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Abstract

In this paper, we propose to use the idealized Hierarchi-
cal Generalized Processor Sharing (H-GPS) model to si-
multaneously support guaranteed real-time, rate-adaptive
best-e�ort, and controlled link-sharing services. We design
Hierarchical Packet Fair Queueing (H-PFQ) algorithms to
approximate H-GPS by using one-level variable-rate PFQ
servers as basic building blocks. By computing the system
virtual time and per packet virtual start/�nish times in unit
of bits instead of seconds, most of the PFQ algorithms in the
literature can be properly de�ned as variable-rate servers.
We develop techniques to analyze delay and fairness prop-
erties of variable-rate and hierarchical PFQ servers. We
demonstrate that in order to provide tight delay bounds
with an H-PFQ server, it is essential for the one-level PFQ
servers to have small Worst-case Fair Indices (WFI). We
propose a new PFQ algorithm called WF2Q+ that is the
�rst to have all the following three properties: (a) provid-
ing the tightest delay bound among all PFQ algorithms, (b)
having the smallest WFI among all PFQ algorithms, and (c)
having a relatively low asymptotic complexity of O(log N).
Simulation results are presented to evaluate the delay and
link-sharing properties of H-WF2Q+ , H-WFQ, H-SFQ, and
H-SCFQ.

1 Introduction

Future integrated services networks will support multiple
service classes that include real-time service, best-e�ort ser-
vice, and others. In addition, they will need to support
link-sharing [6], which allows resource sharing among tra�c
streams that are grouped according to administrative a�l-
iation, protocol, tra�c type, or other criteria. Figure 1 (a)
shows an example where there are 11 agencies sharing the
output link. The administrative policy dictates that Agency
A1 gets at least 50% of the link bandwidth whenever it has
tra�c. In addition, to avoid starvation of the best-e�ort
tra�c, of the 50% of the bandwidth assigned to A1, best-
e�ort tra�c should get at least 20% if there is su�cient
demand.
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It is important to design mechanisms to meet the goals
of link sharing and di�erent service classes simultaneously.
The uid Hierarchical Generalized Processor Sharing (H-
GPS) system provides a general and exible framework to
support hierarchical link sharing and tra�c management for
di�erent service classes. H-GPS can be viewed as a hierar-
chical integration of one-level GPS servers. With a one-level
GPS, there are multiple packet queues, each associated with
a service share. During any time interval when there are
backlogged queues the server services all backlogged queues
simultaneously in proportion to their corresponding service
shares. With an H-GPS server, the queue at each internal
node is a logical one, and the service it receives is distributed
instantaneously to its child nodes in proportion to their rela-
tive service shares. This service distribution follows the hier-
archy until it reaches the leaf nodes where there are physical
queues.

It has been shown that with a one-level GPS: (1) an
end-to-end delay bound can be provided to a session if the
tra�c on that session is leaky bucket constrained [12], (2)
bandwidth is fairly distributed to competing sessions [5],
and (3) the sources can accurately estimate the available
bandwidth to them in a distributed fashion [9]. The �rst
property forms the basis for supporting real-time tra�c [2]
and the third property enables robust and distributed end-
to-end tra�c management algorithms for best-e�ort traf-
�c [9, 14]. H-GPS will maintain the �rst and the third prop-
erties, but distribute excess bandwidth unused by a session
according to the hierarchy rather than just service shares of
sessions. Therefore, the simple H-GPS con�guration in Fig-
ure 1 (b) simultaneously supports all three goals, namely,
link-sharing, real-time tra�c management, and best-e�ort
tra�c management.

While H-GPS provides a simple model for supporting
integrated services networks, it is de�ned in a hypotheti-
cal uid system that cannot be precisely implemented. In
this paper, we design packet approximation algorithms of
H-GPS. In the literature, a number of one-level Packet Fair
Queueing (PFQ) algorithms have been proposed to approx-
imate the uid GPS algorithm [1, 5, 7, 8, 12, 13, 17]. To re-
duce the implementation complexity, they all use the notion
of a system virtual time function that tracks the progress
in the uid system. As we will show in Section 2, the same
technique based on a single system virtual time function
does not apply to packet algorithms approximating H-GPS.

In this paper, we propose to approximate H-GPS by us-
ing one-level PFQ servers as basic building blocks and orga-
nizing them in a hierarchical structure. The resulted Hier-
archical Packet Fair Queueing (H-PFQ) algorithms should
have the following properties: (1) tight per session delay
bounds that are comparable to a H-GPS server, (2) band-
width distribution in a hierarchical fashion that is similar
to a H-GPS server, and (3) a relatively low complexity. To
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Figure 1: A Link Sharing Example

construct such a H-PFQ server, the one-level server needs
to have the following properties: (a) tight per session delay
bound as compared to the one-level GPS server, and (b) a
relatively low complexity. In addition, as we will demon-
strate, to achieve tight delay bounds in the H-GPS server,
one-level PFQ servers also need to provide (c) small Worst-
case Fair Indices (WFI's) as de�ned in [1]. Most of the
previously proposed PFQ algorithms [5, 7, 8, 12, 17] do not
have small WFI's. In fact, they all have WFI's that grow
proportionally to the number of queues in the system. As a
result, the delay bounds provided by H-PFQ servers made of
these PFQ's are much larger than those provided by H-GPS.
The only exception is Worst-case Fair Weighted Fair Queue-
ing algorithm (WF2Q), which is proven to provide smallest
WFI's among all PFQ algorithms [1]. However, WF2Q uses
a system virtual time function with a complexity of O(N).

We propose a new algorithm that maintains all the im-
portant properties of WF2Q, but has a lower complexity
than WF2Q. We call the new algorithm WF2Q+ . Simu-
lation results are presented to illustrate the advantages of
H-WF2Q+ over H-WFQ, H-SFQ, and H-SCFQ.

2 Fluid and Packet Systems

Throughout the paper, we discuss two types of systems:
uid system in which the tra�c is in�nitely divisible and
multiple tra�c streams can receive service simultaneously,
and packet systems in which only one tra�c stream can re-
ceive service at a time and the minimum service unit is a
packet. While uid systems cannot be realized in the real
world, they are conceptually simple and some of them have
properties that are highly desirable for network control. For
these uid systems, people have studied the corresponding
packet approximation algorithms.

In this section, we �rst review Generalized Processor
Sharing (GPS), and illustrate how it can be approximated
by packet algorithms based on virtual time functions. We
then de�ne Hierarchical GPS (H-GPS) and show that the
same technique cannot be applied directly to H-GPS.

2.1 Packet Approximation of GPS

A one-level GPS server with N queues is characterized by
N positive real numbers, �1; �2; � � � ; �N . Let Wi(t1; t2) be
the amount of session i tra�c served in the interval [t1; t2],
W (t1; t2) be the total amount of service provided by the
server during the same period. A work-conserving GPS

server is de�ned as one for which

Wi(t1; t2)

�i
=

W (t1; t2)P
j2B(t1)

�j
8i 2 B(t1) (1)

holds for any interval [t1; t2) during which B(�), the set of
backlogged sessions at time � , does not change.

There are two noteworthy points. First, in the de�nition
of the GPS algorithm, there is no assumption on whether the
server rate is constant or variable. Since an internal node
in a hierarchical server is a variable rate server, this ensures
that H-GPS is properly de�ned. Second, while �0s can be
arbitrary positive numbers, it is the relative ratio's among
them rather than the exact numbers that are important. For
example, given an arbitrary set of �0s, we can de�ne a new
set of �̂'s that are normalized with respect to the sum of all
�0s, i.e., �̂ = �iP

N

i=1
�i

. The GPS systems de�ned by �'s and

�̂'s are identical. Without losing generality, we assume thatPN

i=1
�i = 1 holds.

