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RSVP: A NEW RESOURCE RESERVATION PROTOCOL

he origin of the RSVP protocol can be traced
back to 1991,  when a team of  network
researchers, including myself, started playing
with a number of packet scheduling algo-
rithms on the DARTNET (DARPA Testbed

NETwork), a network testbed made of open source,
workstation-based routers. Because scheduling algo-
rithms simply shuffle packet processing orders accord-
ing to some established rates or priorities for different
data flows, to test a scheduling algorithm requires set-
ting up the appropriate control state at each router
along the data flow paths. I was challenged to design a
set-up protocol that could support both unicast and
many-to-many multicast applications. That effort led to
the birth of RSVP.

As a signaling protocol designed specifically to run over
IP, RSVP distinguishes itself from previous signaling pro-
tocols in several fundamental ways. The most profound
ones include a soft-state approach, two-way signaling mes-
sage exchanges, receiver-based resource reservation, and
being independent from all other related components in a
QOS support architecture, such as flow-specification,
admission control, scheduling algorithm, and routing. As
stated in the article, “RSVP is primarily a vehicle used by
applications to communicate their requirements to the net-
work in a robust and efficient way, independent of the spe-
cific requirements.”

It has been more than 10 years since the original idea

was first conceived. Over this time period many people
contributed to the effort that has evolved RSVP from a lab
toy to a Proposed Internet Standard Protocol. Other more
recent protocol developments, such as MPLS (Multi-Pro-
tocol Label Switching), VPN (Virtual Private Network),
and OTN (Optical Transport Network), to name a few,
have adopted or considered RSVP for their own signaling
use. I was stunned by RSVP’s rapid adoption and develop-
ment of usage. The protocol has moved on with a life of its
own. I have learned many lessons from observing which
features in the original design worked and which didn’t.
Among these lessons, I noticed that the proposal of sup-
porting flexible resource reservations by individual users is
yet to prove useful, and that the decision to make RSVP a
generic messenger, which simply carries “a bag of bits” to
pass to routers along the way, has proven to be a right one,
which promoted the adoption of RSVP for various purpos-
es other than QOS support.

The effort that started RSVP design is but the first step
in developing signaling protocols for the Internet.
Although the debate on which kinds of QOS support the
Internet would need continues, various signaling needs
demand a generic signaling protocol. Independent from
whether RSVP would be the lasting one to fulfill that
important role, I believe the basic principles and lessons
we have gained from RSVP development will extend
beyond the protocol itself into new protocol designs for
the future Internet.

Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala
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he current Internet architecture,
embodied in the Internet Protocol (IP)
network protocol, offers a very simple
service model: point-to-point best-effort
service. In recent years, several new
classes of distributed applications have
been developed, such as remote video,
multimedia conferencing, data fusion,

visualization, and virtual reality. It is becoming
increasingly clear that the Internet’s primitive
service model is inadequate for these new appli-
cations. This inadequacy stems from the failure
of the point-to-point best-effort service model
to address two application requirements. First,
many of these applications are very sensitive to
the quality of service their packets receive. For
a network to deliver the appropriate quality of
service, it must go beyond the best-effort service
model and allow flows (which is the generic
term we will use to identify data traffic streams
in the network) to reserve network resources.
Second, these new applications are not solely
point-to-point, with a single sender and a single
receiver of data; instead, they are often multi-
point-to-multipoint, with several senders and
receivers of data. Multipoint-to-multipoint com-
munication occurs, for example, in multiparty
conferencing where each participant is both a
sender and a receiver of data, and also in
remote learning applications, although in the
latter case there are typically many more
receivers than senders.

In recent years there has been a flurry of
research activity devoted to the development of
new network architectures and service models to
accommodate these new application require-
ments. Even though fundamental differences
exist between the proposed architectures, there
is widespread agreement that any new architec-
ture capable of accommodating multicast and a
variety of qualities of service can be divided into
five distinct components, which we identify and
describe below.

Flow Specification: The network and the vari-
ous data flows need a common language, so a
source can tell the network about the traffic
characteristics of its flow and, in turn, the net-
work can specify the quality of service to be
delivered to that flow. Thus, the first component
of this new architecture is a flow specification, or
“flowspec,” which describes both the characteris-
tics of the traffic stream sent by the source, and
the service requirements of the application. In
some sense, the flowspec is the central compo-
nent of the architecture, since it embodies the
service interface that applications interact with;
the details of all of the other components of the
architecture are hidden from applications. Two
proposals for a flowspec are described in the lit-
erature [1, 2].

Routing: The network must decide how to
transport packets from the source to the
receiver of the flow (or receivers of the flow,
in the case of multicast). Thus, the second
component of the architecture is a routing
protocol that provides quality unicast and mul-
ticast paths. There are many approaches to
unicast  routing,  and several  different
approaches to multicast routing exist as well
[2–4]. None of the current proposals have yet

dealt sufficiently with the interaction between
routing and quality of service constraints; that
is the subject of future research.

Resource Reservation: For the network to
deliver a quantitatively specified quality of ser-
vice (e.g., a bound on delay) to a particular flow,
it is usually necessary to set aside certain
resources, such as a share of bandwidth or a
number of buffers, for that flow. This ability to
create and maintain resource reservations on
each link along the transport path is the third
component of the architecture. Two approaches
to resource reservation are described elsewhere
[2, 5]; in this article, we describe another.

Admission Control: Because a network’s re-
sources are finite, it cannot grant all resource
reservation requests. In order to maintain the
network load at a level where all quality of ser-
vice commitments can be met, the network archi-
tecture must contain an admission control
algorithm that determines which reservation
requests to grant and which to deny, thereby
maintaining the network load at an appropriate
level. Two such admission control algorithms are
described in the literature [6, 7].

Packet Scheduling: After every packet trans-
mission, a network switch must decide whether
or not to transmit the next packet, and which is
next. These decisions are controlled by the pack-
et scheduling algorithm, which lies at the heart
of any network architecture because it deter-
mines the qualities of service the network can
provide. There are many proposed packet
scheduling algorithms. A few examples are cited
here [8–12].

