operator distribution algorithm that
prefers Figure 8(b) to Figure 8(a) because the former has a larger seamlessly combines the heuristics discussed in the previous sec-
The small arrow in Figure 8(b) illustrates how MMPD pushes the tion. The algorithm consists of two phases: the first phase orders
hyperplane that is the closest to the origin in terms of plane distancethe operators and the second one greedily places them on the avail-
towards the ideal hyperplane. able nodes. The pseudocode of the algorithm is shown in Figure 10.

Initialization X2 Current node Xp Candidate node

Cr—Ci+-+Chn hyperplanes hyperplanes
fork=1,---,d, I+ 1$ +---+12
fori=1,---,n,j=1,---,m,a;; < 0
fori=1,---,n,k=1,---,4,17 <0
Operator Ordering

Sort operators bx/13?12+, . +l;?d2 in descending
order (lethy, - - -, h,y, be the sorted operator indices)
Operator Assignment
forj = hi,- -, hm (assign operatos;)
class | nodes— ¢, class Il nodes— ¢
fori =1,-- -, n (classify nodes)
fork =1, d,wh, — (1, +12,) /) / (Cs/Cr)
if w), <lforallk=1,---,d
addNV; to class | nodes
else
addN; to class Il nodes
if class | is not empty
select a destination node from class |
else

Class two nodes

Decreased area

Current
Candidate

(d)
select the node within 1 w;12 + 4 w;dQ Figure 11: Node selection policy example.

1

A eN is th lected node. Assign to N .) . .
(Saignl 1: 's the selected node. Assig to N) reduce the possible space for the final feasible set. Figure 11(c)

fork =1, ,d, I «— 17, +12, shows an example of the hyperplanes of a Class | node. Notice that
as we assign operators to Class | nodes, we push the axis intersec-
tion points closer to those of the ideal hyperplane, thus follow the
MMAD heuristic. If no Class | nodes exist, then we have to use
. ; a Class Il node and, as a result, we inevitably reduce the feasible
5.1 Phase 1. Operator Orde“ng set. An example of two Class Il nodes and the resulting decrease
This phase sorts the operators in descending order based on they the feasible set size are shown in Figure 11(d). In this case, we
second norm of their load coefficient vectors. The reason for this f|iow the MMPD heuristic and use the plane distance to make our
sorting order is to enable the second phase to place “high impact” decision by selecting the node that has the largest candidate plane
operators (i.e., those with large norms) early on in the process, sincegistance.
dealing with such operators late may cause the system to signifi- As described above, choosing any node from Class | does not
cantly deviate from the optimal results. Similar sorting orders are affect the final feasible set size in this step. Therefore, a random
commonly used in greedy load balancing and bin packing algo- node can be selected or we can choose the destination node using
rithms [8]. some other criteria. For example, we can choose the node that re-
. . sults in the minimum number of inter-node streams to reduce data
5.2 Phase 2: Operator ASS|gnment communication overheads for scenarios where this is a concern.
The second phase goes through the ordered list of operators and
iteratively assigns each to one of theeandidate nodes. Our basic 6. ALGORITHM EXTENSIONS
destination node selection policy is greedy: at each step, the oper- "
2I'E]%rsisns-|gnment thaminimallyreduces the final feasible set size is 6.1 General Lower Bounds on Input Rates
At each step, we separate nodes into two classes. Class | nodes We have so far leveraged no knowledge about the expected work-
consist of those that, if chosen for assignment, will not lead to a !0ad, assuming® = {R: R > 0}. We now present an extension
reduction in the final feasible set. Class Il nodes are the remaining Where we allow more general, non-zero lower bound values for the
ones. If Class | nodes exist, one of them is chosen as the destina-Stream rates, assuming:
tion node using a goodness function (more on this choice below). - _ (p . - T 1
Otherwise, the operator is assigned to the Class Il node with theD ={R: B2 B, B=(b1,---ba)", by 2 0f0rk =1, d}.
maximumcandidateplane distance (i.e., the distance after the as- This general lower bound extension is useful in cases where it
signment). is known that the input stream rates are strictly, or likely, larger
Let us now describe the algorithm in more detail while providing than a workload point3. Using pointB as the lower bound is
geometrical intuition. Initially, all the nodes are empty. Thus, all equivalent to ignoring those workload points that never or seldom
the node hyperplanes are at infinity. The node hyperplanes movehappen; i.e., we optimize the system for workloads that are more
closer to the origin as operators get assigned. The feasible set sizdikely to happen.
at each step is given by the space that is below all the node hyper- The operator distribution algorithm for the general lower bound
planes. Class | nodes are those whose candidate hyperplanes arns similar to the base algorithm discussed before. Recall that the
above the ideal hyperplane, whereas the candidate hyperplanes ofdeal node load coefficient matrix does not dependonThere-
Class Il nodes are either entirely below, or intersect with, the ideal fore, our first heuristic, MMAD, remains the same. In the second
hyperplane. Figure 11(a) and 11(b) show, respectively, the cur- heuristic, MMPD, because the lower bound of the feasible set size
rent and candidate hyperplanes of three nodes, as well as the ideathanges, the center of the partial hypersphere should also change.
hyperplane. In the normalized space, the lower bound corresponds to the point
Since we know that the feasible set size is bounded by the ideal B’ = (by1,/Cr, - ,bala/Cr)" . In this case, we want to maxi-
hyperplane, at a given step, choosing a node in Class | will not mize the radius of the partial hypersphere centerds! atithin the