From (1), it immediately follows that

Wi(t1; t2)

�i
=

Wj(t1; t2)

�j
(2)

holds for any interval [t1; t2] during which queues i and j
are continuously backlogged. That is, the server services all
backlogged sessions simultaneously, in proportion to their
service shares. In addition

Wi(t1; t2) � �iW (t1; t2) (3)

holds for any interval [t1; t2] during which queue i is contin-
uously backlogged, i.e., queue i gets a minimum share of the
server's capacity during any of its backlogged period regard-
less of the behaviors of other sessions. In the special case of
a �xed-rate server with rate r, i.e., W (t1; t2) = r(t2 � t1),
(3) becomes

Wi(t1; t2) � ri(t2 � t1) (4)

where ri = �ir is the minimum rate guaranteed to the ses-
sion. With such a strong bandwidth guarantee, GPS can
also provide a worst-case delay bound for a session that
is constrained by a leaky bucket with an average rate no
greater than ri [12].

A good packet approximation algorithm of GPS would
be one that serves packets in increasing order of their �nish
times in the uid GPS system [5, 12]. However, when the
packet system is ready to choose the next packet to trans-
mit, it is possible the next packet to depart under the uid
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Table 1: Calculation of Virtual Times

system have not arrived at the packet system. Waiting for
it requires knowledge of the future and also causes the sys-
tem to be non-work-conserving. To have a work-conserving
packet system, the packet server must choose a packet to
transmit based only on the state of the uid system up to
time � . In Weighted Fair Queueing (WFQ) [5], when the
server is ready to transmit the next packet at time � , it
picks, among all the packets queued in the system at � , the
�rst packet that would complete service in the correspond-
ing GPS system if no additional packets were to arrive after
time � . Since packet �nish times will change when sessions
become backlogged or unbacklogged, a naive implementa-
tion of WFQ is to re-compute the �nish times of all packets
in the GPS system whenever a session becomes backlogged
or unbacklogged.

By observing the following important property of GPS [12],
a more practical implementation of WFQ is possible.

Property 1 The relative �nish order of all packets that are
in the system at time � is independent of any packet arrivals
to the system after time � . That is, for any two packets p
and p0 at time � in a GPS system, if p �nishes service before
p0 assuming there are no arrivals after time � , p will �nish
service before p0 for any pattern of arrivals after time � .

With this property, it is possible to maintain the relative
GPS �nish order for packets in the WFQ system by using a
priority queue mechanism [5, 12]. Such an implementation is
based on the notion of a system virtual time function V (�),
which is the normalized fair amount of service that all back-
logged sessions should receive by time � in the GPS system.
Each packet pki (kth packet on session i) has a virtual start
and �nish time Ski and F k

i , where V �1(Ski ) and V �1(F k
i )

are the times packet pki starts and �nishes services in the
GPS system respectively. Another way of interpreting F k

i

is that it represents the amount of service, normalized with
respect to its service share, session i has received right after
packet pki is served. In the GPS system, all backlogged ses-
sions should receive the same normalized amount of service.
Since both the system virtual time and the per packet vir-
tual start/�nish times represent the normalized amount of
service, they are measured in unit of bits. In the special case
of a �xed rate server, the elapsed time of a backlogged pe-
riod is also a measure of the service provided by the server,
therefore, virtual times can also be measured in unit of sec-
onds. The exact algorithm for computing virtual times are
shown in Table 1, where BGPS(�) is the set of backlogged
queues at time � , t0 is the beginning of the system back-
logged period that includes t, r(�) is the server rate at time
� , and aki and Lki are the arrival time and the length of
packet pki respectively. Notice that the de�nition of virtual
times in unit of bits is more general, and is applicable to
both �xed-rate and variable-rate servers.

Based on Property 1, for all packets present in the packet
system at time � , their relative �nish order in GPS is the
same as the relative order of their virtual �nish times. There-
fore, WFQ can be implemented by the \Smallest virtual

Finish time First" (SFF) policy: when the server selects the
next packet for service at time � , it picks the packet with
the smallest virtual �nish time. An important advantage of
this virtual-time-function-based implementation is that the
virtual �nish time of a packet can be computed at the packet
arrival time and need not to be re-computed even if the set of
backlogged sessions change in the future. The system virtual
time function, though, does need to be re-computed when
the set of backlogged sessions change. Since there can be
N sessions that become backlogged or unbacklogged during
an arbitrarily small interval, the worst case complexity of
computing VGPS(:) is O(N) [7]. It is possible to have other
Packet Fair Queueing (PFQ) algorithms based on virtual
time functions with lower worst-case complexity [7, 8, 17].
Later in this paper, we will propose a more accurate vir-
tual time function with a worst-case complexity of O(log
N). Therefore, by exploiting Property 1 of GPS, it is pos-
sible to design virtual-time-function-based PFQ algorithms
that have an overall complexity of O(log N).

2.2 H-GPS

A H-GPS server can be represented by a tree with a positive
number �n associated with each node n. The root node,
denoted by R, corresponds to the physical link and each
leaf node corresponds to a session with a queue of packets.
A non-leaf node is called backlogged if at least one of its
leaf descendent nodes is backlogged. Let Wi(t1; t2) be the
amount of session i tra�c served in the interval [t1; t2], and
Wn(t1; t2) =

P
i2leaf(n)

Wi(t1; t2), where leaf(n) is the set

of the leaf descendent nodes for node n. Also, for any node
n, let p(n) and child(n) denotes its parent node and set of
child nodes respectively. A work-conserving H-GPS server
is de�ned as one for which

Wm(t1; t2)

�m
=

Wp(m)(t1; t2)P
q2Bp(m)(t1)

�q
(5)

holds for any interval [t1; t2) during which node m is contin-
uously backlogged and Bp(m)(�), the set of backlogged child
nodes of p(m) at time � , does not change. It immediately
follows that

Wm(t1; t2)

�m
=

Wn(t1; t2)

�n
(6)

holds for any interval [t1; t2] during which two sibling nodes
m and n are continuously backlogged.

Assuming
P

i2leaf(R)
�i = 1 and

P
m2child(n)

�m = �n,

it can be shown that (3) holds also for H-GPS. Therefore, H-
GPS can provide the same minimum bandwidth and delay
bound guarantees for each session as GPS. The major dif-
ference between GPS and H-GPS is that while (2) holds for
any two queues in GPS, (6) holds only for sibling nodes in
H-GPS. Since in H-GPS packet queues are associated with
only leaf nodes, the bandwidth is not always distributed to
all queues in proportion to their service shares as in GPS.
When a session cannot fully utilize its share of the service,
the excess service is distributed according to the hierarchy.

H-GPS is also de�ned in a uid system, therefore needs
to be approximated by a packet algorithm. While it is possi-
ble to design practical packet approximation algorithms for
GPS based on a single system virtual time function, this is
not the case with H-GPS. The main reason is that Property
1 does not hold for H-GPS, i.e., with H-GPS, the relative
order of packet �nish times is dependent on future arrivals.