In this article, we present our proposal for the
third component of the architecture, a new
resource ReSerVation Protocol (RSVP). Similar
to previous work on resource reservation proto-
cols, e.g., ST-II [2], RSVP is a simplex protocol,
i.e., it reserves resources in one direction. How-
ever, several novel features in the RSVP design
lead to the unique flexibility and scalability of the
protocol. RSVP is receiver-oriented: the receiver
of the data flow is responsible for the initiation
of the resource reservation. This design decision
enables RSVP to accommodate heterogeneous
receivers in a multicast group. Specifically, each
receiver may reserve a different amount of
resources, may receive different data streams
sent to the same multicast group, and may
“switch channels” from time to time (i.e., change
which data streams it wishes to receive) without
changing its reservation. RSVP also provides sev-
eral reservation styles that allow applications to
specify how reservations for the same multicast
group should be aggregated at the intermediate
switches. This feature results in more efficient
utilization of network resources. Finally, by using
“soft-state” in the switches, RSVP supports
dynamic membership changes and automatically
adapts to routing changes. These features enable
RSVP to deal gracefully and efficiently with large
multicast groups. While the motivation for RSVP
arose within the Internet context, our design is
intended to be fully general.

This article is organized as follows. We first
list our design goals, and then discuss the basic
design principles used to meet these goals. A
more detailed description of the protocol opera-
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tion is then given, followed by a simple example
of how the protocol would work. Next, the cur-
rent state of our RSVP implementation is
described. We delay consideration of related
work until later, and follow that with a discus-
sion of unresolved issues. Finally, we conclude
with a brief summary.

RSVP DESIGN GOALS
In the traditional point-to-point case, one obvi-
ous reservation paradigm would have the sender
transmit a reservation request toward the receiv-
er, with the switches along the path either admit-
ting or rejecting the flow. For the point-to-
multipoint case, one may trivially extend this
paradigm to have the sender transmit the reser-
vation request along a multicast routing tree to
each of the receivers. When we have multipoint-
to-multipoint data transmissions, the straightfor-
ward extension of this paradigm would be to
have each sender transmit a reservation request
along its own multicast tree to each receiver.
However, the special properties of having multi-
ple, heterogeneous receivers and/or multiple
senders pose serious challenges that are not
addressed by this simple extension of the basic
reservation paradigm. We outline these various
challenges below and detail how they are not
met by the strawman proposal of straightfor-
wardly extending the basic paradigm. In the pro-
cess, we identify the seven goals that guided the
design of RSVP.

In a wide-area internetwork such as the Inter-
net, receivers and paths to reach receivers can have
very different properties from one another. In par-
ticular, one must not assume that all the receivers
of a multicast group possess the same capacity for
processing incoming data, nor even necessarily
desire or require the same quality of service from
the network. For instance, a source may be sending
a layered encoding of a video signal. Certain
receivers decoding in software would only have
sufficient processing power to decode the low-reso-
lution signal, while those receivers with hardware
decoding, or more processing power, could decode
the entire signal. Furthermore, the paths to reach
the receivers may not have the same capacity. In
the layered encoding example above, certain
receivers might only have low-bandwidth paths
between them and the source and so could only
receive the low-resolution signal. The strawman
proposal above is incapable of dealing with the
receivers individually, and so cannot address these
heterogeneous needs. Therefore, our first design
goal for RSVP is to provide the ability for hetero-
geneous receivers to make reservations specifically
tailored to their own needs.

The presence of multiple receivers raises
another issue: the membership in a multicast
group can be dynamic. The strawman proposal
would have to reinitiate the reservation protocol
every time a new member joined or an existing
member left the multicast group. Reinitiation of
the reservation protocol is particularly burden-
some for large groups because the larger the
group size, the more frequent are changes in
group membership. So our second design goal
for RSVP is to deal gracefully with changes in
the multicast group membership.

The strawman proposal deals with multiple
senders by having each sender make an indepen-
dent resource reservation along its own multicast
routing tree. This approach results in resources
being reserved along multiple, independent
trees, even though the branches of different
trees often share common links. Although appro-
priate for some applications, in other cases this
duplication can lead to a significant wasting of
resources. For example, in an audio conference
with several people, usually only one person, or
at most a few people, talk at any one time
because of the normal dynamics of human con-
versation. Thus, instead of reserving enough
bandwidth for every potential speaker to speak
simultaneously, in many circumstances it is ade-
quate to reserve only enough network resources
to handle a few simultaneous audio channels.
Our third design goal for RSVP is to allow end
users to specify their application needs, so the
aggregate resources reserved for a multicast
group can more accurately reflect the resources
actually needed by that group.

Furthermore, in a multiparty conference a
receiver may only wish to (or be able to) watch
one or a few other participants at a time but
would like the possibility of switching among
various participants. The simple approach of
delivering the data streams from all the sources
and then dropping the undesired ones at the
receiver does not address network resource
usage considerations (e.g., efficient use of limit-
ed bandwidth, or reducing the charges incurred
for bandwidth usage). A receiver should be able
to control which packets are carried on its
reserved resources, not only what gets displayed
on its local screen. Moreover, a receiver should
be able to switch among sources without the risk
of having the change request denied, as could
occur if a new reservation request had to be sub-
mitted in order to “switch channels.” Our fourth
design goal for RSVP is to enable this channel-
changing feature.

RSVP is not a routing protocol and should
avoid replicating any routing functions. RSVP’s
task is to establish and maintain resource reser-
vations over a path or a distribution tree, inde-
pendent of how the path or tree was created. In
a large internetwork with a volatile topology and
load, these routes may change from time to
time. Adapting to such changes in topology and
load is the explicit job of the routing protocol; it
would be expensive and complicated to replicate
such functions in RSVP. At the same time, how-
ever, RSVP should be able to cope with the
resulting routing changes. Our fifth design goal
is that RSVP should deal gracefully with such
changes in routes, automatically reestablishing
the resource reservations along the new paths as
long as adequate resources are available.

The strawman proposal does not deal grace-
fully with changes in routes, because there is no
mechanism to discover the change and trigger a
new resource reservation request. One could
introduce such a mechanism by having each
source periodically refresh its reservation over
the multicast routing tree. However, in large
multicast groups such refreshing would lead to S
messages arriving at every receiver during every
refresh period, where S is the number of sources.