Figure 10: The ROD algorithm pseudocode.

Xo A

0

¥ \\1

Figure 12: Feasible set with lower boundB’.

X1

normalized feasible set (e.g., Figure 12). The formula of its radius
ris
1-W;B’
[Will
In the ROD algorithm, we simply replace the distance from the

origin to the node hyperplanes with the distance from the lower
bound to the node hyperplanes.

6.2 Nonlinear Load Models

Our discussion so far has assumed linear systems. In this section
we generalize our discussion to deal with nonlinear systems.
Our key technique is to introduce new variables such that the

r = min
3

load functions of all operators can be expressed as linear functions

of the actual system input stream rates as well as the newly intro-
duced variables. Our linearization technigue is best illustrated with
a simple example.

Example 3 Consider the query graph in Figure 13. Assume that
the selectivities of all operators except are constant. Because
of this, the load function 0b. is not a linear function of,. So
we introduce the output stream rate @f as a new variables.
Thereby, the load functions of to o4 are all linear with respect to
r1 tors.

Assume operatoos is a time-window-based join operator that
joins tuples whose timestamps are within a give time windofd].

Let o5’s input stream rates be, andr,, its selectivity (per tuple
pair) bess, and its processing cost lbe CPU cycles per tuple pair.
The number of tuple pairs to be processed in unit timeigr,, .

The load ofos is thuscswr,r, and the output stream rate of this
operator issswr,r,. As a result, it is easy to see that the load
function of o5 cannot be expressed as a linear function;ato 3.

In addition, the input t@s cannot be expressed as a linear function
of r1 to r3 either. The solution is to introduce the output stream
rate of operatops as a new variables. It is easy to see that the
load of operatops can be written as a linear function of. Less
apparent is the fact that the load of operatocan also be written

as (cs/ss)ra, which is a linear function of4 (assuminges and

s5 are constant). Therefore, the load functions of the entire query
graph can be expressed as linear functions of four variablés

r4. This approach can also be considered as “cutting” a nonlinear
query graph into linear pieces (as in Figure 13).

This linearization technique is general; i.e., it can transform any
nonlinear load model into a linear load model by introducing addi-
tional input variables. Once the system is linear, the analysis and

Figure 13: Linear cut of a non-linear query graph.

tify costly arcs and ensure that they do not cross the network by
placing the end operators on the same machine.

We studied two greedy clustering approaches. The first approach
(i) computes alustering ratio(i.e., the ratio of the per-tuple data
transfer overhead of the arc over the minimum data processing
overhead of the two end-operators) for each arc; (i) clusters the
end-operators of the arc with the largest clustering ratio; and (iii)
repeats the previous step until the clustering ratios of all arcs are
less than a given clustering threshold. A potential problem with
this method is that it may create operator clusters with very large
weights. A second approach is, thus, to choose the two connected
operators with the minimum total weight in step (i) of the approach
above. In both cases, we set an upper bound on the maximum
weight of the resulting clusters. Itis easy to see that varying cluster-
ing thresholds and weight upper bounds leads to different clustering
plans.

