
Comparison of Routing Metrics for Static Multi-Hop
Wireless Networks

Richard Draves Jitendra Padhye Brian Zill

Microsoft Research

{richdr, padhye, bzill}@microsoft.com

ABSTRACT
Routing protocols for wireless ad hoc networks have tradi-
tionally focused on finding paths with minimum hop count.
However, such paths can include slow or lossy links, leading
to poor throughput. A routing algorithm can select better
paths by explicitly taking the quality of the wireless links
into account. In this paper, we conduct a detailed, empirical
evaluation of the performance of three link-quality metrics—
ETX, per-hop RTT, and per-hop packet pair—and compare
them against minimum hop count. We study these metrics
using a DSR-based routing protocol running in a wireless
testbed. We find that the ETX metric has the best per-
formance when all nodes are stationary. We also find that
the per-hop RTT and per-hop packet-pair metrics perform
poorly due to self-interference. Interestingly, the hop-count
metric outperforms all of the link-quality metrics in a sce-
nario where the sender is mobile.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Networks

General Terms
Measurement, Performance, Experimentation

Keywords
Wireless multi-hop networks, Routing

1. INTRODUCTION
Routing in ad hoc wireless networks has been an active

area of research for many years. Much of the original work
in the area was motivated by mobile application environ-
ments, such as battlefield ad hoc networks. The primary fo-
cus in such environments is to provide scalable routing in the
presence of mobile nodes. Recently, interesting commercial
applications of multi-hop wireless networks have emerged.
One example of such applications is “community wireless

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

networks” [27, 26, 16, 6]. In such networks, most of the
nodes are either stationary or minimally mobile. The focus
of routing algorithms in such networks is on improving the
network capacity or the performance of individual transfers.

Most current ad hoc routing protocols select paths that
minimize hop count [15, 24, 23, 22]. In static ad hoc wireless
networks, minimal hop count paths can have poor perfor-
mance because they tend to include wireless links between
distant nodes. These long wireless links can be slow or lossy,
leading to poor throughput [9]. A routing algorithm can se-
lect better paths by explicitly taking into account the quality
of wireless links.

Researchers have proposed many metrics to measure wire-
less link quality, but to our knowledge, the relative perfor-
mance of these metrics for the purpose of routing in static
ad hoc wireless networks has not been investigated. In this
paper, we study the performance of three link-quality met-
rics, and compare them against minimum hop-count routing.
The first metric is called “Expected Transmission Count”
(ETX). This metric is based on measuring the loss rate of
broadcast packets between pairs of neighboring nodes [9].
The second metric is called “Per-hop Round Trip Time”
(RTT). This metric is based on measuring the round trip
delay seen by unicast probes between neighboring nodes [1].
The third metric is called “Per-hop Packet Pair Delay” (Pk-
tPair). This metric is based on measuring the delay be-
tween a pair of back-to-back probes to a neighboring node.
We incorporated these metrics in an ad hoc routing proto-
col based on DSR. We deployed this protocol on a 23-node
wireless testbed, and experimented with various traffic sce-
narios such as long-lived TCP flows, multiple simultaneous
data transfers and simulated web traffic. We also considered
a scenario involving some mobility.

The main contributions of the paper are the following: (i)
We describe a routing protocol that incorporates the notion
of link quality metrics. (ii) We present detailed experimental
results to show that in scenarios with stationary nodes, the
ETX metric out-performs hop-count although it uses longer
paths. This is in contrast with the results in [9], in which
the authors saw little or no gain from ETX in a DSR-based
routing protocol. (iii) We show that the one-hop RTT and
one-hop packet-pair metrics perform poorly, because their
load-sensitivity leads to self-interference. (iv) We show that
in a scenario involving a mobile sender, minimum hop-count
routing performs considerably better than link-quality rout-
ing because the metrics do not react sufficiently quickly.

2. LINK QUALITY METRICS
We consider three wireless link quality metrics in this pa-

per. We also support minimum hop-count routing by defin-
ing a “HOP” metric. Each of these metrics represents a
different notion of what constitutes good link quality. In
Section 7, we will discuss other link quality metrics that we
have not included in this study. The process of link discov-
ery (i.e. neighbor discovery) is a separate issue, which we
will discuss in in Section 3.

2.1 Hop Count (HOP)
This metric provides minimum hop-count routing. Link

quality for this metric is a binary concept; either the link
exists or it doesn’t.

The primary advantage of this metric is its simplicity.
Once the topology is known, it is easy to compute and min-
imize the hop count between a source and a destination.
Moreover, computing the hop count requires no additional
measurements, unlike the other metrics we will describe in
this section.

The primary disadvantage of this metric is that it does
not take packet loss or bandwidth into account. It has been
shown [9] that a route that minimizes the hop count does not
necessarily maximize the throughput of a flow. For example,
a two-hop path over reliable or fast links can exhibit better
performance than a one-hop path over a lossy or slow link.
The HOP metric, however, will prefer the one-hop path.

2.2 Per-hop Round Trip Time (RTT)
This metric is based on measuring the round trip delay

seen by unicast probes between neighboring nodes. Adya
et al. [1] proposed this metric. To calculate RTT, a node
sends a probe packet carrying a timestamp to each of its
neighbors every 500 milliseconds. Each neighbor immedi-
ately responds to the probe with a probe acknowledgment,
echoing the timestamp. This enables the sending node to
measure round trip time to each of its neighbors. The node
keeps an exponentially weighted moving average of the RTT
samples to each of its neighbors. Our implementation gives
10% weight to the current sample while calculating the aver-
age. If a probe or a probe response packet is lost, the average
is increased by 20% to reflect this loss. Similar penalty is
taken if loss of a data packet is detected on the link. We
also increase the average if we detect a loss of data packet.
The routing algorithm selects the path with the least total
sum of RTTs.

The RTT metric measures several facets of link quality.
First, if either the node or the neighbor is busy, the probe or
the probe-ack packet will experience queuing delay, result-
ing in high RTT. Second, as shown in [1], if other nodes in
the vicinity are busy, the probe or the probe-ack packet will
experience delays due to channel contention, again resulting
in high RTT. Third, if link between the nodes is lossy, the
802.11 ARQ mechanism may have to retransmit the probe
or the probe-ack packet several times to get it delivered cor-
rectly. This increases the RTT along that hop. Finally, if
despite the ARQ mechanism, a probe or a probe-ack packet
is lost, the sender node detect the loss, and increases the
moving average as described earlier. In short, the RTT met-
ric is designed to avoid highly loaded or lossy links.

Since RTT is a load-dependent metric, it can lead to route
instability. This is a well-known problem in wired net-
works [18, 2]. We call this phenomenon self-interference.

The route instability is made worse by the fact that due
to limitations of our implementation, we are unable to in-
sert the probe packets at the head of the queue maintained
by the driver. This queuing delay significantly distorts the
RTT value on that hop. The authors of [1] have also re-
ported this problem. This metric has other disadvantages as
well. First, there is the overhead of measuring the round trip
time. We reduce this overhead by using small probe packets
(137 bytes). Second, the metric doesn’t explicitly take link
data rate into account. We may be able to take impact of
link data rate into account by using larger probe packets.
However, larger probes would impose an even greater mea-
surement overhead. Finally, this measurement technique re-
quires that every pair of neighboring nodes probe each other.
Thus, the technique might not scale to dense networks.

