ICSI 416/516 Homework 3 — Transport

20 points
Due date: Wednesday 3/2 at 11:59PM as a single PDF file via Blackboard

All parts of the assignment are to be completed independently. Submission of the same text by
multiple students will be considered cheating. Students caught cheating will receive O points for
the assignment and will be reported.

Part 1 [14 points]: Answer the theoretical questions on the following two pages.

Part 2 [6 points]: Complete the Wireshark Lab and answer the questions in the lab. You can
download the Wireshark trace for this assignment from

http://www .cs.albany.edu/~mariya/courses/csi416516S16/hw/tcp-wireshark-trace-1

[Theoretical questions]

1. [1 point] Suppose a process in Host C has a UDP socket with port number 6789. Suppose

last bit transmitted, t=L/ R 11

both Host A and Host B each send a UDP segment to Host C with destination port
number 6789. Will both of these segments be directed to the same socket at Host C? If
so, how will the process at Host C know that these two segments originated from two
different hosts?

. [1 point] Consider the basic operations of TCP. Is TCP a Go-Back-N or a Selective
Repeat protocol? Provide a brief justification.

. [2 points] The pipelined protocol in Figure 1 has a window size of N packets and runs
over a physical link with bandwidth R=1Gbit/s. The link has a propagation delay of 10ms
and each of the packets sent over this link is of size L=5KBytes. What is the achieved
throughput of the above pipelined protocol if N=3, 6 and 12? Write the formula you are
using to calculate throughput (using the same notation as in the assignment) along with
your result. Comment on the trends you observe with increasing N.

sender receiver

— first packet bit arrives

- last packet bit arrives, send ACK

—last bit of 2" packet arrives, send ACK
L last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send next]
packet, t=RTT + L/ R__

A\

Figurel. Illustration of the pipelined protocol from theoretical problem 3.

4. [1 point] What are the similarities and differences between congestion control and flow

control?

. [2 point] We developed our realistic reliable data transfer (rdt3.0) protocol by assuming
increasingly complicating circumstances (e.g. channel with error and loss) that required
additional parameters to handle these circumstances. Why did we need to introduce
sequence numbers? How about timers?

. [2 points] Suppose that the roundtrip delay between sender and receiver is constant and
known to the sender. Would a timer still be necessary in protocol rdt 3.0, assuming that

packets can be lost? Explain.

7. [5 points] In this question we will apply our knowledge of the operations of TCP Reno in
order to study its behavior through a real-world measurement. Figure 2 shows the
congestion window of the protocol over multiple transmission rounds. Study the graph

and answer the following questions:
45 + , ' '

8

8 = :

Congestion Window Size
(segments)

Transmission Round

Figure 2. Graph of TCP Reno’s congestion window over multiple consecutive
transmission rounds.

a. In which round intervals is slow start operating?

b. Which congestion avoidance mechanism can be observed here?

c. In which intervals is congestion avoidance operating?

d. What caused the cwnd decrease in round 16: a triple duplicate ACK or a timeout?
e. What is the value of ssthresh in round 1?

f. What is the value of ssthresh in round 18?

g. What is the value of ssthresh in round 24?

h. In which transmission round is the 70" segment sent?

i. Imagine that the sender received a triple duplicate ACK after the 26" round. What
will be the values of cwnd and ssthresh following this event?

Wireshark Lab: TCP

In this lab, we’ll investigate the behavior of TCP in detail. We’ll do so by analyzing a
trace of the TCP segments sent and received in transferring a 150KB file (containing the
text of Lewis Carrol’s Alice’s Adventures in Wonderland) from a computer to a remote
server. We’ll study TCP’s use of sequence and acknowledgement numbers for providing
reliable data transfer; we’ll see TCP’s congestion control algorithm — slow start and
congestion avoidance — in action; and we’ll look at TCP’s receiver-advertised flow
control mechanism. We’ll also briefly consider TCP connection setup and we’ll
investigate the performance (throughput and round-trip time) of the TCP connection
between the client computer and the server.

Before beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the text.