Consider the example where the root of H-GPS has two
children A and B with service shares of 0.8 and 0.2 respec-
tively. Node B is a leaf node while node A has two child leaf
nodes A1 and A2 with service shares of 0.75 and 0.05. Let
the link speed be 1 and all packets have the same length of
1. At time 0, A1 has an empty queue, A2 and B have many
packets queued. Thus, A2 and B will have 80% and 20% of
the link bandwidth respectively. With the assumption that
there are no future arrivals, the �nish times in the H-GPS
server are 1.25, 2.5, 3.75, ..., for A2 packets, and 5, 10, 15,
..., for B packets. Therefore, at time 0, the relative order
of packets is: p1A2, p

2
A2, p

3
A2, p

4
A2, p

1
B , p

5
A2, .... Now assume

that a sequence of A1 packets arrive at time 1. According to
the bandwidth distribution hierarchy, the bandwidth shares
for A1, A2, B will be 75%, 5%, and 20% respectively. While
this will not a�ect the �nish times for session B packets, it
does a�ect the �nish times for session A2 packets. Between
time [0,1], only 80% of the �rst packet of session A2 has
been served. The rest of the 20% of the �rst packet and all
the remaining packets will be served at 5% of the link rate.
Therefore, the �nish times are 5, 25, 45, 65, � � �. That is,
the relative ordering between session A2 and B packets have
changed after the arrival of session A1's packets.

In a GPS system, during any period two sessions are
both backlogged, the ratio between the services they receive
is a constant regardless of future packet arrivals of other
sessions. In a H-GPS system, this ratio is a�ected by other
sessions in the hierarchy. This is the fundamental reason
why Property 1 does not hold for H-GPS.

Without the relative-packet-order-invariant property, the
concept of packet virtual �nish times is not applicable. There-
fore, the technique based on a single system virtual time
function to approximate GPS does not apply to H-GPS.

3 H-PFQ

In this paper, we propose to approximate H-GPS by using
one-level PFQ servers as basic building blocks and organiz-
ing them in a hierarchical structure. We call the resulted
algorithms Hierarchical Packet Fair Queueing (H-PFQ).

A PFQ server node in a hierarchy di�ers from a stan-
dalone PFQ server in two aspects: it is a variable-rate server
and the queues it serves do not have to be FIFO. As we
discussed in the previous section, both GPS and WFQ are
properly de�ned as variable-rate servers. In fact, by comput-
ing the system virtual time and per packet virtual start/�nish
times in unit of bits, most of the PFQ algorithms proposed
in the literature [1, 7, 8, 13, 17] are variable-rate servers.
Therefore, for PFQ nodes in an H-PFQ hierarchy, the vir-
tual times should be measured in unit of bits.

The second di�erence between a standalone server and a
server node in a hierarchy is that a standalone server serves
per session FIFO queues whereas a server node serves per
subtree logical queues that are not necessarily FIFO. A num-
ber of operations in the implementation of PFQ servers need
to use packets from the head of each queue. While it is ob-
vious which packet is at the head in a FIFO queue, we need
to de�ne the head packet for the logical queue that is asso-
ciated with a child subtree.

In the following, we present an implementation frame-
work of H-PFQ where an internal server node can be any
PFQ algorithm that is properly de�ned as a variable rate
server. The main data structure is a tree representation of
the hierarchy. The root node represents the physical link
and a leaf node represents a physical queue. Each non-root
node n is connected to its parent p(n) by a logical queue Qn.

Vn(t) the system virtual time function for node n
�n service share for node n.
Qn the logical queue for node n
Qn(t) the packet at head of Qn at time tbQi the real queue for the leaf node ibQi(t) the packet at head of bQi at time t
sn(t) the virtual start time of the packet Qn(t)
fn(t) the virtual �nish time of the packet Qn(t)
Ln(t) the length of the packet Qn(t)
Busyn(t) true if node n is backlogged at t
p(n) parent node of node n

Table 2: Notations used in the section

For the parent node to implement a PFQ algorithm, only the
head of the logical queue is needed. Therefore, at any given
time, only the reference to the packet, which is the head of
the logical queue, is stored in queue Qn. The actual packet
remains stored in the real queue at the leaf node until the
link �nishes transmission of the packet. For consistency, we
also de�ne QR for the root server to be the packet currently
being transmitted. At any given time when the server is
busy, there exists a path from a leaf to the root such that
the logical queues of all nodes traversed by the path point
to the same physical packet that is currently being trans-
mitted. The logical queues and associated data structures
at each node are updated when a packet arrives at an empty
session queue at the leaf node, or when the link is picking
the next packet to transmit. In the following, we present
the pseudocode to describe the details of the algorithm.
Arrive(i; Packet)

1 Enqueue( bQi; Packet)
2 if Qi(t) 6= ;
3 then return
4 Qi(t) Packet
5 si(t) max(fi(t); Vp(i)(t))

6 fi(t) si(t) +
Li(t)
�i

7 if Busyp(i) = FALSE

8 then Restart-Node(p(i))

When a packet arrives at a leaf node i, if session i's logical
queue for its parent node Qi is not empty, the packet is just
appended to the end of the physical FIFO queue for the
session. Otherwise, the packet also becomes the head of the
logical queue Qi. The virtual start and �nish times for the
logical queue are then updated, and the procedure Restart-
Node() is called with the parent node if it is currently idle.
Restart-Node(n)
1 m Select-Next(n)
2 if m 6= ;
3 then
4 ActiveChildn  m
5 Qn(t) Qm(t)
6 if Busyn(t) = TRUE
7 then sn(t) fn(t)
8 else sn(t) max(fn(t); Vp(n)(t))

9 fn(t) sn(t) +
Ln(t)
�n

10 Busyn  TRUE
11 Update-V(n)
12 else
13 ActiveChildn  ;
14 Busyn  FALSE
15 if (n 6= R) and (Qp(n)(t) = ;)



16 then Restart-Node(p(n))
17 if (n = R) and (QR(t) 6= ;)
18 then Transmit-Packet-To-Link(Qn(t))

A node is restarted whenever it needs to select a new
packet to transmit. This occurs either when a packet ar-
rives to an idle node or when the last packet �nishes be-
ing transmitted on the physical link. If a packet arrives at
an idle node n, the Busyn ag will be FALSE, in which
case the new start time for the node is computed using
sn(t) = max(fn(t); Vq(t)). If the node is not idle and has a
packet to transmit, the new start time will be set to the pre-
vious �nish time. If the node has no more packets to send,
the busy ag will be cleared. If the current node is not the
root node, and its parent node does not have a packet in
its logical queue Qq , the node will restart its parent node.
If the current node is the root node and there is a packet
in the queue, the packet will be transmitted over the link.
Di�erent PFQ algorithms have di�erent packet selection and
system virtual time updating algorithms. For example, SFQ
uses the Smallest virtual Start time First (SSF) policy and
updates the system virtual time based on the virtual start
time of the packet currently being served, whereas SCFQ
uses the Smallest virtual Finish time First (SFF) policy and
updates the system virtual time based on the virtual �nish
time of the packet currently being served. These algorithms
are implemented in functions Select-Next and Update-V.
Reset-Path(n)
1 Qn(t) ;
2 if Leaf(n) = TRUE
3 then
4 Dequeue(bQn)

5 if bQn(t) 6= ;
6 then
7 Qn(t) bQn(t)
8 sn(t) fn(t)

9 fn(t) sn(t) +
Ln(t)
rn

10 Restart-Node(p(n))
11 else
12 m ActiveChildn
13 ActiveChildn  ;
14 Reset-Path(m)

When the link �nishes transmitting a packet, it calls
Reset-Path(R). Reset-Path descends the tree along the path
to the leaf node whose packet just �nished transmission. At
each node along the path, it resets the logical queue to be
empty. When the leaf node is reached, the �rst packet of
the queue is dequeued and its parent node is restarted. Dur-
ing the descent, all pointers are cleared, but not the busy
ags. During the process of picking a new packet, the busy
ag acts as a reminder to the Restart-Node function that a
packet has just �nished transmission. If there are no more
packets for this node to send, Restart-Node will clear the
busy ag.