Our experimental analysis of these approaches did not yield a
clear winner when considering various query graphs. Our current
practical solution is to generate a small number of clustering plans
for each of these approaches by systematically varying the thresh-
old values, obtain the resulting operator distribution plans using
ROD, and pick the one with the maximum plane distance.

7. PERFORMANCE STUDY

In this section, we study the performance of ROD by comparing
it with several alternative schemes using the Borealis distributed
stream processing system [2] and a custom-built simulator. We use
real network traffic data and an aggregation-heavy traffic monitor-
ing workload, and report results on feasible set size as well as pro-
cessing latencies.

7.1 Experimental Setup

Unless otherwise stated, we assume the system has 10 homoge-
neous nodes. In addition to the aggregation-based traffic monitor-
ing queries, we used random query graphs generated as a collection
of operator trees rooted at input operators. We randomly generate
with equal probability from one to three downstream operators for
each node of the tree. Because the maximum achievable feasible set
size is determined by how well the weight of each input stream can
be balanced, we let each operator tree consists of the same num-
ber of operators and vary this number in the experiments. For ease
of experimentation, we also implemented a “delay” operator whose
per-tuple processing cost and selectivity can be adjusted. The delay
times of the operators are uniformly distributed between 0.1 ms to
1 ms. Half of these operators are randomly selected and assigned a

techniques presented earlier apply. However, because the perforselectivity of one. The selectivities of other operators are uniformly

mance of ROD depends on whether theightsof each variable

distributed from 0.5 to 1. To measure the operator costs and selec-

can be well balanced across the nodes, we aim to introduce as fewtivities in the prototype implementation, we randomly distribute the

additional variables as possible.

6.3 Operator Clustering

So far, we have ignored the CPU cost of communication. We
now address this issue by introduciogerator clusteringas a pre-
processing step to be applied before ROD. The key idea is to iden-

operators and run the system for a sufficiently long time to gather
stable statistics.

In Borealis, we compute the feasible set size by randomly gen-
erating 100 workload points, all within the ideal feasible set. We
compute the ideal feasible set based on operator cost and selectivity
statistics collected from trial runs. For each workload point, we run

[_]A = Correlation-Based

[A = LLF-Load-Balancing

[A = Random

Il A = Connected-Load-Balancing

the system for a sufficiently long period and monitor the CPU uti-
lization of all the nodes. The system is deemed feasible if none of
the nodes experience 100% utilization. The ratio of the number of
feasible points to the number of runs is the ratio of the achievable
feasible set size to the ideal one.

In the simulator, the feasible set sizes of the load distribution
plans are computed using Quasi Monte Carlo integration [14]. Due
to the computational complexity of computing multiple integrals,
most of our experiments are based on query graphs with five in-
put streams (unless otherwise specified). However, the observable
trends in experiments with different numbers of input streams sug-
gest that our conclusions are general. @) (b)

79 Algorithms Studied Figure 14: Base resiliency results.

We compared ROD with four alternative load distribution ap- inherent randomness in these algorithms tends to spread operators
proaches. Three of these algorithms attempt to balance the loadout to some extent. ROD is superior because it not only separates
while the fourth produces a random placement while maintaining operators from each input stream, but also tries to avoid placing
an equal number of operators on each node. Each of the three‘heavy” operators from different input streams on the same node,
load balancing techniques tries to balance the load of the nodesthus avoiding bottlenecks.
according to the average input stream rates. The first one, called As the number of operators increases, ROD approaches the ideal
Largest-Load First (LLF) Load Balancing, orders the operators by case and most of the other algorithms improve because there is a
their average load-level and assigns operators in descending ordegreater chance that the load of a given input stream will be spread
to the currently least loaded node. The second algorithm, called across multiple nodes. On the other hand, even for fewer operators,
Connected-Load-Balancing, prefers to put connected operators onour method retains roughly the same relative performance improve-
the same node to minimize data communication overhead. It as-ment (Figure 14(b)).
signs operators in three steps: (1) Assign the most loaded candidate Notice that the two hundred operators case is not unrealistic.
operator to the currently least loaded node (denotely y (2) As- In our experience with the financial services domain, applications
sign operators that are connected to operators already;da N, often consist of related queries with common sub-expressions, so
as long as the load d¥; (after assignment) is less than the average query graphs tend to get very wide (but not necessarily as deep).
load of all operators. (3) Repeat step (1) and (2) until all operators For example, a real-time proof-of-concept compliance application
are assigned. The third algorithm, called Correlation-based Load we built for 3 compliance rules required 25 operators. A full-blown
Balancing, assigns operators to nodes such that operators with highcompliance application might have hundreds of rules, thus requir-
load correlation are separated onto different nodes. This algorithming very large query graphs. Even in cases where the user-specified
was designed in our previous work [23] for dynamic operator dis- query graph is rather small, parallelization techniques (e.g., range-