The strawman

proposal here is

incapable of deal ing

with the receivers

individual ly, and so

cannot address these

heterogeneous

needs. Therefore,

our f i rst design goal

for RSVP is to pro-

vide the abi l i ty for

heterogeneous

receivers to make

reservations

specif ical ly tai lored

to their own needs.



IEEE Communications Magazine • 50th Anniversary Commemorative Issue/May 2002 119

Our sixth design goal is to control protocol over-
head. By this we mean both avoiding the explo-
sion in protocol overhead when group size gets
large, and also incorporating tunable parameters
so that the amount of protocol overhead can be
adjusted.

Our last design goal is not specific to the
problem at hand but rather is a general matter
of modular design. We hope to make the gen-
eral design of RSVP relatively independent of
the architectural components listed in the first
section of this article. Clearly a particular
implementation of RSVP will be tied quite
closely to the flowspec and interfaces used by
the routing and admission control algorithms.
However, the general protocol design should
be independent of these. In particular, our pro-
tocol should be capable of establishing reserva-
tions across networks that implement different
routing algorithms, such as IP unicast routing,
IP multicast routing [4], the recently proposed
core-based tree (CBT) multicast routing [3], or
some future routing protocols. This design goal
makes RSVP deployable in many contexts. For
optimally efficient routing decisions, however,
routing selection and resource reservation
should be integrated, so the choice of route
can depend on the quality of service requested,
and the stability of the route can be main-
tained over the duration of the reservation.
Such an integration would lead to more coordi-
nation between the choice of which resources
to reserve and the mechanics of establishing
the reservation (which is RSVP’s main focus).
This integration is something that requires fur-
ther research.

In summary, we have identified seven impor-
tant design goals (see box this page). RSVP is
primarily a vehicle used by applications to com-
municate their requirements to the network in
a robust and efficient way, independent of the
specific requirements. RSVP delivers resource
reservation requests to the relevant switches
but plays no other role in providing network
services. Thus, RSVP communicates require-
ments for a wide range of network services but
does not directly provide them. For instance,
the synchronization requirements of flows or
the need for reliable multicast delivery could be
expressed in the flowspec that is distributed by
RSVP and then realized by the switches. Simi-
larly, the flowspec could also carry around
information about advance reservations (reser-
vations made for a future time) and preempt-
able reservations (reservations that a receiver is
willing to have preempted). RSVP is capable of
supporting the delivery of these and other ser-
vices, whenever these network services rely only
on the state being established at the individual
switches along the paths determined by the
routing algorithm. Thus, although we described
RSVP as a resource reservation protocol, it can
be seen more generally as a “switch-state estab-
lishment” protocol.

BASIC DESIGN PRINCIPLES
To achieve the seven design goals, we used six
basic design principles (see box this page). These
principles are now described.

RECEIVER-INITIATED RESERVATION

The strawman proposal discussed in the previous
section — and all existing resource reservation
protocols — are designed around the principle
that the data source initiates the reservation
request. In contrast, RSVP adopts a novel receiv-
er-initiated design principle. Receivers choose
the level of resources reserved and are responsi-
ble for initiating and keeping the reservation
active as long as they want to receive the data.
We describe the motivation for this receiver-ini-
tiated approach below.

A source can always transmit data, whether
or not adequate resources exist in the network
to deliver the data. The receiver knows its own
capacity limitations. Furthermore, the receiver is
the only one who experiences, and thus is direct-
ly concerned with, the quality of service of the
incoming packets. Additionally, if network charg-
ing is deployed in the future, the receiver would
likely be the party paying for the requested qual-
ity of service. Thus, it should be the receiver who
decides which resources should be reserved.

One could imagine the receivers send this
information to the source, which would use this
information in sending out the reservation
request. To handle heterogeneous requests,
however, the sender would have to bundle all
requests together and pass them to the network,
and the network would determine how much
resource to reserve on which links, according to
the location of individual receivers. For large
multicast groups, this will likely cause a multicast
implosion at the sender. This implosion problem
becomes more serious when the multicast group
membership changes dynamically and the reser-
vation has to be periodically renewed. Consider,
as an extreme example, a cable TV firm broad-
casting several channels of programs. While
there are relatively few sources, there are per-
haps hundreds of thousands of receivers, each
watching only one or a few channels at a time.
In the strawman proposal, whenever any individ-
ual receiver wants to switch between channels, it

The Seven Design Goals of RSVP
• Accommodate heterogeneous receivers.
• Adapt to changing multicast group membership.
• Exploit the resource needs of different applications in order to use

network resources efficiently.
• Allow receivers to switch channels.
• Adapt to changes in the underlying unicast and multicast routes.
• Control protocol overhead so that it does not grow linearly (or worse)

with the number of participants.
• Make the design modular to accommodate heterogeneous underlying

technologies.

The Six Design Principles of RSVP
• Receiver-initiated reservation.
• Separating reservation from packet filtering.
• Providing different reservation styles.
• Maintaining “soft-state” in the network.
• Protocol overhead control.
• Modularity.
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sends a message to the source. In this case,
where there are many receivers and frequent
switching between channels, each source has to
accommodate a deluge of change requests. This
overhead is superfluous, however, since the
resulting broadcast pattern changes relatively
slowly (because the resulting multicast trees are
likely to be relatively stable except near the leaf
nodes). Later in this article we show how our
receiver-initiated design accommodates hetero-
geneity among group members yet avoids such
multicast implosion.

The idea of the receiver-initiated approach
was inspired by Deering’s work on IP multicast
routing [4]. The IP multicast routing protocol
treats senders and receivers separately. A sender
sends to a multicast group in exactly the same
way as it sends to a single receiver, it merely
puts in each packet a multicast group address in
place of a host address. The multicast group
membership is defined as the group of receivers.
Deering’s multicast routing design can be con-
sidered a receiver-initiated approach: each
receiver individually joins or leaves the group
without affecting other receivers in the group, or
affecting sources that send to the group. The
routing protocol takes the responsibility of for-
warding all multicast data packets to all the cur-
rent members in the group. Analogous to our
argument that a sender does not care whether
adequate resources are available, a sender to a
multicast group does not necessarily know who
is currently a member of the multicast group
(i.e., receiving the data). In particular, it may not
be a member of the multicast group itself.