4 Delay Analysis of H-PFQ

In the previous section, we presented an algorithm to imple-
ment PFQ by integrating one-level PFQ's into a hierarchy.
While most of the PFQ algorithms proposed in the literature
can be used for this purpose, the delay bounds provided by
the resulted H-PFQ servers can vary signi�cantly with dif-
ferent PFQ algorithms.

In this section, we �rst give an example to show that

connection 1

connection 2

connection 11

......

WFQ service order

SFQ service order

2WF  Q service order

Figure 2: WFQ, SFQ, and WF2Q

with most of the PFQ algorithms proposed in the litera-
ture the resulted H-PFQ servers provide much larger delay
bounds than those by H-GPS. We then present the concept
of Worst-case Fair Index (WFI) and demonstrate that delay
bounds provided by an H-PFQ server relates not only to de-
lay bounds provided by PFQ server nodes in the hierarchy,
but also to WFI's provided by the PFQ servers. In par-
ticular, in order to achieve tight delay bounds for H-PFQ,
PFQ server nodes in the hierarchy need to have small WFI's.
WF2Q is the only algorithm proposed in the literature that
provides tight WFI's, however it has a relatively high com-
plexity. We propose a new algorithm called WF2Q+ that
not only provides tight delay bounds and low WFI's, but
also has a relatively low complexity.

4.1 Limitation of Existing PFQ Algorithms

In [1], the following example is used to illustrate the large
discrepancies between the services provided by GPS and
WFQ. Assume that there are 11 sessions with packet size
of 1 sharing a link with the speed of 1, �1 = 0:5, and
�i = 0:05; i = 2; � � � ; 11. Session 1 sends 11 back-to-back
packets starting at time 0 while each of all the other 10
sessions sends only one packet at time 0. If the server is
GPS, it will take 2 time units to transmit each of the �rst
10 packets of session 1, one time unit to transmit the 11th

packet, and 20 time units to transmit the �rst packet from
each of the other sessions. Denote the kth packet of session
j to be pkj , then in the GPS system, the �nish time is 2k for

pk1 ; k = 1 : : : 10, 21 for p111 , and 20 for p1j ; j = 2; � � � ; 11. Un-
der WFQ, packets will be transmitted according to their �n-
ish times in the GPS system. Therefore, the �rst 10 packets
of session 1 (pk1 ; k = 1 : : : 10) will be transmitted, followed by
one packet from each of sessions 2; � � � ; 11 (p1j ; j = 2; � � � ; 11),

and then the 11th packet of session 1 (p111 ). In the example,
between time 0 and 10, WFQ serves 10 packets from ses-
sion 1 while GPS serves only 5. After such a period, WFQ
needs to serve other sessions in order for them to catch up.
Intuitively, the di�erence between the amounts of service
provided to each session by WFQ and GPS is a measure of
inaccuracy of WFQ in approximating GPS. In this case, the
inaccuracy is (N � 1)=2 packets, where N is the number of
sessions sharing the link.

Such an inaccuracy introduced by WFQ will signi�cantly



a�ect the delay bound provided by H-WFQ. Consider the
example with a link sharing structure in Fig. 1 (a) and the
packet arrival sequence in Fig. 2. Assume that WFQ is used
instead of GPS and the �rst 10 packets of class A1 belong
to the best-e�ort sub-class and the 11th packet belong to
the real-time sub-class. Even though the real-time sub-class
of A1 reserves 30% of the link bandwidth, when a real-time
packet arrives, it may still have to wait 10 packet transmis-
sion times. Now consider the example where there are 1001
classes sharing a 100 Mbps link with the maximum packet
size of 1500 bytes. For a real-time session reserving 30% of
the link bandwidth, its packet may be delayed by 120 ms
in just one hop! In contrast, if GPS or H-GPS is used, the
worst-case delay for a packet arriving at an empty A1 real-
time queue is 0.4 ms. Similar examples can be constructed
for SCFQ [7], SFQ [8], and FBFQ [17].

4.2 WFI and Its E�ect on Delay Bounds of H-PFQ

In [1], we introduce a metric called Worst-case Fair Index
(WFI) to characterize PFQ servers. In this section, we will
develop analysis techniques to show that delay bounds pro-
vided by an H-PFQ server relates not only to delay bounds
provided by PFQ server nodes in the hierarchy, but also to
WFI's provided by the PFQ servers. In particular, in order
to achieve tight delay bound for H-PFQ, PFQ server nodes
in the hierarchy need to have small WFI's.

De�nition 1 A server s is said to guarantee a Time Worst-
case Fair Index (T-WFI) of Ai;s for session i, if for any
time � , the delay of a packet arriving at � is bounded above
by 1

ri
Qi(�) +Ai;s, that is,

dki � aki �
Qi(a

k
i )

ri
+Ai;s (7)

where ri is the rate guaranteed to session i, Qi(�) is the
number of bits in the session queue at time � (including the
packet that arrives at time �), aki and dki are the arrival and
departure times of the kth packet of session i respectively.

For the purpose of this paper, a packet is said to arrive or
leave the server if its last bit arrives or leaves the server. In-
tuitively, Ai;s represents the maximum time a packet coming
to an empty queue needs to wait before receiving its guar-
anteed service rate. An important observation is that both
GPS and H-GPS have a WFI of 0. That is, with GPS or
H-GPS, a packet coming to an empty queue can receive its
guaranteed service rate immediately after its arrival. How-
ever, as illustrated in the example in Fig. 2, the T-WFI for
WFQ can increases linearly as a function of the number of
sessions N.

Since the previous de�nition of WFI applies only to a
standalone server, which is �xed-rate and has only one level,
we introduce a general de�nition of WFI that applies also to
server nodes in a hierarchy, which are variable rate servers.
Again as in Sections 2 and 3, we generalize the de�nition by
measuring WFI in unit of bits instead of seconds.

De�nition 2 A server node s is said to guarantee a Bit
Worst-case Fair Index (B-WFI) of �i;s for session i, if for
any packet pki the following holds

Wi(t1; d
k
i ) �

�i
�s

Ws(t1; d
k
i )� �i;s (8)

where dki is the time pki departs the server, t1 is any time
instant such that t1 < dki and session i is continuously back-
logged during [t1; d

k
i ], and

�i
�s

is the service share guaranteed

to queue i by server s.

For a constant rate one-level server, �s = 1, andWs(t1; t2) =
rs(t2 � t1). Therefore, (8) is equivalent to:

Wi(t1; t2) � ri(t2 � t1)� �i;s (9)

In this case, De�nition 2 subsumes De�nition 1 and
�i;s = riAi;s holds. This can be easily established by letting
t1 = aki and using the following property for a FIFO queue
i

Wi(a
k
i ; d

k
i ) = Qi(a

k
i ) (10)

Before we proceed to establish the relationship between the
delay bound of an H-PFQ server and WFI's of PFQ server
nodes, we �rst give the following de�nition of guaranteed ser-
vice burstiness index (SBI), which is a generalized bounded
delay property that applies to both constant-rate and variable-
rate servers.

De�nition 3 A server s is said to guarantee a service bursti-
ness index (SBI) of i;s to session i if for any packet pki ,
there exists a time instant t1 within the server's busy pe-
riod that includes also dki , where t1 < dki , Q(t

�

1 ) = 0, and
Q(t1) 6= 0, such that

Wi(t1; d
k
i ) �

�i
�s

Ws(t1; d
k
i )� i;s (11)

holds where dki is the time pki departs the server and �i
�s

is

the service share guaranteed to queue i by server s.