—8—A=ROD
-%- A = Correlation-Based
0.8

0.8}/ = ©- A = LLF-Load-Balancing
A A=Random
A = Connected-Load-Balancing

0.6

0.4

0.2

Average Feasible Set Size Ratio (A / ROD)

Average Feasible Set Size Ratio (A / Ideal)

200 25 200

50 1
Number of Operators

tribution. based data partitioning) significantly increase the number of oper-
. ator instances, thus creating much wider, larger graphs.

7.3 Experimental Results We also ran the same experiments in our distributed stream-

processing simulator. We observed that the simulator results

7.3.1 Resiliency Results tracked the results in Borealis very closely, thus allowing us to trust

First, we compare the feasible set size achieved by different Oper_the ;imulator for expgr.ir.nents in which the total running time in Bo-
ator distribution algorithms in Borealis. We repeat each algorithm realis would be prohibitive. _ _ _
except ROD ten times. For the Random algorithm, we use different !N the simulator, we compared the feasible set size of ROD with
random seeds for each run. For the load balancing algorithms, wethe optimal solution on small query graphs (no more than 20 oper-
use random input stream rates, and for the Correlation-based algo-ators and 2 to 5 input streams) on two nodes. The average feasible
rithm, we generate random stream-rate time series. ROD does not?et size ratio of ROD to the optimal is 0.95.and the minimum ratio
need to be repeated because it does not depend on the input streaft 0-82. Thus, for cases that are computationally tractable, we can
rates and produces only one operator distribution plan. Figure 14(a)S€e that ROD’s performance is quite close to the optimal.
shows the average feasible set size achieved by each algorithm di- .
vided by the ideal feasible set size on query graphs with different 7-3-2 Varying the Number of Inputs
numbers of operators. Our previous results are based on a fixed number of input streams

It is obvious that the performance of ROD is significantly better (i.e., dimensions). We now examine the relative performance of
than the average performance of all other algorithms. The Con- different algorithms for different numbers of dimensions using the
nected algorithm fares the worst because it tries to keep all con- simulator.
nected operators on the same node. This is a bad choice because a Figure 15 shows the ratio of the feasible set size of the compet-
spike in an input rate cannot be shared (i.e., collectively absorbed)ing approaches to that of ROD, averaged over multiple independent
among multiple processors. The Correlation-Based algorithm doesruns. We observe that as additional inputs are used, the relative per-
fairly well compared to the other load balancing algorithms, be- formance of ROD gets increasingly better. In fact, each additional
cause it tends to do the opposite of the Connected algorithm. Thatdimension seems to bring to ROD a constant relative percentage
is, operators that are downstream from a given input have high loadimprovement, as implied by the linearity of the tails of the curves.
correlation and thus tend to be separated onto different nodes. TheNotice that the case with two inputs exhibits a higher ratio than that
Random algorithm and the LLF Load Balancing algorithm lie be- estimated by the tail, as the relatively few operators per node in
tween the previous two algorithms because, although they do notthis case significantly limits the possible load distribution choices.
explicitly try to separate operators from the same input stream, the As a result, all approaches make more or less the same distribu-

-

-x-'A = Correlation-Based

-6-A = LLF-Load-Balancing Table 3: Average penalty
A~ A =Random
.. | "~ A= Connected-Load-Balancing number of operators 25 50 100 | 200

T origin as the lower bound 0.90 | 0.79 | 0.56 | 0.35
T Z; as the lower bound | 0.89 | 0.83 | 0.55| 0.32

4
©

o
o)

=]
EN
>
> o

o
N

Feasible Set Size Ratio (A / ROD)
]
x

[—_150 operators
[100 operators
I 200 operators

[__150 operators
[100 operators
[200 operators I

N

3 4
Number of Input Streams

Figure 15: Impact of number of input streams.