SEPARATING RESERVATION FROM PACKET FILTERING

A resource reservation at a switch assigns cer-
tain resources (buffers, bandwidth, etc.) to the
entity making the reservation. A distinction that
is rarely made that will be crucial to our ability
to meet our design goals is that the resource
reservation does not determine which packets
can use the resources, but merely specifies what
amount of resources are reserved for whom.
Here, “whom” does not refer to “which packets”
can use the reserved resources; rather, it refers
to “which entity” controls the resources.

A separate function, called a packet filter,
selects those packets that can use the resources;
it is set by the reserving entity. Moreover, it can
be changed without changing the amount of
reserved resources. One of the important design
principles in RSVP is that we allow this filter to
be dynamic; that is, the receiver can change it
during the course of the reservation. This dis-
tinction between the reservation and the filter
enables us to offer several different reservation
styles, which we now describe.

PROVIDING DIFFERENT RESERVATION STYLES

As we discussed briefly above, the service
requirements of multicast applications dictate
how the reservation requests from individual
receivers should be aggregated inside the net-
work. For example, the typical dynamics of
human verbal interaction results in only one or a
few people talking at any one time. Thus, in
many conferencing situations it is feasible to
have all senders of audio signals to a conference

share the same set of reserved resources, where
these resources were sufficient for a small num-
ber of simultaneous audio streams. In contrast,
there are no analogous limitations on video sig-
nals. Therefore, if the conferencing application
also includes video, then enough resources must
be reserved for the number of video streams one
desires to watch simultaneously. As in the usual
multicast paradigm, if two receivers downstream
of a particular link are watching the same video
stream for the lifetime of the application (e.g.,
when attending a remote lecture), only a single
reservation need be made on this link to accom-
modate their needs. However, if these two
receivers wish to occasionally switch among the
senders during the application lifetime (e.g.,
when participating in a distributed group meet-
ing), then separate reservations must be main-
tained. To support different needs of various
applications, while making the most efficient use
of network resources, RSVP defines different
reservation styles which indicate how intermedi-
ate switches should aggregate reservation
requests from receivers in the same multicast
group. Currently there are three reservation
styles: no-filter, fixed-filter, and dynamic-filter.
We now describe these filter styles. For the sake
of brevity we identify applications only by their
multicast address, although in the current Inter-
net context a multicast application may be iden-
tified by the IP multicast address plus destination
port number.

When a receiver makes a resource reserva-
tion for a multicast application, it can specify
whether or not a data source filter is to be used.
If no filter is used, then any packets destined for
that multicast group may use the reserved
resources. (Although some enforcement mecha-
nism is needed to ensure that the aggregate
stream does not use more than the reserved
amount, we will not discuss enforcement mecha-
nisms here.) For example, the audio conference
described above would use a no-filter reserva-
tion, so that a single reserved pipe can be used
by whoever is speaking at the moment. If source
filtering is needed, the filter is specified by a list
of sources. (Again, in the Internet context a data
source can be specified by the source host
address plus source port number. We only refer
to the source host address here.) Only the pack-
ets from the specified sources can use the
reserved resources. Filtered reservations are
used to forward individual images in video con-
ferencing, enabling participants to reserve
resources for particular video streams.

A filtered reservation can be either fixed or
dynamic. A “fixed-filter” reservation allows a
receiver to receive data only from the sources
listed in the original reservation request, for the
duration of the reservation. A “dynamic-filter”
reservation allows a receiver to change its filter
to different sources over time.

To illustrate how intermediate nodes use
these reservation styles to aggregate reservation
requests, consider the case of several receivers in
the same multicast group making fixed-filter
reservations over a common link. These reserva-
tions may be shared if the source lists overlap,
because the reservation will never be changed.
Thus, only a single pipe (with the largest amount

A separate funct ion,

cal led a packet

f i l ter, selects those

packets that can use

the resources; i t  is

set by the reserving

entity. One of the

important design

principles in RSVP is

that we al low this

f i l ter to be dynamic;

that is, the receiver

can change it during

the course of the

reservation.



IEEE Communications Magazine • 50th Anniversary Commemorative Issue/May 2002 121

of resources from all the requests) is reserved
for each source even when there are multiple
requests. Such aggregation can occur when mem-
bers of a multicast application all listen or watch
the same audio or video signals, as in the case of
a multicast lecture. Reservations using the no-fil-
ter style can also be aggregated in this manner.
If a receiver does not discriminate between indi-
vidual sources, it cannot switch among the
sources either.

If a receiver expects to switch among differ-
ent sources from time to time, it must make a
dynamic-filter reservation to avoid affecting the
reception of other receivers in the same multi-
cast application. The intermediate nodes cannot
aggregate this style of reservation because the
receiver can change the list of sources in the fil-
ter at any time during the course of the reserva-
tion. In fact, this separation between the
resource reservation and the filter is one of the
key facets of RSVP. The resource reservation
controls how much bandwidth is reserved, while
the filter controls which packets can use that
bandwidth. In the dynamic-filter reservation
case, each receiver requests enough bandwidth
for the maximum number of incoming streams it
can handle at once and the network reserves
enough resources to handle the worst case when
all the receivers that requested dynamic-filter
reservations take input from different sources,
even though several receivers may actually tune
to the same source(s) from time to time. Howev-
er, note that the total amount of dynamic filter
reservations made over any link should be limit-
ed to the amount of bandwidth needed to for-
ward data from all the upstream sources.

In summary, having several different reserva-
tion styles allows intermediate switches to decide
how individual reservation requests for the same
multicast group can be efficiently merged. The
dynamic-filter reservation style allows receivers
to change channels. Thus, we have met design
goals 3 and 4. So far, RSVP has defined three
reservation styles; other styles may be identified
as new multicast applications with different
needs are developed.

MAINTAINING “SOFT-STATE” IN THE NETWORK

The typical multipoint-to-multipoint applications
we have considered are rather long-lived. Over
the lifetime of such an application, new mem-
bers may join, existing members may leave, and
routes may change due to dynamic status
changes at intermediate switches and links. To
be able to adjust resource reservations accord-
ingly, in a way transparent to end applications,
RSVP keeps soft-state at intermediate switches
and leaves the responsibility of maintaining the
reservation to end users. The term “soft-state”
was first used by Clark [13]. In our context, it
refers to a state maintained at network switches
which, when lost, will be automatically reinstated
by RSVP soon thereafter. Thus, soft-state is
appropriate in our context where frequent mem-
bership changes and occasional service outages
would render a more brittle (i.e., less self-stabi-
lizing) state to become, and perhaps remain,
obsolete or incorrect.