The de�nition of SBI has its root in the guaranteed ser-
vice curve concept proposed by Cruz [3]. However, there are
several di�erences. First, SBI is applicable to both constant-
rate and variable-rate servers, while guaranteed service curve
is de�ned only for constant-rate servers. Second, for SBI, we
consider only intervals that end at packet departure times,
while Cruz considers intervals that end at arbitrary time
instants. Since both SBI and guaranteed service curve are
used to reason a session's delay property, considering only
time intervals that end at packet departure times will re-
sult in a tighter bound. Finally, in the de�nition of SBI, we
require that t1 and dki be within the same system busy pe-
riod (but not necessarily in the same session i's backlogged
period), while Cruz's de�nition does not have such a require-
ment. Therefore, SBI represents a stronger guarantee than
the guaranteed service curve. However, it can be shown that
all the analysis and results in [3] are applicable with our def-
inition of SBI. Intuitively, for any work-conserving queueing
system (including PFQ systems), system busy periods are
invariant with respect to the scheduling policy used, there-
fore can be independently analyzed.

While the de�nitions of WFI and SBI look similar, worst
case fairness is a stronger property than bounded service
burstiness. In the case of the worst-case fair property, (11)
needs to hold for all intervals that ends with dki and during
which session i is continuously backlogged. In the case of
the guaranteed service burstiness property, (8) needs to hold
for only one interval that ends at dki and starts at the begin-
ning of a session i's backlogged period. By letting t1 to be
the start of the backlogged period that includes dki , it imme-
diately follows that a session's guaranteed WFI is also the
session's guaranteed SBI. The opposite is not always true.



For example with WFQ, the guaranteed SBI for any session
is Pmax. This is much smaller than the guaranteed WFI
value, which can be as large as N � Pmax.

In the following lemma, we establish the relationship be-
tween the guaranteed SBI and guaranteed delay bound to a
leaky bucket constrained session. A session i is constrained
by a leaky bucket (�i; �i) if the following holds for any in-
terval [t1; t2]

Ai(t1; t2) � �i + �i(t2 � t1) (12)

where Ai(t1; t2) is the amount of session i bits arrived during
[t1; t2].

Lemma 1 Consider session i that is leaky bucket constrained
by (�i; ri). If a standalone server with a constant rate r
guarantees an SBI of i;s to session i, it can guarantee a

delay bound of
�i+i;s

ri
where ri =

�i
�s
r.

Proof. For a constant rate server, Ws(t1; t2) = r(t2 � t1)
hold during any system backlogged period. Since the server
guarantees an SBI to session i, there exists a time instant
t1, where t1 < dki , Qi(t

�

1 ) = 0, and Qi(t1) 6= 0 hold, such
that

Wi(t1; d
k
i ) �

�i
�s

Ws(t1; d
k
i )� i;s

= ri(d
k
i � t1)� i;s (13)

Since session i has a FIFO queue and Qi(t
�

1 ) = 0, we have

Wi(t1; d
k
i ) = Ai(t1; a

k
i ) (14)

In addition, session i is leaky bucket constrained, thus

Ai(t1; a
k
i ) � �i + ri(a

k
i � t1) (15)

Combining (13), (14), and (15), we have

�i + ri(a
k
i � t1) � ri(d

k
i � t1)� i;s (16)

Rearranging terms and dividing both sides by ri, we have

dki � aki �
�i + i;s

ri
(17)

Q.E.D.
For most rate-based service disciplines [20], if the server

guarantees a delay bound ofDi to a leaky bucket constrained
session, it also guarantees an SBI of riDi � �i to the ses-
sion [3]. Therefore, bounded service burstiness property and
bounded delay property are equivalent for standalone rate-
based servers. Since the bounded service burstiness property
applies also to variable rate servers, it can be viewed as the
generalized bounded delay property.

From Lemma 1, it immediately follows that a bounded
WFI for a session also implies a bounded delay. However,
the delay bound calculated from the WFI may not be tight
in some cases. For example, while the tight delay bound
for a leaky bucket constrained session in a WFQ server
is �i

ri
+ Pmax

r
, the delay bound based on the WFI can be

�i
ri

+ N�i
Pmax
r

, which is much larger. Intuitively, WFI is

the maximum amount of time a packet has to wait to re-
ceive its fair share service when it comes to an empty queue
i. The reason that a packet may have to wait for a long time
is that some packets related to it have received more service
than deserved in a previous time period. In the case of a

standalone server, these packets must belong to the same
session i. In the case of a hierarchical server, these pack-
ets may belong to sessions that share an ancestor node with
session i. Therefore, WFI does not bound delay tightly in
the case of a standalone server since it does not take into
account the fact that packets from the same session may
receive more service in a previous time period. However,
WFI is important in characterizing the delay in a hierar-
chical server since the extra service received in the previous
time period may have been received by a session other than
the one being considered.

Now that we have de�ned WFI and SBI that are ap-
plicable to both standalone servers and server nodes in a
hierarchy, we are ready to derive WFI's and delay bounds
provided by an H-PFQ server. For a session i with H an-
cestors in an H-PFQ server, we use p(i) to represent its par-
ent node, ph(i) to represent the parent node of ph�1(i) for
h = 1; � � � ;H, where p0(i) = i, p1(i) = p(i), and pH(i) = R.

Theorem 1 For a session i with H ancestors in an H-PFQ
server, it is guaranteed the following B-WFI

�i;H�PFQ =

H�1X
h=0

�i
�ph(i)

�ph(i) (18)

where �ph(i) is the B-WFI for the logical queue at node ph(i)

for the server node ph+1(i), h=0, � � �, H-1.

The proof is given in Appendix A. Basically, the theo-
rem states that the WFI provided to a session by an H-PFQ
server is the weighted sum of WFI's of all the session's an-
cestor servers.

Since a bounded WFI also implies a bounded delay, it
immediately follows that

Corollary 1 For a session i with H ancestors in an H-PFQ
server, if it is constrained by a leaky bucket (�i; ri), the delay
of any packet in the session is bounded by

�i
ri

+

H�1X
h=0

�ph(i)

rph(i)
(19)

While Corollary 1 gives the delay bound for a leaky bucket
constrained session in an H-PFQ server, the bound is not
the tightest as it does not account for the situation where
packets from the same session received more service in a pre-
vious time period. The following theorem provides a tighter
bound.

Theorem 2 For a session i with H ancestors in an H-PFQ
server, if it is constrained by a leaky bucket (�i; �i), the delay
of any packet in the session is bounded by

Di +

H�1X
h=1

�ph(i)

rph(i)
(20)

where �ph(i) is the B-WFI for the logical queue at node ph(i)

for the server node ph+1(i), h=1, � � �, H-1, and riDi � �i is
the SBI guaranteed to session i by its parent server node, i.e.,
Di is the delay bound guaranteed to session i by a standalone
p(i) server.

The proof of the theorem is given in Appendix B. The
theorem states that the delay bound provided by an H-PFQ
server to session i is the sum of the delay bound provided by



session i's parent server to session i and the WFI's of all the
other session i's ancestor nodes weighted by their guaranteed
shares. This bound is tight when �ph(i)'s and Di are tight.
This can be easily shown by constructing examples as in
Section 4.1. Therefore, to achieve tight delay bounds in a
H-PFQ server, the WFI's for the internal and root server
nodes should be small.

5 Worst-case Fair PFQ Algorithms

5.1 WF2Q

Among all PFQ algorithms proposed in the literature, the
Worst-case Fair Weighted Fair Queueing (WF2Q) [1] is the
only one that provides tight WFI's.