2.3 Per-hop Packet Pair Delay (PktPair)
This metric is based on measuring the delay between a

pair of back-to-back probes to a neighboring node. It is
designed to correct the problem of distortion of RTT mea-
surement due to queuing delays. The packet-pair technique
is well-known in the world of wired networks [17].

To calculate this metric, a node sends two probe pack-
ets back-to-back to each neighbor every 2 seconds. The
first probe packet is small, and the next one is large. The
neighbor calculates the delay between the receipt of the first
and the second packets. It then reports this delay back to
the sending node. The sender maintains a exponentially
weighted moving average of these delays for each of its neigh-
bors. The objective of the routing algorithm is to minimize
the sum of these delays.

Like the RTT metric, this metric also measures several
facets of link quality. If, due to high loss rate, the second
probe packet requires retransmissions by 802.11 ARQ, the
delay measured by the neighbor will increase. If the link
from the node to its neighbor has low bandwidth, the second
packet will take more time to traverse the link, which will
result in increased delay. If there is traffic in the vicinity
of this hop, it will also result in increased delay, since the
probe packets have to contend for the channel.

The primary advantage of this metric over RTT is that it
isn’t affected by queueing delays at the sending node, since
both packets in a pair will be delayed equally. In addition,
using a larger packet for the second probe makes the metric
more sensitive to the link bandwidth than the RTT metric.

This metric has several disadvantages. First, it is subject
to overheads even greater than those of the RTT metric,
since two packets are sent to each neighbor, and the sec-
ond packet is larger. Second, we discovered that the met-
ric is not completely immune to the phenomenon of self-
interference. To understand self-interference for packet-pair
measurements, consider three wireless nodes A, B, and C
forming a two-hop chain topology. Assume that A is send-
ing data to C via B. If a queue builds up on the link from
A to B, the PktPair measurements on that link won’t be
affected because both the probe packets would be delayed
equally. Now consider the link from B to C. Node B can not
simultaneously receive a packet from A and send a probe to
C. This means that the probe packet is contending with the
data packet for the wireless channel. This increases the met-
ric from B to C, increasing the total metric along the path
from A to C. However, this self-interference is less severe
than that experienced by RTT.

Ethernet 802.11 802.16, etc.

Mesh Connectivity Layer (with LQSR)

IPv4 IPv6 IPX, etc.

Figure 1: Our architecture multiplexes multiple
physical links into a single virtual link.

2.4 Expected Transmission Count (ETX)
This metric estimates the number of retransmissions needed

to send unicast packets by measuring the loss rate of broad-
cast packets between pairs of neighboring nodes. De Couto
et al. [9] proposed ETX. To compute ETX, each node broad-
casts a probe packet every second. The probe contains the
count of probes received from each neighboring node in the
previous 10 seconds. Based on these probes, a node can
calculate the loss rate of probes on the links to and from
its neighbors. Since the 802.11 MAC does not retransmit
broadcast packets, these counts allow the sender to esti-
mate the number of times the 802.11 ARQ mechanism will
retransmit a unicast packet.

To illustrate this, consider two nodes A and B. Assume
that node A has received 8 probe packets from B in the pre-
vious 10 seconds, and in the last probe packet, B reported
that it had received 9 probe packets from A in the previous
10 seconds. Thus, the loss rate of packets from A to B is
0.1, while the loss rate of packets from B to A is 0.2. A
successful unicast data transfer in 802.11 involves sending
the data packet and receiving a link-layer acknowledgment
from the receiver. Thus, the probability that the data packet
will be successfully transmitted from A to B in a single at-
tempt is (1 − 0.1) × (1 − 0.2) = 0.72. If either the data or
the ack is lost, the 802.11 ARQ mechanism will retransmit
the packet. If we assume that losses are independent, the
expected number of retransmissions before the packet is suc-
cessfully delivered is 1/0.72 = 1.39. This is the value of the
ETX metric for the link from A to B. The routing protocol
finds a path that minimizes the sum of the expected number
of retransmissions.

Node A calculates a new ETX value for the link from A to
B every time it receives a probe from B. In our implementa-
tion of the ETX metric, the node maintains an exponentially
weighted moving average of ETX samples. There is no ques-
tion of taking 20% penalty for lost probe packets. Penalty
is taken only upon loss of a data packet.

ETX has several advantages. Since each node broadcasts
the probe packets instead of unicasting them, the probing
overhead is substantially reduced. The metric suffers little
from self-interference since we are not measuring delays.

The main disadvantage of this metric is that since broad-
cast probe packets are small, and are sent at the lowest
possible data rate (6Mbps in case of 802.11a), they may not
experience the same loss rate as data packets sent at higher
rates. Moreover, the metric does not directly account for
link load or data rate. A heavily loaded link may have very
low loss rate, and two links with different data rates may
have the same loss rate.

3. AD HOC ROUTING ARCHITECTURE
We implement ad hoc routing and link-quality measure-

ment in a module that we call the Mesh Connectivity Layer
(MCL). Architecturally, MCL is a loadable Windows driver.

It implements a virtual network adapter, so that to the rest
of the system the ad hoc network appears as an additional
(virtual) network link. MCL routes using a modified ver-
sion of DSR [15] that we call Link-Quality Source Routing
(LQSR). We have modified DSR extensively to improve its
behavior, most significantly to support link-quality metrics.
In this section, we briefly review our architecture and im-
plementation to provide background for understanding the
performance results. More architectural and implementa-
tion details are available in [10].

The MCL driver implements an interposition layer be-
tween layer 2 (the link layer) and layer 3 (the network layer).
To higher-layer software, MCL appears to be just another
ethernet link, albeit a virtual link. To lower-layer software,
MCL appears to be just another protocol running over the
physical link. See Figure 1 for a diagram.

This design has two significant advantages. First, higher-
layer software runs unmodified over the ad hoc network. In
our testbed, we run both IPv4 and IPv6 over the ad hoc
network. No modifications to either network stack were re-
quired. Second, the ad hoc routing runs over heterogeneous
link layers. Our current implementation supports ethernet-
like physical link layers (eg 802.11 and 802.3). The virtual
MCL network adapter can multiplex several physical net-
work adapters, so the ad hoc network can extend across
heterogeneous physical links.

In the simple configuration shown in Figure 1, the MCL
driver binds to all the physical adapters and IP binds only
to the MCL virtual adapter. This avoids multi-homing at
the IP layer. However other configurations are also possible.
In our testbed deployment, the nodes have both an 802.11
adapter for the ad hoc network and an ethernet adapter
for management and diagnosis. We configure MCL to bind
only to the 802.11 adapter. The IP stack binds to both
MCL and the ethernet adapter. Hence the mesh nodes are
multi-homed at the IP layer, so they have both a mesh IP
address and a management IP address. We prevent MCL
from binding to the management ethernet adapter, so the ad
hoc routing does not discover the ethernet as a high-quality
single-hop link between all mesh nodes.

The MCL adapter has its own 48-bit virtual ethernet ad-
dress, distinct from the layer-2 addresses of the underlying
physical adapters. The mesh network functions just like an
ethernet, except that it has a smaller MTU. To allow room
for the LQSR headers, it exposes a 1280-byte MTU instead
of the normal 1500-byte ethernet MTU. Our 802.11 drivers
do not support the maximum 2346-byte 802.11 frame size.