More specifically, at each intermediate switch,
RSVP distinguishes between state information of

two kinds: path state and reservation state. Each
data source periodically sends a path message
that establishes or updates the path state, and
each receiver periodically sends a reservation
message that establishes or updates the reserva-
tion state (which is attached to the path state).

Path messages are forwarded using the
switches’ existing routing table. In other words,
the routing decision is made by the network’s
routing protocol, not by RSVP. Each path mes-
sage carries a flowspec given by the data source,
as well as an F-flag indicating if the application
wishes to allow filtered reservations. In process-
ing each path message, the switch updates its
path state containing information about 1) the
incoming link upstream to the source, and 2) the
outgoing links downstream from that source to
the receivers in the group (as indicated by the
multicast routing table). In addition, if the F-flag
in the path message is on, the switch also keeps
the information about the source and the previ-
ous hop upstream to reach the source. This
information allows the switch to accommodate
any style of reservation. If the F-flag is off, the
switch does not maintain information about the
specific source of the path message except for
adding its incoming link to the path state; the
state kept at the switch is thereby minimized.
Consequently, only no-filter style reservations
can be made for data streams from such sources.
As we show later in an example, not maintaining
per-source information can, in some topologies,
result in over-reserving resources over certain
links.

Each reservation message carries a flowspec,
a reservation style, and (if the reservation uses a
fixed or dynamic filtered style) a packet filter. In
processing each reservation message, the switch
updates its reservation state (which contains
information for the outgoing link the message
came from) by recording 1) the amount of
resources reserved, 2) the source filter for the
reserved resource, 3) the reservation style, and
4) if the style is dynamic-filtered, the reserver
(who is the sender of this reservation message,
and one of the receivers of this multicast group).
We see that the only time we need to keep per-
receiver information in the reservation table is
when the reservations involve dynamic filters.
When all reservations are either no-filter or
fixed-filter, we can assign the reservation to the
multicast group as a whole and then only keep
track of the total resources reserved on each
downstream link.

Reservation messages are forwarded back
toward the sources by reversing the paths of
path messages. In fact, the path information is
maintained solely for this reverse-path forward-
ing of reservation messages. More specifically,
reservation messages of the no-filter style are
forwarded to all incoming links to the multicast
group, and those of filtered styles are forwarded
to the previous hops of the sources that are list-
ed in the filters.

Both path messages and reservation messages
carry a timeout value used by intermediate
switches to set corresponding timers; the timers
get reset whenever new messages are received.
Whenever a timer expires, the corresponding
state is deleted. This timeout-driven deletion
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prevents resources from being orphaned when a
receiver fails to send an explicit Tear-down mes-
sage or the underlying route changes. It is also
the only way to release the resources of no-filter
or fixed-filter reservations. In these cases, the
switch cannot determine if the reservation is
being shared by multiple receivers, so the reser-
vation can only be deleted when it times out. It
is the responsibility of both senders and receivers
to maintain the proper reservation state inside
the network by periodically refreshing the path
and reservation state.

When a route or membership changes, the
routing protocol running underneath RSVP for-
wards future path messages along the new
route(s) and reaches new members. As a result,
the path state at switches is updated, causing
future reservation messages to traverse the new
routes or new route segments. Reservations
along old routes, or along routes to inactive
senders or receivers, time out automatically.
Because path and reservation messages are sent
periodically, the protocol tolerates occasional
corruption or loss of a few messages. This soft-
state approach adds both adaptivity and robust-
ness to RSVP.

The advantages of the soft-state approach,
however, do not come for free. The periodic
Refreshing messages add overhead to the proto-
col operation. We next discuss how RSVP con-
trols protocol overhead.

PROTOCOL OVERHEAD CONTROL

The RSVP overhead is determined by three fac-
tors: the number of RSVP messages sent, the
size of these RSVP messages, and the refresh
frequencies of both path and reservation mes-
sages. As we describe in more detail in the RSVP
overview section, RSVP merges path and reser-
vation messages as they traverse the network.
The merging of path messages means that, in
general, each link carries no more than a single
path message in each direction during each path-
refresh period. Similarly, the merging of reserva-
tion messages means that each link carries no
more than a single reservation message in each
direction during each reservation-refresh period.

The maximum size of both the path and reserva-
tion messages on a particular link is proportional
to the number of data sources upstream.

RSVP controls the third overhead factor, the
refresh frequencies, by tuning the timeout values
carried in path and reservation messages. The
larger the timeout value, the less frequently the
refresh messages have to be sent. There exists,
however, a tradeoff between the overhead one is
willing to tolerate and RSVP’s responsiveness in
adapting to dynamic changes. For instance,
reservation messages are forwarded according to
the path state maintained at intermediate switch-
es, which in turn gets synchronized with the
routing protocol state every time a path message
is processed. When a route changes, reservations
along the new route (or new route segments) are
not established until a new path message is sent
(causing the path state to be updated), and a
new reservation message is sent along the new
route.

Our current RSVP implementation uses stat-
ic timer values chosen on the basis of engineer-
ing judgment. In the future, we will investigate
adaptive timeout algorithms to optimally adjust
the timer values according to observed dynamics
in routes and membership changes, and the loss
probability of RSVP messages.

MODULARITY

In the context of real-time, multicast applica-
tions, RSVP interfaces to three other compo-
nents:
• The flowspec, which is handed to RSVP by

an application or some session-control pro-
tocol on behalf of the application, when
invoking RSVP.

• The network routing protocol, which for-
wards path messages toward all the
receivers, causing the RSVP path state to
be established at intermediate switch nodes.

• The network admission control, which
makes an acceptance decision based on the
flowspec carried in the reservation mes-
sages.
We list modularity as one of RSVP’s design

goals because we would like to make RSVP as
independent from the other components as pos-
sible. We have attempted to make few assump-
tions about these other components, and those
assumptions we have made are described explic-
itly.