WF2Q di�ers from WFQ in that it uses the \Smallest
Eligible virtual Finish time First" (SEFF) policy instead of
the popular SFF or SSF policies. With WF2Q, when the
server picks the next packet to transmit at time � , rather
than selecting it from among all the packets at the server
as in WFQ, the server only considers the set of packets that
have started service in the corresponding GPS system, and
selects the packet among them that has the smallest virtual
�nish time. A packet is said to be eligible at time � if its vir-
tual start time is no greater than the current system virtual
time.

If we consider again the example in Section 4.1, at time
0, all packets at the head of each session's queue, p1i , i =
1; � � � ; 11, have started service in the GPS system. Among
them, p11 has the smallest �nish time in GPS, so it will be
transmitted �rst in WF2Q. At time 1, there are still 11
packets at the head of the queues: p21 and p1i , i = 2; � � � ; 11.
Although p21 has the smallest virtual �nish time, it will not
start service in GPS until time 2, therefore, it won't be eli-
gible for transmission at time 1. The other 10 packets have
all started service at time 0 at the GPS system, thus are
eligible, and one of them will be transmitted. At time 3,
p21 becomes eligible and has the smallest �nish time among
all packets, thus it will be transmitted next. The service
order for all packets under WF2Q is shown as the last time
line in Fig. 2. As can be seen in the example, during any
time interval, the di�erence between the amounts of bits
transmitted by GPS and WF2Q is less than one packet size.
Therefore, WF2Q is a more accurate approximation of GPS
than WFQ. The following theorem is proven in [1].

Theorem 3 (1) WF2Q is a work-conserving policy.
(2) WF2Q is worst-case fair for session i with the following
worst-case fair index

�i;WF2Q = Li;max + (Lmax � Li;max)
ri
r

(21)

(3) For a session i constrained by a leaky bucket (�i; ri),
WF2Q guarantees a delay bound of �i

ri
+ Lmax

r
.

As can be seen, the WFI provided by WF2Q is independent
of the number of sessions sharing the server. In the case of
Li;max = Lmax, �i;WF2Q will simply be Lmax. Since the B-

WFI for a packet system is at least one packet size, WF2Q is
an optimal packet policy with respect to the worst-case fair
property. In addition, since the minimum di�erence between
a delay bound provided by a PFQ server and a GPS server
is one packet transmission time, both WFQ and WF2Q pro-
vide the tightest delay bound among all PFQ algorithms.

5.2 WF2Q+

While WF2Q provides the tightest delay bound and smallest
WFI among all PFQ algorithms, it has the same worst-case
complexity of O(N) as WFQ because they both need to com-
pute VGPS(�).

In this section, we present a new packet algorithm that
provides the same delay bound and WFI as WF2Q, but with
a lower complexity. Since this policy is also worst-case fair,
but is simpler than WF2Q, we call it WF2Q+. WF2Q+ also
uses the SEFF policy. The novel aspect of WF2Q+ is the
use of a new system virtual time function VWF2Q+(�) that
achieves both low complexity and high accuracy in approxi-
mating the ideal virtual time function used in GPS. While a
number of new virtual time functions have been proposed to
simplify the implementation of WFQ [7, 17], they all result
in PFQ algorithms with large WFI's. The unique advan-
tage of VWF2Q+(�) is that the resulted WF2Q+ algorithm
combines all three properties that are important for a PFQ
algorithm to be used in a H-PFQ server: tight delay bound,
small WFI, and low algorithmic complexity.

With WF2Q+, the virtual time function is de�ned as

VWF2Q+(t+�) = max(VWF2Q+(t)+W (t; t+�); min
i2B̂(t+�)

(S
hi(t+�)
i ))

(22)
where W (t; t+ �) is the total amount of service provided by

the server during the period [t; t + � ], B̂(t + �) is the set
of sessions backlogged in the WF2Q+ system at time t+ � ,
hi(t+�) is the sequence number of the packet at the head of

the session i's queue, and S
hi(t+�)
i is the virtual start time

of the packet.
There are several noteworthy properties of VWF2Q+(�).

First, if we view the system virtual time function as a func-
tion of the amount of service provided by the server, VWF2Q+(�)
is a strictly monotonically increasing function of time with
a minimum slope of 1. We call this the \minimum slope
property" of VWF2Q+, which is important for a PFQ server
to provide delay bounds to leaky bucket constrained sources
that are within one packet transmission time of those pro-
vided by GPS. The virtual time function VGPS(�), used
by both WFQ and WF2Q, has this property by using the
marginal service rate of the GPS server as the slope, which
has a minimum value of 1. Therefore, both WFQ and WF2Q
can provide tight delay bounds. On the other hand, the vir-
tual time functions used by SCFQ [7] and SFQ [8] may have
a slope of 0 during certain periods, and the delay bounds
provided by the resulted SCFQ and SFQ algorithms are
much larger than those provided by WFQ and WF2Q. The
second important property of VWF2Q+(�), as provided by
the max over min operation in (22), is that it is at least as
large as the minimum virtual start time of all packets at the
head of all queues. This has two implications. First, this
ensures that a newly backlogged session has a virtual start
time at least as large as one of the existing backlogged ses-
sions. This is important for the resulted WF2Q+ algorithm
to achieve a low WFI. In addition, the property also ensures
that at least one packet in the system has a virtual start
time no greater than the current system virtual time. This
guarantees the resulted SEFF policy to be work-conserving
as only packets with virtual start time no greater than the
current system virtual time are eligible for transmission.

To simplify the implementation, we also modify the def-
inition of virtual start and �nish times. With the old de�-
nition as in Table 1, virtual start and �nish times need to
be maintained on a per packet basis. Usually this means
stamping the values of Ski and F k

i in the header of packet



pki . This overhead may not be acceptable for networks with
small packet sizes, such as ATM networks. With the follow-
ing de�nition, there is only one pair of Fi and Si that needs
to be maintained for each session i. Whenever a packet pki
reaches the head of the queue, Fi and Si are updated ac-
cording to the following

Si =

�
Fi if Qi(a

k
i�) 6= 0

max(Fi; V (a
k
i )) if Qi(a

k
i�) = 0

(23)

Fi = Si +
Lki
ri

(24)

where Qi(a
k
i�) is the queue size of session i just before time

aki . With this de�nition, per session Si and Fi are also the
virtual start and �nish times of the packet at the head of
the session queue.

There are two major tasks associated with implementing
WF2Q+: (a) computing the system virtual time function,
and (b) maintaining the set of eligible sessions sorted by
virtual �nish times. Both can be accomplished with O(log
N) complexity [19].

The delay and worse-case fairness properties of WF2Q+ are
given by the following theorem.

Theorem 4 (1) WF 2Q+ is work-conserving.
(2) WF 2Q+ is worst-case fair for session i with

�i;WF2Q+ = Li;max + (Lmax � Li;max)
ri
r

(25)

(3) For a session i constrained by a leaky bucket (�i; ri),
WF 2Q+ guarantees a delay bound of �i

ri
+ Lmax

r
.

Since the proof is rather long, we will just present its out-
line in this paper. The full proof will appear in a follow-up
paper. The proof is based on the theory of rate-proportional
servers developed in [18].