Feasible Set Size Ratio (Clustered ROD / ROD)
Feasible Set Size Ratio
(Clustered ROD / Connected Load Balancing)
O kN W s 0 o N o®

ok N W » O N @

oy g
@ .. a1 . o
At 2 =
= o 2 >
© T Sy i
@ 05 @ 05 LA
i s *
] R] FIRAPE 0 02 04 06 08 1 0 02 04 06 08 1
E_ * 8_ . *; - Data Communication Cost / Data Processing Cost Data Communication Cost / Data Processing Cost
& 0 . PR @ 9 P
P . . { .
¥ 0o 02 04 06 08 - 0__ 2 4 6 8 (@) (b)
Distance Ratio Distance between Lower Bounds
Figure 17: Performance with operator clustering.
CY (b)

query network. We redo our experiments for different networks
with 25 to 200 operators. Looking at Table 3, we see that the aver-
age penalty drops as we increase the number of operators. For very
tion decisions. For example, when the number of operators equalsia'de numbers of operators, the penalty will converge to zero since,

the number of nodes, all algorithms produce practically equivalent at that point, all the hyperplanes can be very close to the ideal case
operator distribution plans. given the greater opportunity for load balancing.

7.3.3 Using a Known Lower-bound 7.3.4 Operator Clustering

As discussed in Section 6, having knowledge of a lower bound In this section, we address data communication overheads and
on one or more input rates can produce results that are closer to thestudy the impact of operator clustering. For simplicity, we let each
ideal. We verify this analysis in this next set of experiments in the arc have the same per-tuple data communication cost and each op-
simulator. erator have the same per tuple data processing cost. We vary the

We generate random poinf3; in the ideal feasible space an- ratio of data communication cost over data processing cost (from
chored at the origin to use as the lower bounds of each experiment.0 to 1) and compare ROD with and without operator clustering.
For eachB;, we generate two operator distribution plans, one that The results shown in Figure 17(a) are consistent with the intuition
usesB; as the lower bound and one that uses the origin. We then that operator clustering becomes more important when the relative

Figure 16: (a) Penalty for not using the lower bound. (b)
Penalty for using a wrong lower bound.

compute the feasible set size for these two plans relativz th.et communication cost increases.

us call the feasible set size for the former plan FE$(and the We also compare the performance of clustered ROD with Con-
feasible set size for the later F€%(We compute the penalty for ~ nected Load Balancing in Figure 17(b). Our first observation is that
not knowing the lower bound d§FS B;) — FSSO0)) /FSS B;) clustered ROD consistently performs better than Connected Load

We now run our experiment on a network of 50 operators. We Balancing regardless of the data communication overhead. Sec-
plot the penalty in Figure 16(a) with the x-axis as the ratio of the ondly, we observe that clustered ROD can do increasingly better
distance fromB; to the ideal hyperplane to the distance from the as the number of operators per input stream increases—more op-
origin to the ideal hyperplane. Notice that when this ratio is small €rators means more clustering alternatives and more flexibility in
(B; is very close to the ideal hyperplane), the penalty is large be- balancing the weight of each input stream across machines.
cause without knowing the lower bound it is likely that we will sac-
rifice the small actual feasible set in order to satisfy points thatwill /-3:5 ~Latency Results
not occur. AsB; approaches the origin (i.e., the ratio gets bigger), While the abstract optimization goal of this paper is to maximize
the penalty drops off as expected. the feasible set size (or minimize the probability of an overload