1. Capturing a bulk TCP transfer from the client computer to a remote
server

To allow you to investigate TCP’s behavior, Wireshark was used to obtain a packet trace
of the TCP transfer of a file from a client computer to a remote server. The trace was
created by accessing a Web page that will allowed the user to enter the name of a file
stored on the client computer (which contains the ASCII text of Alice in Wonderland),
and then transfer the file to a Web server using the HTTP POST method (see section
2.2.3 in the text). The POST method was used rather than the GET method because we’d
like to transfer a large amount of data from the client computer to another computer.
During the transfer, Wireshark was running to obtain the trace of the TCP segments sent
and received from the client computer.

The Wireshark packet trace was captured using the following steps:

* The user visited the URL http://gaia.cs.umass.edu/Wireshark-labs/TCP-
Wireshark-filel.html

* The user entered the name of the file containing the text of Alice in Wonderland.

* Before pressing the Upload button, the packet capture with Wireshark was started.

* Then the user pressed the “Upload alice.txt file” button to upload the file to the
gaia.cs.umass.edu server. Once the file had been uploaded, a short
congratulations message was be displayed in the browser window.

* Wireshark packet capture was then stopped.

If you load the tcp_wireshark trace 1 file into Wireshark, your Wireshark window
should look like the window shown below.

File Edit Yew Go Capture Analyze Statistics Help

B e e e ol x 4 & R ¢« » » F 8| B EH Q@ aqQ O]

Eilter:l ¥ Expression... Clear Apply

Mo. - Time: Source Destination Protocol | Info

Continuation or non-HTT
http > 1250 [ACK] Seqg=1 Ac
Continuation or non-HTT C
Continuation or non-HTT
http > 1250 [ACK] Seq-l Ac
Continuation or non-HTT C
Continuation or non-HTT
http > 1250 [ACK] Seq-l Ac 418 Win=11616
6 192.168.2. 5 !] T continuation or non-HTTP t 1C
. 381927 o o o o 0 &0 http > 1250 [ACK] Seg=l AC 870 win=14520
241 . 145] .12 TTP ontinuation or non-HTTP t 1C
] TTP ation or non-HTTP t ¢
] E . nuation or non-HTTP T ¢
.421386 0 0 B0 o 0 @0 query NB MSHOME<1lhbx>
. 466467 http > 1250 [ACK] Seg=1 Ack=6322 win=17424
552453 o > 1250 [ACK] Seq=1 Ack=7774 win=20328
6243?5 o o o > 1250 [ACK] Seq=1 Ac =8957 win=23232
1 1 3 1 3 T t ON—-HTT -
ON-HTT
ON-HTT

win=2613€
Seq=1 Ack=11861 win=2904C
Seq=1 Ack=13053 win=31944
on or non-HTT d
on or non-HTT
02. .145] ontinuation or non-HTT t -
.950346 128, o o 192.168 2 145 http > 1250 [ACK] Seq-l AC win=32767

-708403 .119.245.1 .168.2.145 >150 [ACK]
.794139 .168.2.145 > 1250 [ACK]
. 866343

.036225 128. 192.168.2.145 TCP http > 1250 [ACK] Seg=l Ack=15957 win=32767
33 1.108269 128.119.245.12 192.168.2.145 TCP http > 1250 [ACK] Seqg=l Ack=17149 win=32767 _
<] ©
Frame 1 (62 bytes on wire, 62 hytes captured)
Ethernet II, Src: Netgear_6l:8e:6d (00:09:5h:61:8e:6d), Dst: LinksysG_45:90:a8 (00:0c:41:45:90:a8)
Internet Protocol, Src: 192.168.2.145 (192.168.2.145), Dst: 128.119.245.12 (128.119.245.12)
Transmission Control Protocol, Src Port: 1250 (1250), Dst Port: http (80), Seqg: 0, Len: O
0000 00 0c 41 45 50 a8 00 09 5Sh 61 8e 6d 08 00 45 00 . AE.... [a.m..E.
0010 00 30 2b 6b 40 00 80 06 96 9f c0 a8 02 91 80 77 L0+k@. .. L. w
0020 5 0c 04 2 00 50 ¢2 67 22 99 00 00 Q00 00 70 02 P.g ..., p.
0030 ff ff 60 2f 00 00 02 04 05 b4 01 01 04 02 B
File: "C:\DOCUME~1\PALULAW~1LOCALS~1\TempletherXxxxa03100" 165 KB 00:00:09 [P: 214 D: 214 M: 0 Drops: O 4

2. Afirst look at the captured trace

Before analyzing the behavior of the TCP connection in detail, let’s take a high level
view of the trace. First, filter the packets displayed in the Wireshark window by entering
“tcp” into the display filter specification window towards the top of the Wireshark
window.