While the de�nition of rate-proportional servers in [18] is
based on virtual time functions measured in unit of second,
it can be easily extended to the more general de�nition with
virtual time functions measured in unit of bit. A uid rate
proportional server with N sessions is characterized by N
numbers �1; � � � ; �N , and a system virtual time function,
which must satisfy the following two conditions:

V (t2) � V (t1) � W (t1; t2) (26)

V (t) � mini2B(t)Vi(t) 8 t (27)

where (t1; t2] is any interval in a system backlog period, B(t)
is the set of backlogged sessions in the uid system at time
t, and Vi(�) is the virtual time function for session i, which
is iteratively de�ned as follows

Vi(t2) =

8>>>>>>><
>>>>>>>:

Vi(t1)
if Qi(�) = 0; 8 t1 < � < t2

maxfV (t2); Vi(t2�)g
if Qi(t2�) = 0 ^ Qi(t2) 6= 0

Vi(t1) +
Wi(t1;t2)

�i

PN

j=1 �j
if Qi(�) 6= 0; 8 t1 � � � t2

(28)

At any given time, the server simultaneously service all ses-
sions that have the minimum virtual time function, propor-
tionally to their relative service shaes. Formally, during any
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Figure 3: Example 1

time period (t1; t2] in which, C(�), the set of backlogged ses-
sions with the minimum virtual time function Vi(�), is un-
changed, the server services all sessions in C(t1) such that

Wi(t1; t2)

�i
=

W (t1; t2)P
j2C(t1)

�j
8i 2 C(t1) (29)

It can be shown that GPS is a special rate-proportional
server with the system virtual time function VGPS(�). In
fact, with GPS, Vi(�) = Vj(�) holds for any two sessions
backlogged at time � , and therefore C(�) = B(�) holds for
any time instance � .

For each uid rate-proportional server, two PFQ algo-
rithms can be de�ned based on the SFF and the SEFF
packet selection policies. For example, for GPS, WFQ and
WF2Q are the corresponding PFQ algorithms with SFF and
SEFF packet selection policies respectively. By applying
similar techniques that are used in [1] to prove the proper-
ties of WF2Q, the following theorem can be established.

Theorem 5 For any rate proportional server, its correspond-
ing PFQ algorithm with the SEFF policy can provide to ses-
sion i

1. a delay bound of �i
ri
+ Lmax

r
if the session is constrained

by a leaky bucket (�i; ri), and

2. a WFI of Li;max + (Lmax � Li;max)
ri
r
.

In addition, the following theorem holds.

Theorem 6 WF2Q+ is a packet rate-proportional server with
the SEFF packet selection policy.

The proof is rather long and will be presented in a follow-up
paper. The main results of Theorem 4 follow directly from
Theorems 5 and 6. In addition, WF2Q+ is work-conserving
because there is at least one packet eligible for service during
any system backlogged period.

Therefore, any PFQ algorithm that approximates a uid
rate-proportional server with SEFF policy achieves the same
worst-case fairness and bounded delay properties as WF2Q.
The unique advantage of WF2Q+ is that it uses a novel
virtual time function with a lower complexity.

The Corollary below, which gives the delay bound for
H-WF2Q+, follows directly from Theorem 2 and Theorem 4.
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Corollary 2 For a session i withH ancestors in a H-WF2Q+
server, if it is constrained by a leaky bucket (�i; �i) and
Lmax = Li;max, the delay of any packet in the session is
bounded by

�i
ri

+

H�1X
h=0

Lmax
rph(i)

(30)

6 Simulation Experiments

In this section, we present simulation experiments to illus-
trate the bounded delay and hierarchical link-sharing prop-
erties of H-WF2Q+ . For the purpose of verifying, we had
two independent implementations of all the algorithms in
two di�erent simulators. All experiments were conducted in
both simulators and the results matched each other.

6.1 Delay Characteristics

In this section we compare the packet delay distributions
for a real-time session under four di�erent H-PFQ servers,
H-WF2Q+ , H-WFQ, H-SFQ, and H-SCFQ. The service hi-
erarchy is shown in Fig 3. The rate above the node is the
guaranteed service rate for the node. The value inside the
node represents the node's service share with respect to its
parent node.

The real-time session being measured is the leaf node la-
beled RT-1 . It has a guaranteed service share of 0.81 from
its parent node which translates into a guaranteed rate of 9
Mbps. Session RT-1 is a deterministic on/o� source with a
25 ms on-period and a 75 ms o�-period. Session RT-1 has a
continuously backlogged sibling session BE-1 . As a result,

nodes N1 , N2 , and NR are also continuously backlogged.
We use two additional types of background tra�c: poisson
sources that are labeled PS-n and constant rate sessions that
are labeled CS-n . All constant rate sessions have identical
start times and a peak transmission rate equal to their guar-
anteed rate. They �rst passed through a multiplexer before
they arrive at the server, so that they do not have simul-
taneous arrivals, but rather model the sort of packet train
burst that could be sent by individual users and/or networks
with high speed connections. For simplicity, we assume all
sessions transmit 8 KB packets.

We consider two scenario's: (a) uncorrelated cross tra�c,
and (b) correlated cross tra�c.

Fig. 4 shows the case when PS-n sources are transmit-
ting at an average of 1.5 times their guaranteed rate and
the constant rate sources are not transmitting. As a result
all the PS-n sessions eventually become persistently back-
logged. As we can see, while on average the delays for all
four algorithms are similar, the worst case packet delays
under H-SFQ, H-SCFQ, and H-WFQ are larger than those
under H-WF2Q+ .

For experiments shown in Fig. 5, everything remains the
same except that the correlated constant rate sessions are
turned on. As can be seen, the worst-case delay increases
substantially under H-WFQ, H-SFQ, and H-WFQ, but re-
mains almost the same for H-WF2Q+ . H-SFQ is a�ected
most by the presence of correlated tra�c. This can be un-
derstood by the following intuitive explanation. Since the
packets are well spaced out for constant rate sessions, they
usually arrive at an empty session queue. With SFQ, these
packets will be assigned the same virtual start time as the
packet currently being served, which has the smallest vir-
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Figure 5: Delay of RT-1 With Correlated Cross Tra�c

tual start times among all backlogged packets. Since SFQ
picks the packet with the smallest virtual arrival times, the
newly arrived packets will be served ahead of other back-
logged packets, including RT-1 packets. If there is a burst
of packet arrivals into empty queues for a short interval, the
system virtual time will stop advancing, and only start ad-
vancing again after these packets �nish service. As a result,
the delay for other packets in the system will increase. This
can be seen also from the example illustrated in Fig. 2.

6.2 Hierarchical Link Sharing

We consider the link-sharing structure shown in Fig. 6(a),
which has a multi-level hierarchy with two types of sources:
TCP sources and deterministic on-o� sources. We will ex-
amine the performance of sessions labeled TCP-f1,5,8,10,11g
under link-sharing when on-o� sources alternate between ac-
tive and idle states. To see the e�ect of hierarchical link-
sharing, we use one on-o� source for each level in the hi-
erarchy. The bandwidth's and active periods of the on-o�
sources are shown in Fig. 6(b).

Fig. 7 shows the bandwidth vs. time plots for each of the
TCP sessions under consideration. The bandwidth is mea-
sured by averaging over 100 ms windows, with two adjacent
windows overlapping 50 ms. As can be seen, all four algo-
rithms perform well. While 100 ms provides a very �ne gran-
ularity of measuring bandwidth, it is a very large number
when it comes to one hop average packet delay. Therefore,
even though the worst-case packet delays vary signi�cantly
with di�erent H-PFQ algorithms, the bandwidth distribu-
tion are very similiar.

7 Related Work

In [15], H-WFQ is used to support integrated tra�c man-
agement. The negative e�ects introduced by WFQ's high
WFI on link-sharing and tra�c management algorithms are
not studied. To provide tighter bounds for real-time tra�c,
all real-time queues need to be children of the root node, and
link-sharing between real-time and non-real-time sessions is
accomplished via a separate mechanism.