The next experiment quantifies the impact of inaccurate knowl- situation), stream processing systems must, in general, produce low
edge of the lower bound values. In Figure 16(b), we run latency results. Inthis section, we evaluate the latency performance
the same experiment as above except that, instead of using theof ROD against the alternative approaches. The results are based
origin as the assumed lower bound, we use another randomlyon the Borealis prototype with five machines for aggregation-based
generated point. As in the above experiment, we compute a network traffic monitoring queries on real-world network traces.
penalty for being wrong. In this case, the penalty is computed As input streams, we use an hour’s worth of TCP packet traces
as (FFSB;) — FSSZ;)) /FSSB;) where B; is the real lower (obtained from the Internet Traffic Archive [5]). For query graph
bound, as before, and; is the assumed lower bound. The x axis we use 16 aggregation operators that compute the number of pack-
is the distance betweeB; and Z; in the normalized space. As ets and the average packet size for each second and each minute
one might expect, when the real and the assumed lower bounds ar€using non-overlapping time windows), and for the most recent
close to each other, the penalty is low. As the distance increases,10 seconds and most recent one minute (using overlapping sliding
the penalty also increases (Figure 16(b)). windows), grouped by the source IP address or source-destination

The penalty is also dependent on the number of operators in ouraddress pairs. Such multi-resolution aggregation queries are com-

N
a
S

o

[JrROD
[ICorrelation-Based
[T LLF-Load-Balancing

o
3

[1rROD
[ICorrelation-Based

[LLF-Load-Balancing

[Max-Rate-Load-Balancing
Il Random

Il Connected-Load-Balancing

[_]A = Resilient
[JA = Correlation-Based
A = LLF-Load-Balancing
Il A = Random
A = Connected-Load-Balancing

N

=}

S
&)
o
o

[Max-Rate-Load-Balancing
[l Random
Il Connected-Load-Balancing

IS
o
3

.
a
=)

w
o
IS

i

o

S
o
w

N
o
N

a
=)

-
o
o

Average End-to-End Latency (ms)

Maximum End-to-End Latency (sec)

(=)

=)
o

0% 10% 25% 50% 75% 100%
Error Level (Parameter Error Bound / Parameter True Value)

Average Feasible Set Size Ratio (A / Ideal)

1 2 3 3.5 1 2 3 35
Input Stream Rate Multiplier Input Stream Rate Multiplier

Figure 18: Latency results (prototype based). Figure 19: Sensitivity to statistics errors.

) o)) . ROD's performance remains much better than the others even when
monly used for various network monitoring tasks including denial he error level is as large 46%.

of service (DoS) attack detection.

To give more flexibility to the load distributor and enable higher
data parallelism, we partition the input traces into 10 sub-streams 8. RELATED WORK
based on the IP addresses, with each sub-stream having roughly Task allocation algorithms have been widely studied for tradi-
one tenth of the source IP addresses. We then apply the aggregatiotional distributed and parallel computing systems [11, 18]. In prin-
operators to each sub-stream and thus end up with 160 “physical” ciple, these algorithms are categorized into static algorithms and
operators. Note that this approach does not yield perfectly uni- dynamic algorithms. In static task allocation algorithms, the dis-
form parallelism, as the rates of the sub-streams are non-uniformtribution of a task graph is performed only once before the tasks
and independent. It is therefore not possible to assign equal num-are executed on the processing nodes. Because those tasks can be
bers of sub-streams along with their corresponding query graphs tofinished in a relatively short time, these algorithms do not consider
different nodes and expect to have load balanced across the nodetime-varying workload as we did.
(i.e. expect that the ideal feasible set can be achieved by pure data- In this paper, we try to balance the load of each input stream for
partitioning based parallelism). bursty and unpredictable workloads. Our work is different from the

In addition to the algorithms described earlier, we introduce yet work on multi-dimensional resource scheduling [12]. This work
another alternative, Max-Rate-Load-Balancing, that operates simi- considers each resource (e.g. CPU, memory) as a single dimen-
lar to LLF-Load-Balancing, but differs from it in that the new algo- sion, while we balance the load of different input streams that share
rithm balances the maximum load of the nodes using the maximum the same resource (CPU). Moreover, balancing the load of different
stream rate (as observed during the statistics collection period). input streams is only part of our contribution. Our final optimiza-