What you should see is series of TCP and HTTP messages between the client computer
and gaia.cs.umass.edu. You should see the initial three-way handshake containing a SYN
message. You should see an HTTP POST message and a series of “HTTP Continuation”

messages being sent from the client computer to gaia.cs.umass.edu. Note that there is no
such thing as an HTTP Continuation message — this is Wireshark’s way of indicating that
there are multiple TCP segments being used to carry a single HTTP message. You should
also see TCP ACK segments being returned from gaia.cs.umass.edu to the client
computer.

Since this lab is about TCP rather than HTTP, let’s change Wireshark’s “listing of
captured packets” window so that it shows information about the TCP segments
containing the HTTP messages, rather than about the HTTP messages. To have
Wireshark do this, select Analyze->FEnabled Protocols. Then uncheck the HTTP box and
select OK. You should now see a Wireshark window that looks like:

"I tcp-ethereal-trace-1 - Wireshark O] x|

File Edit View Go Capture Analyze Statistics Help

8 @ & e o op@ x » &58|/R @« 9 27 8 (EBE &Qaaqd|

Filter: I ¥ Expression... Clear Apply ‘

No. - | Time: I Source | Destination | Protocol | Info -
1 0.000000 192.168.1.102 128.119.245.12 TCP 1161 > http [SYN] Seq=0 Len=0 MSS=1460
2 0.023172 128.119.245.12 192.168.1.102 TCP http > 1161 [SYN, ACK] Seqg=0 Ack=1 win=584(
3 0.023265 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=1l Ack=1 win=17520 Let
4 0.026477 192.168.1.102 128.119.245.12 TCP 1161 > http [PSH, ACK] Seq=l Ack=1l win=175:
5 0.041737 192.168.1.102 128.119.245.12 TCP 1161 > http [PSH, ACK] Seq=566 Ack=1 win=1]
6 0.053937 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=1l Ack=566 win=6780 L¢
/0. 054 5] IR e ey e | O A 1 el e e e 116l > ¢ A
8 0.0546%0 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=3486 Ack=1l win=17520
9 0.077294 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=1l Ack=2026 win=8760 |
10 0.077405 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=4946 Ack=1 win=17520
11 0.078157 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=6406 Ack=1 win=17520
12 0.124085 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seqg=1l Ack=3486 win=11680
13 0.124185 192.168.1.102 128.119.245.12 TCP 1161 > http [PSH, ACK] Seq=7866 Ack=1 win=I
14 0.169118 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=1l Ack=4946 win=14600
15 0.217299 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seqg=1l Ack=6406 win=17520
16 0.267802 128.119.245.12 192.168.1.102 TCP httn >

1161 [ACK] Sea=1 Ack=7866 Win=lZO44i';|
>

2|
Frame 7 (1514 bytes on wire, 1514 bytes captured) -
Ethernet II, Src: Actionte_8a:70:1la (00:20:e0:8a:70:1a), Dst: LinksysG_da:af:73 (00:06:25:da:af:73)
Internet Protocol, Src: 192.168.1.102 (192.168.1.102), Dst: 128.119.245.12 (128.119.245.12)
[Transmission Control Protocol, Src Port: 1161 (1161), Dst Port: http (80), Seq: 2026, Ack: 1, Len: 1460
Source port: 1161 (1161)
pestination port: http (80)

sequence number: 2026 (relative sequence number)
[Next segquence number: 3486 (relative sequence number)]
Acknowledgement number: 1 (relative ack number) —

Header length: 20 hytes
E Flags: 0x10 (ACK)
Ocee onnn = congestion window Reduced (CwR): NOt set
. ... = ECN-Echo: Not set
..0. ... = Urgent: NOT set
= Acknowledgment: Set =