We make no assumptions about the flowspec
to be carried by RSVP. RSVP treats the flowspec
as a number of uninterpreted bytes of data that
need to be exchanged among only the applica-
tions and the network admission-control algo-
rithm. We assume that the admission-control
algorithm operates by having an RSVP reserva-
tion packet containing a flowspec pass through
the switches along the delivery path for that flow
(but obviously in the reverse direction), with
each switch returning an admit or reject signal.
The resource reservation is established only if all
switches along the path admit the flow. We also
assume that the packet-scheduling algorithm can
change packet filters without needing to estab-
lish a new reservation.

The only assumptions about the underlying
routing protocol(s) are that it provides both uni-

� FIGURE 1. A simple network topology with the multicast routing trees. H1 and
H2 are data sources, and H3, H4, and H5 are receivers. The solid lines
depict the routing tree of H1; the dotted lines depict the routing tree of H2.
In general, the set of sources and the set of receivers may overlap partially or
completely. For the sake of clarity, here they are disjoint.
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cast and multicast routing, and that a sender to a
multicast group can reach all group members
under normal network conditions. Obviously, in
the case of a network partition, no routing pro-
tocol can guarantee this reachability. We do not
assume that a sender to a multicast group is nec-
essarily a member of the group, nor do we
assume that the route from a sender to a receiv-
er is the same as the route from the receiver to
the sender.

RSVP OPERATION OVERVIEW
RSVP, and indeed any reservation protocol, is a
vehicle for establishing and maintaining state in
switches along the paths that each flow’s data
packets travel. Because reservation messages are
initiated by each receiver, RSVP must make sure
that the reservation messages from a receiver
follow exactly the reverse routes of the data
streams from all the sources (that the receiver is
interested in). In other words, RSVP must estab-
lish a sink tree from each receiver to all the
sources to forward reservation messages.

The sink tree for each receiver is formed by
tracing the paths defined by the multicast rout-
ing protocol — in the reverse direction — from
the receiver to each of the sources (Figs. 1 and
2). Periodic path messages are forwarded along
the routing trees provided by the routing proto-
col, and reservation refresh messages are for-
warded along the sink trees to maintain current
reservation state. A reservation message propa-
gates only as far as the closest point on the sink
tree where a reservation level greater than or
equal to the reservation level being requested
has already been made.

Each switch uses the path states to maintain a
table of incoming and outgoing interfaces for
each multicast group. Each incoming interface
keeps the information about the flowspecs it has
forwarded upstream. (This information is need-
ed in merging reservation requests from multiple
downstream links.) For each outgoing link, there
is a list of senders; associated with each sender is
the previous hop address from which data from
that sender arrives at the current switch. There
is also a set of reservations. Generally speaking,
each reservation consists of a reserver, a filter,
and the amount of resources reserved. For no-
filter reservations, the first two fields are not
needed; for fixed-filter reservations, the first
field is not needed.

We now review the process of creating and
maintaining reservations in more detail. Before
or when each data source starts transmitting, it
sends a path message containing the flowspec of
the data source. When a switch receives a path
message, it first checks to see if it already has
the path state for the named target (which can
be either a single host or a multicast group, plus
the destination port number); if not, it creates
the path state for that target. The switch then
obtains the outgoing interface(s) of the path
message from the routing protocol in use, and
updates its table of incoming and outgoing links
accordingly. The source address (and port num-
ber in the Internet context) carried in the path
message is also recorded if the path message
indicates that the application may require a fil-

tered reservation. This path message is forward-
ed immediately only if it is from a new source or
indicates a change in routes. The switch can
detect a change in routes by checking to see if
the outgoing interfaces indicated by the routing
protocol’s routing table are different than the
outgoing links maintained in the path state. Oth-
erwise, the switch discards the incoming path
message and instead periodically sends its own
path messages which contain the path informa-
tion carried in all the path messages that it has
received so far.

When a receiver receives a path message
from a source for whose data it would like to
create a reservation, the receiver sends a reser-
vation message using the (possibly modified)
flowspec that came in the incoming path mes-
sage. As described earlier, the reservation mes-
sage is guided along the reverse route of the
path messages to reach the data source(s). Along
the way if any switch rejects the reservation, an
RSVP reject message is sent back to the receiver
and the reservation message is discarded. Other-
wise, if the reservation message requires a new
reservation to be made, it propagates as far as
the closest point along the way to the sender(s)
where a reservation level equal to or greater
than that being requested has been made.

Once the reservation is established, the
receiver periodically sends reservation refresh
messages (which are identical in format to the
original request). As the reservation requests are
forwarded along the sink trees, the switches
merge the requests for the same multicast group
by pruning those that carry a request for reserv-
ing a smaller, or equal, amount of resources
than some previous request. As an example,
assume H1 is a video source, and H4 has
reserved enough bandwidth to receive the full
video data stream while H5 wants to receive only
low-resolution video data (Fig. 2). In this case,
when the reservation request from H5 reaches
S4, S4 makes the requested reservation over the
link from S4 to H5 and then drops the request
(i.e., does not forward it upstream) because suf-
ficient resources have been reserved already by
H4’s request.

When a sender (receiver) wishes to terminate

� FIGURE 2. A simple network topology with the sink trees. H1 and H2 are
data sources, and H3, H4, and H5 are receivers sinks). The dotted lines
depict the sink tree of H3; the solid lines depict the sink tree of H4. For clari-
ty the sink tree of H5 is omitted.
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the connection, the sender (receiver) sends out a
path (reservation) teardown message to release
the path state or reserved resources. There is no
retransmission timer for this teardown message.
In cases where the teardown message is lost, the
intermediate nodes will eventually time out the
corresponding state. As we noted above, no-fil-
ter or fixed-filter reservations cannot be explicit-
ly torn down because the switches do not
maintain sufficient state.

EXAMPLE
We consider a simple network configuration to
illustrate in more detail how RSVP works. The
network has five hosts connected by seven point-
to-point links and three switches (Fig. 3). We
assume that for links connecting hosts directly to
a switch, the hosts act as switches in terms of
reserving resources. To simplify the description,
we assume adequate network resources exist for
all reservation requests. Furthermore, the exam-
ple involves only a single multicast group, so we
do not discuss the addressing used to distinguish
reservations made for one multicast group from
reservations made for other multicast groups.