The MCL driver implements a version of DSR that we call
Link-Quality Source Routing (LQSR). LQSR implements
all the basic DSR functionality, including Route Discov-
ery (Route Request and Route Reply messages) and Route
Maintenance (Route Error messages). LQSR uses a link
cache instead of a route cache, so fundamentally it is a link-
state routing protocol like OSPF [20]. The primary changes
in LQSR versus DSR relate to its implementation at layer
2.5 instead of layer 3 and its support for link-quality metrics.

Due to the layer 2.5 architecture, LQSR uses 48-bit vir-
tual ethernet addresses. All LQSR headers, including Source
Route, Route Request, Route Reply, and Route Error, use
48-bit virtual addresses instead of 32-bit IP addresses.

We have modified DSR in several ways to support routing
according to link-quality metrics. These include modifica-
tions to Route Discovery and Route Maintenance plus new

mechanisms for Metric Maintenance. Our design does not
assume that the link-quality metric is symmetric.

First, LQSR Route Discovery supports link metrics. When
a node receives a Route Request and appends its own ad-
dress to the route in the Route Request, it also appends the
metric for the link over which the packet arrived. When a
node sends a Route Reply, the reply carries back the com-
plete list of link metrics for the route.

Once Route Discovery populates a node’s link cache, the
cached link metrics must be kept reasonably up-to-date for
the node’s routing to remain accurate. In Section 5.2 we
show that link metrics do vary considerably, even when
nodes are not mobile. LQSR tackles this with two separate
Metric Maintenance mechanisms.

LQSR uses a reactive mechanism to maintain the metrics
for the links which it is actively using. When a node sends
a source-routed packet, each intermediate node updates the
source route with the current metric for the next (outgoing)
link. This carries up-to-date link metrics forward with the
data. To get the link metrics back to the source of the packet
flow (where they are needed for the routing computation),
we have the recipient of a source-routed data packet send
a gratuitous Route Reply back to the source, conveying the
up-to-date link metrics from the arriving Source Route. This
gratuitous Route Reply is delayed up to one second waiting
for a piggy-backing opportunity.

LQSR uses a proactive background mechanism to main-
tain the metrics for all links. Occasionally each LQSR node
send a Link Info message. The Link Info carries current met-
rics for each link from the originating node. The Link Info
is piggy-backed on a Route Request, so it floods throughout
the neighborhood of the node. LQSR piggy-backs Link Info
messages on all Route Requests when possible.

The link metric support also affects Route Maintenance.
When Route Maintenance notices that a link is not func-
tional (because a requested Ack has not been received), it
penalizes the link’s metric and sends a Route Error. The
Route Error carries the link’s updated metric back to the
source of the packet.

Our LQSR implementation includes the usual DSR con-
ceptual data structures. These include a Send Buffer, for
buffering packets while performing Route Discovery; a Main-
tenance Buffer, for buffering packets while performing Route
Maintenance; and a Route Request table, for suppressing
duplicate Route Requests. The LQSR implementation of
Route Discovery omits some optimizations that are not worth-
while in our environment. In practice, Route Discovery is
almost never required in our testbed so we have not opti-
mized it. In particular, LQSR nodes do not reply to Route
Requests from their link cache. Only the target of a Route
Request sends a Route Reply. Furthermore, nodes do not
send Route Requests with a hop limit to restrict their prop-
agation. Route Requests always flood throughout the ad
hoc network. Nodes do cache information from overheard
Route Requests.

The Windows 802.11 drivers do not support promiscuous
mode and they do not indicate whether a packet was suc-
cessfully transmitted. Hence our implementation of Route
Maintenance uses explicit acknowledgments instead of pas-
sive acknowledgments or link-layer acknowledgments. Every
source-routed packet carries an Ack Request option. A node
expects an Ack from the next hop within 500ms. The Ack
options are delayed briefly (up to 80ms) so that they may be

piggy-backed on other packets flowing in the reverse direc-
tion. Also later Acks squash (replace) earlier Acks that are
waiting for transmission. As a result of these techniques, the
acknowledgment mechanism does not add significant byte or
packet overhead.

The LQSR implementation of Route Maintenance also
omits some optimizations. We do not implement “Auto-
matic Route Shortening,” because of the lack of promiscu-
ous mode. We also do not implement “Increased Spreading
of Route Error Messages”. This is not important because
LQSR will not reply to a Route Request from (possibly stale)
cached data. When LQSR Route Maintenance detects a bro-
ken link, it does not remove from the transmit queue other
packets waiting to be sent over the broken link, since Win-
dows drivers do not provide access to the transmit queue.
However, LQSR nodes do learn from Route Error messages
that they forward.

LQSR supports a form of DSR’s “Packet Salvaging” or
retransmission. Salvaging allows a node to try a different
route when it is forwarding a source-routed packet and dis-
covers that the next hop is not reachable. The acknowledg-
ment mechanism does not allow every packet to be salvaged
because it is primarily designed to detect when links fail.
When sending a packet over a link, if the link has recently
(within 250ms) been confirmed to be functional, we request
an Ack as usual but we do not buffer the packet for possible
salvaging. This design allows for salvaging the first packets
in a new connection and salvaging infrequent connection-less
communication, but relies on transport-layer retransmission
for active connections. In our experience, packets traversing
“cold” routes are more vulnerable to loss from stale routes
and benefit from the retransmission provided by salvaging.

We have not yet implemented the DSR “Flow State” opti-
mization, which uses soft-state to replace a full source route
with a small flow identifier. We intend to implement it in
the future. Our Link Cache implementation does not use
the Link-MaxLife algorithm [15] to timeout links. We found
that Link-MaxLife produced inordinate churn in the link
cache. Instead, we use an infinite metric value to denote
broken links in the cache. We garbage-collect dead links in
the cache after a day.

4. TESTBED
The experimental data reported in this paper are the re-

sults of measurements we have taken on a 23-node wireless
testbed. Our testbed is located on one floor of a fairly typical
office building, with the nodes placed in offices, conference
rooms and labs. Unlike wireless-friendly cubicle environ-
ments, our building has rooms with floor-to-ceiling walls and
solid wood doors. With the exception of one additional lap-
top used in the mobility experiments, the nodes are located
in fixed locations and did not move during testing. The node
density was deliberately kept high enough to enable a wide
variety of multi-hop path choices. See Figure 2.

The nodes are primarily laptop PCs with Intel Pentium
II processors with clock rates from 233 to 300 MHz, but
also included a couple slightly faster laptops as well as two
desktop machines. All of the nodes run Microsoft Windows
XP. The TCP stack included with XP supports the SACK
option by default, and we left it enabled for all of our TCP
experiments. All of our experiments were conducted over
IPv4 using statically assigned addresses. Each node has an
802.11a PCCARD radio. We used the default configuration

01

04

13

00

00

00

00 Proxim ORiNOCO

Proxim Harmony

NetGear WAB 501

NetGear WAG 511

05 07

10

16

20

22

24

25

59
65

67

100 128

23

54 5556

64

66

68

Approx. 61 m

A
p
p
ro
x
.
3
2
 m

Mobile node walking path

Figure 2: Our testbed consists of 23 nodes placed in fixed locations inside an office building. Four different
models of 802.11a wireless cards were used. The six shaded nodes were used as endpoints for a subset of
the experiments (see section 5.3). The mobile node walking path shows the route taken during the mobility
experiments (see section 6).

for the radios, except for configuring ad hoc mode and chan-
nel 36 (5.18 GHz). In particular, the cards all performed
auto-speed selection. There are no other 802.11a users in
our building.