0000 00 06 25 da af 73 00 20 e0Q Ba 70 1a 08 00 45 00
0010 05 dc le 23 40 00 80 06 of 66 cO aB 01 66 80 77
0020 f5 0c 04 89 00 50 Od d6 09 de 34 a2 74 la 50 10
0030 44 70 b9 8e 00 00 0d Oa Od Qa 57 65 20 61 72 65

0040 20 6e 6f 77 20 74 72 79 69 6e 67 20 74 6f 20 72 now try ing to r
(aTal sl GAE G~ AE A1 72 ACE 2N A1 G- G~ 0 GF 76 77 00 &0 Alasca 5 11 Aan kb ;I
File: "C:\Documents and SettingsiPaula WingiMy Documents\Wiresharkitraces - ethereal... | P:213D: 213M: 0 4

This is what we’re looking for - a series of TCP segments sent between the client
computer and gaia.cs.umass.edu. We will use the packet trace to study TCP behavior in
the rest of this lab.

3. TCP Basics

Answer the following questions for the TCP segments:

1.

What is the IP address and TCP port number used by the client computer (source)
to transfer the file to gaia.cs.umass.edu? What is the IP address and port number
used by gaia.cs.umass.edu to receive the file?
What is the sequence number of the TCP SYN segment that is used to initiate the
TCP connection between the client computer and gaia.cs.umass.edu? What is it
in the segment that identifies the segment as a SYN segment?
What is the sequence number of the SYNACK segment sent by gaia.cs.umass.edu
to the client computer in reply to the SYN? What is the value of the
ACKnowledgement field in the SYNACK segment? How did gaia.cs.umass.edu
determine that value?
What is the sequence number of the TCP segment containing the HTTP POST
command? Note that in order to find the POST command, you’ll need to dig into
the packet content field at the bottom of the Wireshark window, looking for a
segment with a “POST” within its DATA field.
Consider the TCP segment containing the HTTP POST as the first segment in the
TCP connection. What are the sequence numbers of the first six segments in the
TCP connection (including the segment containing the HTTP POST)? At what
time was each segment sent? When was the ACK for each segment received?
Given the difference between when each TCP segment was sent, and when its
acknowledgement was received, what is the RTT value for each of the six
segments? What is the EstimatedRTT value (see page 249 in text) after the
receipt of each ACK? Assume that the value of the EstimatedRTT is equal to
the measured RTT for the first segment, and then is computed using the
EstimatedRTT equation on page 249 for all subsequent segments.
Note: Wireshark has a nice feature that allows you to plot the RTT for
each of the TCP segments sent. Select a TCP segment in the “listing of
captured packets” window that is being sent from the client to the
gaia.cs.umass.edu server. Then select: Statistics->TCP Stream Graph-
>Round Trip Time Graph.

4. TCP congestion control in action

Let’s now examine the amount of data sent per unit time from the client to the server.
Rather than (tediously!) calculating this from the raw data in the Wireshark window,
we’ll use one of Wireshark’s TCP graphing utilities - Time-Sequence-Graph(Stevens) - to
plot out data.

Select a TCP segment in the Wireshark’s “listing of captured-packets” window.
Then select the menu : Statistics->TCP Stream Graph-> Time-Sequence-
Graph(Stevens). To get the most interesting plot, select a packet with the source
IP 0f 192.168.1.102, and select a packet towards the middle to end of the trace.
You should see a plot that looks similar to the following plot:

72! TCP Graph 8: tcp-ethereal-trace-1 192.168.1.102:1161 -> 128.119

Sequence
number([B]

150000 —

100000 —

L
TTTT

TimefSequence Graph

0.5

1.0

IIII]IIII
1.5

2.0

IIII]IIIIIIIII[IIIIII|IIII|I
2.5 3.0 3.5 4.0 4.5 5.0 5.5

Time[s]

Here, each dot represents a TCP segment sent, plotting the sequence number of
the segment versus the time at which it was sent. Note that a set of dots stacked
above each other represents a series of packets that were sent back-to-back by the
sender.

Answer the following question:
6. Use the Time-Sequence-Graph(Stevens) plotting tool to view the sequence
number versus time plot of segments being sent from the client to the
gaia.cs.umass.edu server. Comment on ways in which the measured data differs
from the idealized behavior of TCP that we’ve studied in the text.