We describe the cases of no-filter and filtered
reservations separately. We start with the sim-
pler case, no-filter reservations, and then discuss
the case of filtered reservations.

NO-FILTER RESERVATIONS

Let us consider an audio conference among five
participants, one at each of the five hosts (Fig.
3). In this case, each host behaves both as a
source and a receiver at the same time. We
make the following assumptions:
• The routing protocol has built a multicast

routing tree so each sender can reach all
the receivers.

• Each switch has received RSVP path mes-
sages (with the F-flag off from all the
sources, so the switches do not record
source information), and the complete path
state for each switch has stored as described
below, although in a real application
sources may start at different times and the
path state would be built up over time.

• No reservations have been made yet.

We now describe how reservations are creat-
ed. H1 wants to receive data from all other
senders to the multicast group but only wants
enough bandwidth reserved to carry one audio
stream. Thus, it sends a reservation message R1
(B, no-filter) to S1, where B is the amount of
bandwidth needed to forward one audio stream.
When S1 receives R1 (B, no-filter), it first
reserves resources over L1 (in the direction from
S1 toward H1), then attaches the following reser-
vation state to the path state to indicate the
amount of the reservation made over L1.

Finally, S1 forwards R1 (B, no-filter) over all
incoming links, in this case L2 and L6. Note that
the switch never forwards any RSVP message
over the link the message came from.

The copy of R1 (B, no-filter) sent along L6
reaches S2, which reserves B over L6 and for-
wards the message to links 5 and 7. When the
copy of R1 (B, no-filter) that was sent along L7
reaches S3, that switch reserves B over L7 and
then forwards R1 (B, no-filter) over links 3 and 4.

When H2 wants to create a reservation, it
sends a reservation message, R2 (B, no-filter), to
S1. Upon receipt of R2 (B, no-filter), S1 first
reserves B over L2, changing the path state to:

S1 then forwards R2 (B, no-filter) over L1
only, because it has forwarded an identical
request over L6 previously.

After all the receiving hosts have sent RSVP
reservation messages, an amount B of resources
have been reserved over each of the seven links
in each of the two directions.

Before leaving this example of no-filter reser-
vation, consider the tradeoff between keeping
extra state information and the possibility of
over-reserving resources on certain links. In the
above example, we assumed all the path mes-
sages had the F-flag off, so no per-source infor-
mation is kept at the switches. As a result, if
each receiver requested 2B of bandwidth (i.e., an
amount enough to carry two full audio streams),
then 2B would be reserved on every link — even
though on L1 (and similarly on L2, L3, L4, and
L5) in the direction away from H1 we need only
reserve B, since there is only a single source
upstream on the link. In general, a no-filter
reservation should indicate how much should be
reserved as a function of the number of sources
upstream. In this example it would be B units
per upstream source. Unfortunately, one cannot
know the number of sources upstream without
keeping a list of the sources. If the F-flag was set
in all the path messages, the switches would have
kept track of individual sources and, by paying
this extra cost in increased state, only the
required resources would have been reserved
along the links.

� FIGURE 3. Network topology.
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Not maintaining per-source information can
lead to an over-reserving of resources on some
network links. However, in those applications
involving many data sources with few resources
required for each source (such as in a data-gath-
ering application with many sensors), one may
still choose to reduce the switch state at the pos-
sible expense of over-reserving resources over
some links.

FILTERED RESERVATIONS

Now consider the case where H2, H3, H4, and
H5 are receivers (i.e., members of the multicast
group), and H1, H4, and H5 are sources. All
path message have the F-flag set, so each switch
needs to keep a list of sources associated with
their previous hops. Assume that S1 has received
path messages from all of the sources but no
reservations have yet been made. Thus, S1’s path
state contains the following entry:

The notation L2(src: H1, H1  H4, S2  H5, S2)
indicates that data from sources H1, H4, and H5
are sent out along outgoing link L2. For each
source, H1, S2, and S2 are the previous hop
addresses from which data from that source
arrives, respectively. H1 is not a receiver, so L1
is not among the outgoing links of S1.

Now assume that H2 sends a reservation mes-
sage denoted R2 (B, H4), that is, H2 wants to
receive packets only from source H4 and is
reserving an amount B, sufficient for one source.
The reservation message R2(B, H4) reaches S1
via the L2 interface. S1 finds that H4 is indeed
one of the sources it has heard, and that the
packets from H4 come from S2. S1 reserves
bandwidth B over L2, and forwards R2 (B, H4)
over L6 to S2.

S2’s path state contains the following entries.

When S2 receives R2(B, H4), it reserves B over
L6, and then forwards the message R2(B, H4) to
S3, which is the previous hop toward H4.

S3’s path state then has its entries changed
to:

Upon receiving R2(B, H4), S3 reserves B over
L7, and forwards the message to H4. When the
message reaches H4, a pipe of B has been
reserved from H4 to H2. This describes the
reservation events surrounding the reservation
request R2(B, H4).

Suppose that some time afterward, H5 sends
the reservation message R5(2B, *), where * indi-
cates a request for dynamic-filter reservation.
When S2 receives this reservation message, it
reserves 2B over L5 (at least two sources can go
that direction) for H5, and forwards the reserva-
tion message R5(2B, *) over L6 and L7.

When S1 receives R5(2B, *), it finds out that

there is only one source going out L6. It there-
fore reserves an amount B over L6 for R5 and
then passes the reservation request on to H1.
When S3 receives R5(2B, *), it finds out that
there is only one source going out L7 and has a
fixed-filter reservation already. S3 does not
reserve any more, nor does it further forward
the request to L4.

Suppose now that H4 terminates both receiv-
ing and sending without transmitting any tear-
down messages. As H4 no longer sends path or
reservation refreshes, all H4-related state will
time out, changing the outgoing link entries in
the various switches.

S1 stops forwarding R2 (B, H4) from H2 and
returns an RSVP error message to H2. S2 for-
wards future R5(2B, *) reservation refreshes to
the L6 direction only since there are no more
sources in the L7 direction.

For the sake of simplicity, in the above exam-
ple we assumed each data stream requires the
same bandwidth to forward. RSVP is designed
to handle cases where each source may demand
different amounts of resources, and each receiv-
er may receive only a subset of the data from
each source. In fixed-filter reservations, this
requires each source filter be associated with a
specific amount of resources. In dynamic-filter
reservations, the receiver must receive the same
amount of data when “switching channels.”