We use four different types of cards in our testbed: 11
Proxim ORiNOCO ComboCard Gold, 7 NetGear WAG 511,
4 NetGear WAB 501, and 1 Proxim Harmony. While we per-
formed no formal testing of radio ranges, we observed that
some cards exhibited noticeably better range than others.
The Proxim ORiNOCOs had the worst range of the cards
we used in the testbed. The NetGear WAG 511s and WAB
501s exhibited range comparable to each other, and some-
where between the two Proxim cards. The Proxim Harmony
had the best range of the cards we tried.

5. RESULTS
In this section, we describe the results of our experiments.

The section is organized as follows. First, we present mea-
surements that characterize our testbed. These include a
study of the overhead imposed by our routing software, and
a characterization of the variability of wireless links in our
testbed. Then, we present experiments that compare the
four routing metrics under various type of traffic.

5.1 LQSR Overhead
Like any routing protocol, LQSR incurs a certain amount

of overhead. First, it adds additional traffic in the form of
routing updates, probes, etc. Second, it has the overhead
of carrying the source route and other fields in each packet.
Third, all nodes along the path of a data flow sign each
packet using HMAC-SHA1 and regenerate the hash to re-
flect the changes in the LQSR headers when forwarding the
packet. Also, the end nodes encrypt or decrypt the payload
data using AES-128, since our sysadmin insisted upon bet-
ter protection than WEP. The cryptographic overhead can
be significant given the slow CPU speeds of the nodes.

We conducted the following experiment measures the over-
head of LQSR. We equipped four laptops (named A, B, C
and D), with a Proxim ORiNOCO card each. The laptops
were placed in close proximity of each other. All the links
between the machines were operating at the maximum data
rate (nominally 54Mbps).

To establish a baseline for our measurements, we set up
static IP routes between these machines to form a chain
topology. In other words, a packet from A to D was for-
warded via B and C, and a packet from D to A was for-
warded via C and B. We measured the throughput of long-
lived TCP flows from A to B (a 1-hop path), from A to C (a
2-hop path) and from A to D (a 3-hop path). At any time,
only one TCP flow was active. These throughputs form our
baseline.

Next, we deleted the static IP routes and started LQSR on
each machine. LQSR allows the user to set up static routes
that override the routes discovered by the routing protocol.
We set up static routes to form the same chain topology
described earlier. Note that LQSR continues to send its
normal control packets and headers, but routes discovered
through this process are ignored in favor of the static routes
supplied by the user. We once again measured the through-
put of long-lived TCP flows on 1, 2 and 3 hop paths. Finally,
we turned off all cryptographic functionality and measured
the throughput over 1, 2 and 3 hop paths again.

The results of these experiments are shown in Figure 3.
Each bar represents the average of 5 TCP connections. The
variation between runs is negligible. The first thing to note is
that, as one would expect, the throughput falls linearly with
the number of hops due to inter-hop interference. LQSR’s
overhead is most evident on 1-hop paths. The throughput
reduction due to LQSR, compared to static IP routing is
over 38%. However, when cryptographic functionality is
turned off, the throughput reduction is only 13%. Thus,
we can conclude that the LQSR overhead is largely due to
cryptography, which implies that the CPU is the bottleneck.
The amount of overhead imposed by LQSR decreases as the
path length increases. This is because channel contention
between successive hops is the dominant cause of through-
put reduction. At these reduced data rates, the CPU can
easily handle the cryptographic overhead. The remaining
overhead is due to the additional network traffic and head-
ers carried in each packet. Note that the amount of control
traffic varies depending on the number of neighbors that a
node has. This is especially true for the RTT and PktPair
metrics. We believe that this variation is not significant.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3

Number of Hops

A
ve

ra
g

e
T

C
P

 T
h

ro
u

g
h

p
u

t
(K

b
p

s) Static IP
MCL No Crypto
MCL With Crypto

Figure 3: MCL overhead is not significant on multi-
hop paths.

5.2 Link Variability in the Testbed
In our testbed, we allow the radios to dynamically select

their own data rates. Thus, different links in our testbed
have different bandwidths. To characterize this variability in
link quality, we conducted the following experiment. Recall
the PktPair metric collects a sample of the amount of time
required to transmit a probe packet every 2 seconds on each
link. We modified the implementation of the PktPair metric
to keep track of the minimum sample out of every successive
50 samples (i.e minimum of samples 1-50, then minimum of
samples 51-100 etc.). We divide the size of the second packet
by this minimum. The resulting number is an indication of
the bandwidth of that link during that 100 second period.
In controlled experiments, we verified that this approach
approximates the raw link bandwidth. We gathered these
samples from all links for a period of 14 hours. Thus, for
each link there were a total of 14 × 60 × 60 ÷ 100 = 504
bandwidth samples. There was no traffic on the testbed
during this time. We discard any intervals in which the
calculated bandwidth is more than 36Mbps, which is the
highest data rate that we actually see in the testbed. This
resulted in removal of 3.83% of all bandwidth samples. Still,
the resulting number is not an exact measure of the available
bandwidth, since it is difficult to correctly account for all
link-layer overhead. However, we believe that the number is
a good (but rough) indication of the link bandwidth during
the 100 second period.

Of the 23 × 22 = 506 total possible links, only 183 links
had non-zero average bandwidth, where the average was
computed across all samples gathered over 14 hours. We
found that bandwidths of certain links varied significantly
over time, while other links it was relatively stable. Exam-
ples of two such links appear in Figures 4 and 5. In the first
case, we see that the bandwidth is relatively stable over the
duration of the experient. In the second case, however, the
bandwidth is much more variable. Since the quality of links
in our testbed varies over time, we are careful to repeat our
experiments at different times.

In Figure 6 we compare the bandwidth on the forward
and reverse direction of a link. To do this, we consider all
possible unordered node pairs. The number of such pairs is
23× 22÷ 2 = 253. Each pair corresponds to two directional
links. Each of these two links has its own average band-
width. Thus, each pair has two bandwidths associated with
it. Out of the 253 possible node pairs, 90 node pairs had
non-zero average bandwidth in both forward and reverse di-
rections. In Figure 6, we plot a point for each such pair.
The X-coordinate of the pair represents the link with the
larger bandwidth. The existence of several points below the

diagonal line implies that there are several pairs for which
the forward and the reverse bandwidths differ significantly.
In fact, in 47 node pairs, the forward and the reverse band-
widths differ by more than 25%.

5.3 Impact on Long Lived TCP Flows
Having characterized the overhead of our routing software,

and the quality of links in our testbed, we can now discuss
how various routing metrics perform in our testbed. We
begin by discussing the impact of routing metrics on the
performance of long-lived TCP connections. In today’s In-
ternet, TCP carries most of the traffic, and most of the bytes
are carried as part of long-lived TCP flows [13]. It is rea-
sonable to expect that similar types of traffic will be present
on community networks, such as [6, 27]. Therefore, it is
important to examine the impact of routing metrics on the
performance of long-lived TCP flows.

We start the performance comparison with a simple exper-
iment. We carried out a TCP transfer between each unique
sender-destination pair. There are 23 nodes in our testbed,
so a total of 23 × 22 = 506 TCP transfers were carried out.
Each TCP transfer lasted for 3 minutes, and transferred as
much data as it could. On the best one-hop path in our
testbed a 3 minute connection will transfer over 125MB of
data. Such large TCP transfers ensure repeatability of re-
sults. We had previously determined empirically that TCP
connections of 1 minute duration were of sufficient length to
overcome startup effects and give reproducible results. We
used 3 minute transfers in these experiments, to be conser-
vative. We chose to fix the transfer duration, instead of the
amount of data transferred, to keep the running time of each
experiment predictable. Only one TCP transfer was active
at any time. The total time required for the experiment was
just over 25 hours. We repeated the experiment for each
metric.