In order to test the algorithms with different stream rates, we tion goal is to maximize the feasible set size, which is substantially
scale the rate of the inputs by a constant. Figure 18 shows thedifferent from previous work.
average end-to-end latency and the maximum end-to-end latency Dynamic task migration received attention for systems with long
results for the algorithms when the input rate multiplier is 1, 2, 3, running tasks, such as large scientific computations or stream data
and 3.5, respectively. These multipliers correspond to 26%, 48%, processing. Dynamic graph partitioning is a good example [16,
69% and 79% average CPU utilization for ROD. Overall, ROD per- 20]. This problem involves partitioning a connected task graph into
forms better than all others not only because it produces the largestuniformly loaded subgraphs, while minimizing the total “weight”
feasible set size (i.e., it is the least likely to be overloaded), but (often the data communication cost) of the cutting edges among
also because it tends to balance the load of the nodes under multhe subgraphs. If changes in load lead to unbalanced subgraphs,
tiple input rate combinations. When we further increase the input the boundary vertices of the subgraphs are moved to re-balance
rate multiplier to 4, all approaches except ROD fail due to overload the overall system load. Our work differs in that we aim to keep
(i.e., the machines run out of memory as input tuples queue up andthe system feasible under unpredictable workloads without opera-
overflow the system memory). At this point, ROD operates with tor migration.
approximately 91% average CPU utilization. Our work is done in the context of distributed stream processing.

The results demonstrate that, for a representative workload andEarly work on stream processing (e.g., Aurora [3] , STREAM [13],
data set, ROD (1) sustains longer and is more resilient than the and TelegraphCQ [6]) focused on efficiently running queries over
alternatives, and (2) despite its high resiliency, it does not sacrifice continuous data streams on a single machine. The requirement
latency performance. for scalable and highly-available stream processing services led to
. L. the research on distributed stream processing systems [7]. Load
7.3.6 Sensitivity to Statistics Errors management in these systems has recently started to receive atten-

In the following experiments, we test, in the simulator, how sen- tion [4, 17, 23].
sitive ROD is to the accuracy of the cost and selectivity statistics. Shahet al. presented a dynamic load distribution approach
Suppose that the true value of a statistic.i$Ve generate arandom for a parallel continuous query processing system, called Flux,
error factorf uniformly distributed in the intervgll — e, 1 + €]. where multiple shared-nothing servers cooperatively process a sin-
The measured value efis then set ag x v. We calle the error gle continuous query operator [17]. Flux performs dynamic “intra-
level In each experiment, we generate all measured costs and se-operator” load balancing in which the input streams to a single op-
lectivities according to a fixed. Figure 19 shows the performance erator are partitioned into sub-streams and the assignment of the
of different algorithms with different error levels on a query graph sub-streams to servers is determined on the fly. Our work is or-
of 100 operators. The feasible set size of all algorithms, except thogonal to Flux, as we address the “inter-operator” load distribu-
for Random, decreases when the error level increases. Theléasib tion problem.
set size of ROD does not change much when the error levébis Medusa [4] explores dynamic load management in a federated

environment. Medusa relies on an economical model based on Aurora: A new model and architecture for data stream
pair-wise contracts to incrementally converge to a balanced con- managemeniThe VLDB Journal2003.

figuration. Medusa is an interesting example of load balancing, as [4] M. Balazinska, H. Balakrishnan, and M. Stonebraker.

it focuses on a decentralized dynamic approach, whereas our work Contract-based load management in federated distributed

attempts to keep the system feasiblighout relying on dynamic systems. IrProc. of the 1st NSDR004.
load distribution. [5] L. Bottomley. Dec-pkt, the internet traffic archive.
Our previous work [23] presented another dynamic load balanc- http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html.

ing approach for distributed stream processing. This approach con- [6] S.Chandrasekaran, A. Deshpande, M. Franklin, and

tinually tracks load variances and correlations among nodes (cap- J. Hellerstein. TelegraphCQ: Continuous dataflow processing
tured based on a short recent time window) and dynamically dis- for an uncertain world. IProc. of CIDR 2003.

tributes load to minimize the former metric and maximize the latter 7]
across all node pairs. Among other differences, our work is differ-
ent in that it does not rely on history information and is thus more
resilient to unpredictable load variations that are not captured in the
recent past.