IMPLEMENTATION STATUS
This article illustrates how RSVP works at a
general level. For the sake of brevity and clarity,
many details have not been presented; in partic-

ular, we have not
described with any
specificity the merging
algorithm. We have,

however, verified this design in a packet-level,
interactive simulator, where all such details have
been tested.

The simulator was written by one of the
authors (LZ) and has been used in several previ-

ous simulation studies
[8,6,14]. It provides
modules that imitate
the actual behavior of
common network com-

ponents, such as hosts, links, IP routers, and
protocols such as IP, TCP, and UDP. We veri-
fied RSVP design by implementing the protocol
in the simulator and then observing, step-by-
step, how the protocol handles various dynamic
events, such as new senders/receivers joining a
multicast group, or existing members leaving.
Indeed, the design of most protocol details
emerged from an iterative process of simulation
and redesign.

Using the simulator code as a starting point,
the protocol was implemented by Sugih Jamin
(USC) for experimentation on DARTnet, a
cross-country T1 network testbed sponsored by
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ARPA, linking roughly a dozen academic and
industrial research institutions. Preliminary tests
have been performed on this implementation,
but no systematic performance studies have been
done as yet.

RELATED WORK
In the course of exploring network algorithms
that deliver quality of service guarantees, there
have been several proposals and prototype
implementations of network resource reservation
algorithms over the last few years [9, 15]. How-
ever, almost all of these prototypes deal exclu-
sively with unicast reservations.

The Stream Protocol, ST [5], was a pioneer-
ing work in multicast reservation protocol design.
ST was designed specifically to support voice
conferencing and was capable of making both
unicast and multicast resource reservations. At
the time ST was proposed, there was no work on
sophisticated multicast routing, so ST would
make resource reservations over a single, duplex
distribution tree which was created by blending
the paths from unicast routing. This was done
with the assumptions that the routes were
reversible and the application data traffic would
travel in both directions. However, ST requires a
centralized access controller to coordinate
among all the participants and manage the tree
establishment.

The successor to ST, ST-II [2], continues to
create its own multicast trees by blending the
paths from unicast routing. However, ST-II
establishes multiple simplex reservations to elimi-
nate the access controller. Each data source
makes a resource reservation along a multicast
tree that is rooted at the source and reaches out
to all the receivers. The reservation made along
the tree uses a single flowspec, so ST-II cannot
accommodate heterogeneous receivers. Because
each data source makes its reservation indepen-
dently, a single pipe is reserved from every source
to every receiver in the same multicast applica-
tion group. An analysis of ST-II implementation
and design issues is provided elsewhere [16].

Thus, neither ST nor ST-II provides a robust
and efficient solution to the multipoint-to-multi-
point resource reservation problem. They share
several of the limitations of the strawman pro-
posal described earlier. The RSVP design effort
was initiated to fill this vacuum. Recently, how-
ever, there have been other proposals to fill this
need. Pasquale et al. have proposed a dissemina-
tion-oriented approach in their work on multi-
media multicast channels [17]. They share with
us these viewpoints:
• To efficiently support heterogeneous

receivers, each receiver must be able to
specify a stream filter for the subset of the
data it is interested in receiving.

• Furthermore, not to waste network
resources, the filters from all the receivers
should be propagated toward the sender, so
the subset of the data in which no one is
interested would be stopped at the earliest
point along the source propagation tree.
However, they only considered single-source

applications (such as cable TV), as opposed to
RSVP’s functionality of supporting multipoint-

to-multipoint applications, and they have mainly
focused on the programming interface to appli-
cations, as opposed to our interest in designing a
protocol that reserves resources inside the net-
work and adjusts the reservation to dynamic
environmental changes.

UNRESOLVED ISSUES
While RSVP has been simulated and tested to
some extent, we fully expect that further incre-
mental design changes will be made as we gain
experience with RSVP, both on DARTnet and
also through further simulation. Besides these
incremental changes, however, several larger
design issues remain unresolved, as detailed
below.

RSVP was designed with minimal expecta-
tions of routing. Path states are used to essen-
tially invert the routing tables, a function that
routing could easily provide if it were so
designed. If we were to design new routing algo-
rithms, what routing support would we include
to support resource reservation algorithms?

In this design, we have associated filters with
resource reservations. In fact, filters could be
applied to flows even without reserved resources.
Furthermore, there are filter styles besides the
ones described here that might be useful. For
remote lectures with several speakers at separate
sites, one might want a dynamic filtered reserva-
tion where the filter is the same for each receiv-
er, as proposed by Jacobson [18]. This feature
would allow the audience to switch (in unison)
to different speakers with only one set of
resources reserved. Thus, one unresolved issue is
defining the general service model and interfaces
for such filters, where these definitions are not
specifically tied to the presence of resource
reservations.

Our current simulations and tests deal only
with reasonably small networks and small multi-
cast groups. We do not yet understand how RSVP
performs when the size of the multicast groups
gets very large. Can one use caching strategies to
avoid the router state explosion when S (the num-
ber of senders) and/or R (the number of receivers)
gets very large? This issue is particularly relevant
to the case of cable TV, where every home would
want a dynamic reservation but the switches obvi-
ously would not want to keep an individual reser-
vation state for each home.

SUMMARY
RSVP’s architecture is unique in that:
• It provides receiver-initiated reservations to

accommodate heterogeneity among
receivers as well as dynamic membership
changes.

• It separates the filter from the reservation,
thus allowing channel changing behavior.

• It supports a dynamic and robust multi-
point-to-multipoint communication model
by taking a soft-state approach in maintain-
ing resource reservations.

• It decouples the reservation and routing
functions and thus can run on top of, and
take advantage of, any multicast routing
protocols.
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We have verified the first RSVP design by
detailed simulation and a preliminary implemen-
tation. Much testing remains to be done in the
context of larger-scale simulations, as well as in
real prototype networks such as DARTnet.
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While RSVP has

been simulated and

tested to some

extent, we ful ly

expect that fur ther

incremental design

changes wil l  be

made as we gain

experience with

RSVP, both on

DARTnet and also

through fur ther

simulat ion.