In [11], an implementation of H-WFQ is presented. The
scheduler implemented is actually not an H-WFQ server, but
a WFQ server in which the weights are dynamically changed
according to the set of backlogged sessions in the packet
server. It is easy to show that such an implementation will
not only yield much larger delay bounds but also violate the
link-sharing goals in certain situations. The key problem is
that at any time instance, the set of the backlogged sessions
in a packet system can be quite di�erent from that in the
corresponding uid system. Adjusting the weight according
to the set of backlogged sessions in the packet system can
result in large errors.

In [6], a Class-Based Queueing (CBQ) algorithm is pre-
sented to support link-sharing and integrated services. A
CBQ server consists of a link-sharing scheduler and a gen-
eral scheduler. The link-sharing scheduler decides whether
to regulate a class based on link-sharing rules and mark
packets of regulated classes as ineligible. The general sched-
uler services eligible packets using a static priority policy.
Our work di�ers from this work in that we build our frame-
work on H-GPS, which has theoretically proven properties
for supporting link-sharing, real-time service, and best-e�ort
service.
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A number of algorithms such as Self-Clocked Fair Queue-
ing [4, 7], Stochastic Fair Queueing [10], De�cit Round
Robin [16], Frame-based Fair Queueing [17], and Start-time
Fair Queueing [8] have been proposed to approximate GPS
with a lower complexity. However, none of them address
the issue of worst-case fairness, and all of them have large
WFI's. As shown in the paper, H-PFQ algorithms based on
these algorithms result in much larger worst-case delay than
that under H-WF2Q+. The Leap Forward Virtual Clock [13]
achieves low WFI by using a SEFF policy similar to that
used by WF2Q and WF2Q+. We hypothesize that it be-
longs to the class of PFQ algorithms that approximate a
uid rate proportional server using a SEFF policy.

The idea of implementing H-PFQ algorithm by integrat-
ing one-level PFQ algorithm into a hierarchy was also in-
dependently proposed in [8]. However, the details of the
algorithm are not presented and the analysis applies only to
H-SFQ. In addition, there are two claims made in [8] that we
don't believe are accurate. In [8], it was claimed that SFQ
had two unique advantages compared to other PFQ algo-
rithms: �rst, it is the only algorithm that are fair when the
server is variable rate, second, it is the only algorithm that
does not require admission control (the sum of service shares
does not need to be less than 1). As discussed in Section 2,
by measuring virtual time functions in unit of bits instead of
seconds, all existing PFQ algorithms are fair even when the
server is variable rate, and therefore, they can all be used to
implement H-PFQ algorithms. As shown in Section 6, even
though the delay bounds provided by the resulted H-PFQ
algorithms can vary signi�cantly, the fairness (link-sharing)
property is maintained by all algorithms. For admission con-
trol, as discussed in Section 2, it is the relative ratio's among
session's service shares that are important. The exact val-
ues of the service shares are not important. Normalizing all
service shares with respect to the sum of service shares will
result in an identical policy as before. Admission control
is required only for sessions that require minimum service
guarantees { the total amount of services that are allocated
to the sessions requiring performance guarantees should be
less than the total server capacity. This condition needs to
be held for all PFQ algorithms, including SFQ.

8 Conclusion

We have made several contributions in this paper. First, we
proposed a formal model based on the idealized H-GPS sys-
tem to simultaneously support guaranteed real-time, adap-
tive best e�ort, and controlled link-sharing services. Sec-
ond, we presented an algorithm to implement H-PFQ by
organizing one-level PFQ servers in a hierarchical structure.
Most of PFQ algorithms can be used for this purpose. The
key is to compute the system virtual time and per packet
virtual start/�nish times in unit of bits instead of seconds.
Third, we develop a general framework for analyzing the de-
lay and fairness properties of variable-rate and hierarchical
servers. We demonstrate, both empirically and analytically,
that having a PFQ algorithm with a low WFI value is a pre-
requisite for constructing H-PFQ servers that provide tight
delay bounds. Finally, we propose a new PFQ algorithm
called WF2Q+ that is the �rst to have the following three
properties: (a) providing the tightest delay bound among
all PFQ algorithms, (b) having the smallest WFI among all
PFQ algorithms, and (c) having a relatively low complexity
of O(log N). The resulted H-WF2Q+ provides similar de-
lay bounds and bandwidth distribution to those provided
by the idealized H-GPS server, and is the �rst in the lit-
erature that provides both provably tight delay bounds for
real-time sessions and the full semantics of hierarchical link-
sharing service.
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A Proof of Theorem 1

Let dki be the time packet pki departs the H-PFQ and [t1; dki ]
be a time period that session i is continuously backlogged. It



immediately follows that (a) dki is also the time that packet pki
departs from server node ph+1(i) and (b) the logical queue at
node ph(i) is continuously backlogged during [t1; d

k
i ] with respect

to server node ph+1(i), h=0, � � �, H-1.
Since server node ph+1(i) is worst-case fair with the logical

queue at node ph(i), the following holds for

Wph(i)(t1; d
k
i ) �

�ph(i)

�ph+1(i)
Wph+1(i)(t1; d

k
i )� �ph(i) (31)

where Wph(i)(t1; d
k
i ) is the amount of service received by node

ph(i) in [t1; d
k
i ]. Multiplying �i

�
ph(i)

at both sides of (31), we

have

�i

�ph(i)
Wph(i)(t1; d

k
i ) �

�i

�ph+1(i)
Wph+1(i)(t1; d

k
i )�

�i

�ph(i)
�ph(i)

(32)
Summing (32) for h=0, � � �, H-1 and eliminating common terms
on both sides, we have

Wi(t1; d
k
i ) �

�i

�pH (i)

W (t1; d
k
i )�

H�1X
h=0

�i

�ph(i)
�ph(i) (33)

Q.E.D.

B Proof of Theorem 2

Consider the kth packet of session i. Let aki and dki be its arrival
and departure times respectively. Based on the de�nition of SBI,
for dki , there exists an instant t1 within the node p(i) busy period

that includes also dki , where t1 < dki Qi(t
�

1 ) = 0, and Qi(t1) 6= 0
holds, such that

Wi(t1; d
k
i ) �

�i

�p(i)
Wp(i)(t1; d

k
i )� (riDi � �i) (34)

Since both t1 and dk
i
are in the same server busy period of

node p(i), the logical queue at node ph(i) is continuously back-
logged with respect to server node ph+1(i), h=1, � � �, H-1. Also,
server node ph+1(i) is worst-case fair with the logical queue at

node ph(i), therefore (31) holds. Multiplying
�p(i)

�
ph(i)

at both sides

of (31), we have
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�ph(i)
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�ph(i)
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(35)
Summing (35) for h=1, � � �, H-1, and eliminating common terms
on both sides, we have:

Wp(i)(t1; d
k
i ) �

�p(i)

�pH (i)

WpH (i)(t1; d
k
i )�

H�1X
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Combining (34) and (36), we have

Wi(t1; d
k
i ) � ri(d

k
i � t1)�

H�1X
h=1

�i

�ph(i)
�ph(i) � riDi + �i (37)

Since session i queue is FIFO and leaky bucket constrained, (14)
and (15) holds. Combining them with (37), we have

�i+ri(a
k
i �t1) � ri(d

k
i �t1)�

H�1X
h=1

�i

�ph(i)
�ph(i)�riDi+�i (38)

Rearranging terms and dividing both sides by ri

dki � aki � Di +

H�1X
h=1

�ph(i)

rph(i)
(39)

Q.E.D.