In Figure 7 we show the median throughput of the 506
TCP transfers for each metric. We choose median to repre-
sent the data instead of the mean because the distribution
(which includes transfers of varying path lengths) is quite
skewed. The height error bars represent the semi-inter quar-
tile range (SIQR), which is defined as half the difference be-
tween 25th and 75th percentile of the data. SIQR is the rec-
ommended measure of dispersion when the central tendency
of the data is represented by the median [14]. Since each
connection is run between a different pair of nodes the rela-
tively large error bars indicate that we observe a wide range
of throughputs across all the pairs. The median through-
put using the HOP metric is 1100Kbps, while the median
throughput using the ETX metric is 1357Kbps. This repre-
sents an improvement of 23.1%.

In contrast, De Couto et al. [9] observed almost no im-
provement for ETX in their DSR experiments. There are
several possible explanations for this. First, they used UDP
instead of TCP. A bad path will have more impact on the
throughput of a TCP connection (due to window backoffs,
timeouts etc.) than on the throughput of a UDP connec-
tion. Hence, TCP amplifies the negative impact of poor
route selection. Second, in their testbed the radios were set
to their lowest sending rate of 1Mbps, whereas we allow the
radios to set transmit rates automatically (auto-rate). We
believe links with lower loss rates also tend to have higher
data rates, further amplifying ETX’s improvement. Third,
our testbed has 6-7 hop diameter whereas their testbed has

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14

B
an

dw
id

th
 (

K
bp

s)

Time (Hours)

From 65 to 100

Figure 4: The bandwidth of the
link from node 65 to node 100 is
relatively stable.

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14

B
an

dw
id

th
 (

K
bp

s)

Time (Hours)

From 68 to 66

Figure 5: The bandwidth of the
link from node 68 to node 66 varies
over time.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

A
vg

. B
an

dw
id

th
 (

M
bp

s)

Avg. Bandwidth (Mbps)

Figure 6: For many node pairs,
the bandwidths of the two links be-
tween the nodes is unequal.

0

500

1000

1500

2000

HOP ETX RTT PktPair

T
hr

ou
gh

pu
t (

K
bp

s)

Metric

Figure 7: All pairs: Median
throughput of TCP transfer.

0

5

10

15

20

25

30

HOP ETX RTT PktPair

N
um

be
r

of
 P

at
hs

Metric

Figure 8: All Pairs: Median num-
ber of paths per TCP transfer.

0

1

2

3

4

5

6

HOP ETX RTT PktPair

P
at

h
Le

ng
th

 (
H

op
s)

Metric

Figure 9: All pairs: Median path
length of a TCP transfer.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

P
at

h
Le

ng
th

 u
nd

er
 E

T
X

Path Length under HOP

Figure 10: All Pairs: Comparison of HOP and
ETX path lengths. ETX consistently uses longer
paths than HOP.

a 5-hop diameter [8]. As we discuss below, ETX’s improve-
ment over HOP is more pronounced at longer path lengths.

The RTT metric gives the worst performance among the
four metrics. This is due to the phenomenon of self-interference
that we previously noted in Section 2.2. The phenomenon
manifests itself in the number of paths taken by the connec-
tion. At the beginning the connection uses a certain path.
However, due to self-interference, the metric on this path
soon rises. The connection then chooses another path. This
is illustrated in Figure 8. The graph shows the median num-
ber of paths taken by a connection. The RTT metric uses
far more paths per connection than other metrics. The HOP
metric uses the least number of paths per connection - the
median is just 1.

The PktPair metric performs better than RTT, but worse
than both HOP and ETX. This is again due to the phe-
nomenon of self-interference. While the RTT metric suffers
from self-interference on all hops along the path, the PktPair
metric eliminates the self-interference problem on the first
hop. The impact of this can be seen in the median number
of paths (12) tried by a connection using the PktPair met-

ric. This number is lower than median using RTT (20.5),
but substantially higher than HOP and ETX.

Note that the ETX metric also uses several paths per con-
nection: the median is 4. This is because for a given node
pair, multiple paths that are essentially equivalent can ex-
ist between them. There are several such node pairs in our
testbed. Small fluctuations in the metric values of equiv-
alent paths can make ETX choose one path over another.
We plan to investigate route damping strategies to alleviate
this problem.

The self-interference, and consequent route flapping ex-
perienced the RTT metric has also been observed in wired
networks [18, 2]. In [18], the authors propose to solve the
problem by converting the RTT to utilization, and normal-
izing the resulting value for use as a route metric. In [2], the
authors propose to use hysteresis to alleviate route flapping.
We are currently investigating these techniques further. Our
initial results show that hysteresis may reduce the severity
of the problem, but not significantly so.

5.4 Impact of Path Length
The HOP metric produces significantly shorter paths than

the three other metrics. This is illustrated in Figure 9. The
bar chart shows the median across all 506 TCP transfers
of the average path length of each transfer. To calculate
the average path length of a TCP transfer, we keep track
of the paths taken by all the data-carrying packets in the
transfer. We calculate the average path length by weighting
the length of each unique path by the number of packets that
took that path. The error bars represent SIQR. The HOP
metric has the shortest median path length (2), followed by
ETX (3.01), RTT (3.43) and PktPair (3.58).

We now look at ETX and HOP path lengths in more de-
tail. In Figure 10, we plot the average path length of each
TCP transfer using HOP versus the average path length

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

K
bp

s)

Average Path Length

Figure 11: All Pairs: Throughput
as a function of path length under
HOP. The metric does a poor job
of selecting multi-hop paths.

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

K
bp

s)

Average Path Length

Figure 12: All Pairs: Throughput
as a function of path length under
ETX. The metric does a better job
of selecting multi-hop paths.

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

K
bp

s)

Average Path Length

Figure 13: All Pairs: Throughput
as a function of path length under
RTT. The metric does a poor job
of selecting even one hop paths.

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

K
bp

s)

Average Path Length

Figure 14: All Pairs: Throughput as a function
of path length under PktPair. The metric finds
good one-hop paths, but poor multi-hop paths.

using ETX. Again, the ETX metric produces significantly
longer paths than the HOP metric. The testbed diameter is
7 hops using ETX and 6 hops using HOP.

We also examined the impact of average path length on
TCP throughput. In Figure 11 we plot the throughput
of a TCP connection against its path length using HOP
while in Figure 12 we plot the equivalent data for ETX.
First, note that as one would expect, longer paths pro-
duce lower throughputs because channel contention keeps
more than one link from being active. Second, note that
ETX’s higher median throughput derives more from avoid-
ing lower throughputs than from achieving higher through-
puts. Third, ETX does especially well at longer path lengths.
The ETX plot is flat from around 5 through 7 hops, possibly
indicating that links at opposite ends of the testbed do not
interfere. Fourth, ETX avoids poor one-hop paths whereas
HOP blithely uses them.

We now look at the performance of RTT and PktPair in
more detail. In Figure 13 we plot TCP throughput versus
average path length for RTT while in Figure 14 we plot the
data for PktPair. RTT’s self-interference is clearly evident
in the low throughputs and high number of connections with
average path lengths between 1 and 2 hops. With RTT, even
1-hop paths are not stable. In contrast, with PktPair the
1-hop paths look good (equivalent to ETX in Figure 12) but
self-interference is evident starting at 2 hops.