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. Proc. of CIDR 2003.
[8] E. G. Coffman, M. R. G. Jr., and D. S. Johnson.
Approximation algorithms for binpacking - an updated
survey.Algorithm Design for Computer Systems Design

9. CONCLUSIONS pages 49-106, 1984.

We have demonstrated that significant benefit can be derived by [9] M. Crovella and A. Bestavros. Self-similarity in world wide
carefully considering the initial operator placement in a distributed web traffic: Evidence and possible caud&EE/ACM
stream processing system. We have introduced the notion of a re- Transactions on Networking 997.

silient operator placement plan that optimizes the size of the input [10] G. Dantzig.Linear programming and extensiarRrinceton

workload space that will not overload the system. In this way, the University Press, Princeton, 1963.

system will be able to better withstand short input bursts. [11] R. Diekmann, B. Monien, , and R. Preis. Load balancing
Our model is based on reducing the query processing graph to strategies for’distributed }ﬁemory machinkkilti-Scale

segments that are linear in the sense that the load functions canbe 5101 Sihena and Their Simulatigrages 255—266, 1997.

expressed as a set of linear constraints. In this context, we presenhz] M. N. Garofalakis and Y. E. loannidis Multi-diménsional

a resilient load distribution algorithm that places operators based heduling f llel ; fh
on two heuristics. The first balances the load of each input stream resource scheduling for parallel queriesPoc. of the 1996
' ACM SIGMOD pages 365-376, 1996.

across all nodes, and the second tries to keep the load on each nodﬁS] R. Motwani. J. Widom A Arasu. B. Babcock. S. Babu

evenly distributed.)
We have shown experimentally that there is much to be gained M. Datar, G. Mgnku, C. O|$t°n3 J. Rosenstein, and R. Varma.
Query processing, approximation, and resource management

with this approach. It is possible to increase the size of the allow- nad fCID
able input set over standard approaches. We also show that the av- 21033 ata stream management systenboc. o R

erage latency of our resilient distribution plans is reasonable. Thus,) . .
this technique is well-suited to any modern distributed stream pro- [14] H. NiederreiterRandom Number Generation and

cessor. Initial operator placement is useful whether or not dynamic Quasi-Monte Carlo MethodsSociety for Industrial and
operator movement is available. Even if operator movement is sup- Applied Mathematics, Philadelphia, 1992.

ported, this technique can be thought of as a way to minimize its [15] A. L. Peressini, F. E. Sullivan, and J. J. Ulthe

use. Mathematics of Nonlinear Programmin988.

An open issue of resilient operator distribution is how to use ex- [16] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning
tra information, such as upper bounds on input stream rates, varia- for high performance scientific simulatiolSRPC Parallel
tions of input stream rates, or input stream rate distributions, to fur- Computing Handboqk2000.
ther optimize the operator distribution plan. Due to the complexity [17] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.
of computing multiple integrals and the large number of possible Franklin. Flux: An adaptive partitioning operator for
operator distribution plans, incorporating extra information in the continuous query systems. Rroc. of the 19th ICDE2003.
operator distribution algorithm is not trivial. For each kind of new [18] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and
information, new heuristics need to be explored and integrated into load balancing in parallel and distributed systet&&E
the operator distribution algorithm. Comp. Sci. Presg995.

Recall that we deal with systems with non-linear operators by [19] I. H. Sloan and H. Wozniakowski. Multiple integrals in many
transforming their load models into linear ones. We would like to dimensions. IrAdvances in Computational Mathematics:
investigate alternatives to this that would not ignore the relation- Proc. of the Guangzhou International Symposias97.
ships between the contiguous linear pieces. We believe that in so[20] . Walshaw, M. Cross, , and M. G. Everett. Dynamic load
doing, we would end up with a larger feasible region. balancing for parallel adaptive unstructured mesResallel

Processing for Scientific Computin@ct. 1997.
10. REFERENCES [21] E. W. Weisstein. Change of variables theorem.

[1] The internet traffic archive. http://ita.ee.lbl.gov/.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
design of the borealis stream processing enginerde. of
CIDR, 2005.

[3] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.

http://mathworld.wolfram.com/Hypersphere.html.

[22] E. W. Weisstein. Hypersphere.
http://mathworld.wolfram.com/Hypersphere.html.

[23] Y. Xing, , S. Zdonik, and J.-H. Hwang. Dynamic load
distribution in the borealis stream processorPioc. of the
19th ICDE Mar. 2005.