5.5 Variability of TCP Throughput
To measure the impact of routing metrics on the variabil-

ity of TCP throughput, we carry out the following experi-

ment. We select 6 nodes on the periphery of the testbed, as
shown in Figure 2. Each of the 6 nodes then carried out a
3-minute TCP transfer to the remaining 5 nodes. The TCP
transfers were set sufficiently apart to ensure that no more
than one TCP transfer will be active at any time. There is
no other traffic in the testbed. We repeated this experiment
10 times. Thus, there were a total of 6× 5× 10 = 300 TCP
transfers. Since each transfer takes 3 minutes, the experi-
ment lasts for over 15 hours.

In Figure 15 we show the median throughput of the 300
TCP transfers using each metric. As before, the error bars
represent SIQR. Once again, we see that the RTT metric is
the worst performer, and the ETX metric outperforms the
other three metrics by a wide margin.

The median throughput using the ETX metric is 1133Kbps,
while the median throughput using the HOP metric is 807.5.
This represents a gain of 40.3%. This gain is higher than the
23.15% obtained in the previous experiment because these
machines are on the periphery of the network, and thus, the
paths between them tend to be longer. As we have noted in
Section 5.4, the ETX metric tends to perform better than
HOP on longer paths. The higher median path lengths sub-
stantially degrades the performance of RTT and PktPair,
compared to their performance shown in Figure 7.

The HOP metric selects the shortest path between a pair
of nodes. If multiple shortest paths are available, the met-
ric simply chooses the first one it finds. This introduces
a certain amount of randomness in the performance of the
HOP metric. If multiple TCP transfers are carried out be-
tween a given pair of nodes, the HOP metric may select
different paths for each transfer. The ETX metric, on the
other hand, selects “good” links. This means that it tends
to choose the same path between a pair of nodes, as long
as the link qualities do not change drastically. Thus, if sev-
eral TCP transfers are carried out between the same pair of
nodes at different times, they should yield similar through-
put using ETX, while the throughput under HOP will be
more variable. This fact is illustrated in Figure 16.

The figure uses coefficient of variation (CoV) as a measure
of variability. CoV is defined as standard deviation divided
by mean. There is one point in the figure for each of the 30
source-destination pairs. The X-coordinate represents CoV
of the throughput of 10 TCP transfers conducted between
a given source-destination pair using ETX, and the Y co-
ordinate represents the CoV using HOP. The CoV values are

0

300

600

900

1200

1500

HOP ETX RTT PktPair

T
hr

ou
gh

pu
t (

K
bp

s)

Metric

Figure 15: 30 Pairs: Median throughput with dif-
ferent metrics.

significantly lower with ETX. Note that a single point lies
well below the diagonal line, indicating that HOP provided
more stable throughput than ETX. This point represents
TCP transfers from node 23 to node 10. We are currently
investigating these transfers further. It is interesting to note
that for the reverse transfers, i.e. from node 10 to node 23,
ETX provides lower CoV than than HOP.

5.6 Multiple Simultaneous TCP Transfers
In the experiments described in the previous section, only

one TCP connection was active at any time. This is un-
likely to be the case in a real network. In this section, we
compare the performance of ETX, HOP and PktPair for
multiple simultaneous TCP connections. We do not con-
sider RTT since its performance is poor even with a single
TCP connection.

We use the same set of 6 peripheral nodes shown in Fig-
ure 2. We establish 10 TCP connections between each dis-
tinct pair of nodes. Thus, there are a total of 6×5×10 = 300
possible TCP connections. Each TCP connection lasts for
3 minutes. The order in which the connections are estab-
lished is randomized. The wait time between the start of
two successive connections determines the number of simul-
taneously active connections. For example, if the wait time
between starting consecutive connections is 90 seconds, then
two connections will be active simultaneously. We repeat
the experiment for various numbers of simultaneously ac-
tive connections.

For each experiment we calculate the median throughout
of the 300 connections, and multiply it by the number of
simultaneously active connections. We call this product the
Multiplied Median Throughput (MMT). MMT should in-
crease with the number of simultaneous connections, until
the load becomes too high for the network to carry.

In Figure 17 we plot MMT against the number of simul-
taneous active connections. The figure shows that the per-
formance of the PktPair metric gets significantly worse as
the the number of simultaneous connections increase. This
is because the self-interference problem gets worse with in-
creasing load. In the case of ETX, the MMT increases to
a peak at 5 simultaneous connections. The MMT growth
is significantly less than linear because there is not much
parallelism in our testbed (many links interfere with each
other) and the increase that we are seeing is partly because
a single TCP connection does not fully utilize the end-to-
end path. We believe the MMT falls beyond 5 simultaneous
connections due to several factors, including 802.11 MAC
inefficiencies and instability in the ETX metric under very
high load. The MMT using HOP deteriorates much faster

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

H
O

P
 T

hr
ou

gh
pu

t C
oV

ETX Throughput CoV

Figure 16: 30 Pairs: The lower CoVs under ETX
indicate that ETX chooses stable links.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 9 18

Number of simultaneous TCP connections

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(K

b
p

s)

HOP ETX PktPair

Figure 17: Throughputs with multiple simulta-
neous TCP connections.

than it does with ETX. As discussed in Section 5.8, at higher
loads HOP performance drops because link-failure detection
becomes less effective.

5.7 Web-like TCP Transfers
Web traffic constitutes a significant portion of the total

Internet traffic today. It is reasonable to assume that web
traffic will also be a significant portion of traffic in wireless
meshes such as the MIT Roofnet [26]. The web traffic is
characterized by the heavy-tailed distribution of flow sizes:
most transfers are small, but there are some very large trans-
fers [21]. Thus, it is important to examine the performance
of web traffic under various routing metrics.

To conduct this experiment, we set up a web server on host
128. The six peripheral nodes served as web clients. The
web traffic was generated using Surge [5]. The Surge soft-
ware has two main parts, a file generator and a request gen-
erator. The file generator generate files of varying sizes that
are placed on the web server. The Surge request generator
models a web user that fetches these files. The file generator
and the request generator offer a large number of parameters
to customize file size distribution and user behaviors. We
ran Surge with its default parameter settings, which have
been derived through modeling of empirical data [5].

Each Surge client modeled a single user running HTTP 1.1
Each user session lasted for 40 minutes, divided in four slots
of 10 minutes each. Each user fetched over 1300 files from
the web server. The smallest file fetched was 77 bytes long,
while the largest was 700KB. We chose to have only one
client active at any time, to allow us to study the behavior
of each client in detail. We measure the latency or each
object: the amount of time elapsed between the request for
an object, and the completion of its receipt. Note that we
are ignoring any rendering delays.

0

5

10

15

20

25

30

1 10 20 23 68 100

Host

M
ed

ia
n

 L
at

en
cy

 (
m

s)

HOP ETX

Figure 18: Median latency for all
files fetched

0

2

4

6

8

10

12

14

16

1 10 20 23 68 100

Host

M
ed

ia
n

 L
at

en
cy

 (
m

s)

HOP ETX

Figure 19: Median latency for files
smaller than 1KB

0

20

40

60

80

100

120

140

160

180

1 10 20 23 68 100

Host

M
ed

ia
n

 L
at

en
cy

 (
m

s)

HOP ETX

Figure 20: Median latency for files
larger than 8KB

In Figure 18, we plot the median latencies experienced
by each client. It can be seen that ETX reduces the laten-
cies observed by clients that are further away from the web
server. This is consistent with our earlier finding ETX tends
to perform better than HOP on longer paths. For host 23,
100 and 20, the median latency under ETX is almost 20%
lower than the median latency under HOP. These hosts are
relatively further away from the webserver running on host
128. On the other hand, for host 1, the median latency un-
der HOP is lower by 20%. Host 1 is just one hop away from
the web server. These results are consistent with the results
in Section 5.4: on longer paths, ETX performs better than
HOP, but on one-hop paths, the HOP metric sometimes
performs better.

To study whether the impact of ETX is limited to large
transfers we studied the median response times for small ob-
jects, i.e. files that are less than 1KB in size and large ob-
jects, i.e., those over 8KB in size. These medians are shown
in Figures 19 and 20, respectively. The benefit of ETX is
indeed more evident in case of larger transfers. However,
ETX also reduces the latency of small transfers by signifi-
cant proportion. This is particularly interesting as the data
sent from the server to client in such small transfers fits in-
side a single TCP packet. It is clear that even for such short
transfers, the paths selected by ETX are better.

5.8 Discussion
We conclude from our results that load-sensitivity is the

primary factor determining the relative performance of the
three metrics. The RTT metric is the most sensitive to
load; it suffers from self-interference even on one-hop paths
and has the worst performance. The PktPair metric is not
affected by load generated by the probing node, but it is
sensitive to other load on the channel. This causes self-
interference on multi-hop paths and degrades performance.
The ETX metric has the least sensitivity to load and it per-
forms the best.

Our experience with HOP leads us to believe that its per-
formance is very sensitive to competing factors controlling
the presence of poor links in the link cache. Consider the
evolution of a route during a long data transfer. When
the transfer starts, the link cache contains a fairly com-
plete topology, including many poor links. The shortest-
path Dijkstra computation picks a route that probably in-
cludes poor (lossy or slow) links. Then as the data transfer
proceeds, Route Maintenance detects link failures and sends
Route Error messages, causing the failed link to be removed
from link caches. Since poor links suffer link failures more
frequently than good links, over time the route tends to im-

0

100

200

300

400

500

600

HOP ETX

Metric

M
ed

ia
n

 T
C

P
 T

h
ro

u
g

h
p

u
t

(K
b

p
s)

Figure 21: Median Throughput of 45 1-minute TCP
transfers with mobile sender using HOP and ETX.

prove. However this process can go too far: if too many
links are removed, the route can get longer and longer until
finally there is no route left and the node performs Route
Discovery again. On the other hand, a background load of
unrelated traffic in the network tends to repopulate the link
cache with good and bad links, because of the caching of link
existence from overheard or forwarded packets. The compe-
tition between these two factors, one removing links from the
link cache and the other adding links, controls the quality
of the HOP metric’s routes. For example, originally LQSR
sent Link Info messages when using HOP. When we changed
that, to make LQSR with HOP behave more like DSR, we
saw a significant improvement in median TCP throughput.
This is because the background load of Link Info messages
was repopulating the link caches too quickly, reducing the
effectiveness of the Route Error messages.

Our study has several limitations that we would like to
correct in future work. First, our data traffic is entirely
artificial. We would prefer to measure the performance of
real network traffic generated by real users. Second, we do
not investigate packet loss and jitter with constant-bit-rate
datagram traffic. This would be relevant to the performance
of multimedia traffic. We would also like to investigate per-
formance of other wireless link quality metrics such as signal
strength.

6. A MOBILE SCENARIO
In the traffic scenarios that we have considered so far,

all the nodes have been stationary. In community networks
like [6, 27, 26] most nodes are indeed likely to be station-
ary. However, in most other ad hoc wireless networks, at
least some of the nodes are mobile. Here, we consider a sce-
nario that involves a single mobile node, and compare the
performance of ETX and HOP metrics.

The layout of our testbed is shown in Figure 2. We set up
a TCP receiver on node 100. We slowly and steadily walked

around the periphery of the network with a Dell Latitude
Laptop, equipped with a NetGear card. A process running
on this laptop repeatedly established a TCP connection to
the receiver running on node 100, and transferred as much
data as it could in 1 minute. We did 15 such transfers in
each walk-about. We did 3 such walk-abouts each for ETX
and HOP. Thus, for each metric we did 45 TCP transfers.

The median throughput of these 45 transfers, along with
SIQR is shown in Figure 21. We choose median over mean
since the distribution of throughputs is highly skewed. The
median throughput under HOP metric is 36% higher than
the median throughput under the ETX metric. Note also
that the SIQR for ETX is 173, which is comparable to the
SIQR of 188 for HOP. Since the median throughput under
ETX is lower, the higher SIQR indicates greater variability
in throughput under ETX.

As the sender moves around the network, the ETX met-
ric does not react sufficiently quickly to track the changes in
link quality. As a result, the node tries to route its packets
using stale, and sometimes incorrect information. The sal-
vaging mechanisms built into LQSR do help to some extent,
but not well enough to overcome the problem completely.
Our results with PktPair (not included here) indicate that
that this problem is not limited to just the ETX metric.
Any approach that tries to measure link quality will need
some time to come up with a stable measure of link quality.
If during this time the mobile user moves sufficiently, the
link quality measurements would not be correct. Note that
we do have penalty mechanisms built into our link qual-
ity measurements. If a data packet is dropped on a link,
we penalize the metric as described in Section 2. We are
investigating the possibility that by penalizing the metric
more aggressively on data packet drops we can improve the
performance of ETX.

The HOP metric, on the other hand, faces no such prob-
lems. It uses new links as quickly as the node discovers
them. The efficacy of various DSR mechanisms to improve
performance in a mobile environment has been well docu-
mented [15]. The metric also removes from link cache any
link on which a node suffers even one packet loss. This mech-
anism, which hurts the performance of HOP metric under
heavy load, benefits it in the mobile scenario.

We stress that this experiment is not an attempt to draw
general conclusions about the suitability of any metric for
routing in mobile wireless networks. Indeed, such conclu-
sions can not be drawn from results of a single experiment.
This experiment only serves to underscore the fact that
static and mobile wireless networks can present two very
different sets of challenges, and solutions that work well in
one setting are not guaranteed to work just as well in an-
other.

7. RELATED WORK
There is a large body literature comparing the perfor-

mance of various ad hoc routing protocols. Most of this
work is simulation-based and the ad hoc routing protocols
studied all minimize hop-count. Furthermore, many of these
studies focus on scenarios that involve significant node mo-
bility. For example, Broch et al. [7] compared the perfor-
mance of DSDV [23], TORA [22], DSR [15], and AODV [24]
via simulations.

The problem of devising a link-quality metric for static
80.211 ad hoc networks has been studied previously. Most

notably, De Couto et al. [9] propose ETX and compare its
performance to HOP using DSDV and DSR with a small-
datagram workload. Their study differs from ours in many
aspects. They conclude that ETX outperforms HOP with
DSDV, but find little benefit with DSR. They only study
the throughput of single, short (30 second) data transfers
using small datagrams. Their experiments include no mo-
bility. In contrast, we study TCP transfers. We examine
the impact of multiple simultaneous data transfers. We
study variable-length data transfers and in particular, look
at web-like workloads where latency is more important than
throughput. Finally, our work includes a scenario with some
mobility. Their implementation of DSR differs from ours in
several ways, which may partly explain our different results.
They do not have Metric Maintenance mechanisms. In their
testbed (as in ours), the availability of multiple paths means
after the initial route discovery the nodes rarely send Route
Requests. Hence during their experiments, the sender effec-
tively routes using a snapshot of the ETX metrics discovered
at the start of the experiment. Their implementation takes
advantage of 802.11 link-layer acknowledgments for failure
detection. This means their link-failure detection is not vul-
nerable to loss, or perceived loss due to delay. Their imple-
mentation does not support salvaging. They mitigate this
in their experiments by sending five “priming” packets be-
fore starting each data transfer. Their implementation uses
a “blacklist” mechanism to cope with asymmetric links. Fi-
nally, their implementation has no security support and does
not use cryptography so it has much less CPU overhead.

Woo et al. [28] examines the interaction of link quality and
ad hoc routing for sensor networks. Their scheme is based
on passive observation of packet reception probability. Using
this probability, they compare several routing protocols in-
cluding shortest-path routing with thresholding to eliminate
links with poor quality and ETX-based distance-vector rout-
ing. Their study uses rate-limited datagram traffic. They
conclude that ETX-based routing is more robust.

Signal-to-noise ratio (SNR), has been used as a link qual-
ity metric in several routing schemes for mobile ad hoc net-
works. For example, in [12] the authors use an SNR thresh-
old value to filter links discovered by DSR Route Discovery.
The main problem with these schemes is that they may end
up excluding links that are necessary to maintain connec-
tivity. Another approach is used in [11], where links are still
classified as good and bad based on a threshold value, but
a path is permitted to use poor-quality links to maintain
connectivity. Punnoose et. al. [25] also use signal strength
as a link quality metric. They convert the predicted sig-
nal strength into a link quality factor, which is used as-
sign weights to the links. Zhao and Govindan [29]. studied
packet delivery performance in sensor networks, and discov-
ered that high signal strength implies low packet loss, but
low signal strength does not imply high packet loss. We plan
to study the SNR metric in our testbed as part of our future
work. Our existing hardware and software setup does not
provide adequate support to study this metric.

Awerbuch et. al. [4] study impact of automatic rate se-
lection on performance of ad hoc networks. They propose a
routing algorithm that selects a path with minimum trans-
mission time. Their metric does not take packet loss into
account. It is possible to combine this metric with the ETX
metric, and study performance of the combined metric. This
is also part of our future work.

An implementation of AODV that uses the link-filtering
approach, based on measurement of loss rate of unicast probes,
was demonstrated in a recent IETF meeting [3, 19]. We plan
to test this implementation in our testbed.

8. CONCLUSIONS
We have examined the performance of three candidate

link-quality metrics for ad hoc routing and compared them
to minimum hop-count routing. Our results are based on
several months of experiments using a 23-node static ad hoc
network in an office environment. The results show that
with stationary nodes the ETX metric significantly outper-
forms hop-count. The RTT and PktPair metrics perform
poorly because they are load-sensitive and hence suffer from
self-interference. However, in a mobile scenario hop-count
performs better because it reacts more quickly to fast topol-
ogy change.

Acknowledgments
Yih-Chun Hu implemented DSR within the MCL framework
as part of his internship project. This was our starting point
for developing LQSR. We would like to thank Atul Adya,
Victor Bahl and Alec Wolman for several helpful discussions
and suggestions. We would also like to thank the anonymous
reviewers for their feedback. Finally, we would like to thank
the support staff at Microsoft Research for their help with
various system administration issues.

9. REFERENCES
[1] A. Adya, P. Bahl, J. Padhye, A. Wolman, and

L. Zhou. A multi-radio unification protocol for IEEE
802.11 wireless networks. In BroadNets, 2004.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek,
and R. Morris. Resilient overlay networks. In SOSP,
2001.

[3] AODV@IETF. http://moment.cs.ucsb.edu/aodv-ietf/.

[4] B. Awerbuch, D. Holmer, and H. Rubens. High
throughput route selection in mult-rate ad hoc
wireless networks. Technical report, Johns Hopkins CS
Dept, March 2003. v 2.

[5] P. Bardford and M. Crovella. Generating
representative web workloads for network and server
performance evaluation. In SIGMERICS, Nov. 1998.

[6] Bay area wireless users group.
http://www.bawug.org/.

[7] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop
wireless ad hoc network routing protocols. In
MOBICOM, Oct. 1998.

[8] D. De Couto. Personal communication, Nov. 2003.

[9] D. De Couto, D. Aguayo, J. Bicket, and R. Morris.
High-throughput path metric for multi-hop wireless
routing. In MOBICOM, Sep 2003.

[10] R. Draves, J. Padhye, and B. Zill. The architecture of
the Link Quality Source Routing Protocol. Technical
Report MSR-TR-2004-57, Microsoft Research, 2004.

[11] T. Goff, N. Abu-Aahazaleh, D. Phatak, and
R. Kahvecioglu. Preemptive routing in ad hoc
networks. In MOBICOM, 2001.

[12] Y.-C. Hu and D. B. Johnson. Design and
demonstration of live audio and video over multi-hop
wireless networks. In MILCOM, 2002.

[13] P. Huang and J. Heidemann. Capturing tcp burstiness
for lightweight simulation. In SCS Multiconference on
Distributed Simulation, Jan. 2001.

[14] R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley and Sons, Inc., 1991.

[15] D. B. Johnson and D. A. Maltz. Dynamic source
routing in ad-hoc wireless networks. In T. Imielinski
and H. Korth, editors, Mobile Computing. Kluwer
Academic Publishers, 1996.

[16] R. Karrer, A. Sabharwal, and E. Knightly. Enabling
Large-scale Wireless Broadband: The Case for TAPs.
In HotNets, Nov 2003.

[17] S. Keshav. A Control-theoretic approach to flow
control. In SIGCOMM, Sep 1991.

[18] A. Khanna and J. Zinky. The Revised ARPANET
Routing Metric. In SIGCOMM, 1989.

[19] L. Krishnamurthy. Personal communication, Dec.
2003.

[20] J. Moy. OSPF Version 2. RFC2328, April 1998.

[21] K. Park, G. Kim, and M. Crovella. On the
relationship between file sizes, transport protocols and
self-similar network tarffic. In ICNP, 1996.

[22] V. D. Park and M. S. Corson. A highly adaptive
distributed routing algorithm for mobile wireless
networks. In INFOCOM, Apr 1997.

[23] C. E. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance vector routing (dsdv)
for mobile computeres. In SIGCOMM, Sep. 1994.

[24] C. E. Perkins and E. M. Royer. Ad-hoc on-demand
distance vector routing. In WMCSA, Feb 1999.

[25] R. Punnose, P. Nitkin, J. Borch, and D. Stancil.
Optimizing wireless network protocols using real time
predictive propagation modeling. In RAWCON, Aug
1999.

[26] MIT roofnet. http://www.pdos.lcs.mit.edu/roofnet/.

[27] Seattle wireless. http://www.seattlewireless.net/.

[28] A. Woo, T. Tong, and D. Culler. Taming the
underlying challenges of reliable multihop routing in
sensor networks. In SenSys, Nov 2003.

[29] J. Zhao and R. Govindan. Understanding packet
delivery performance in dense wireless sensor
networks. In SenSys, Nov. 2003.

