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ABSTRACT
Imagine a user typing on a laptop keyboard while wearing a
smart watch. This paper asks whether motion sensors from the
watch can leak information about what the user is typing. While
its not surprising that some information will be leaked, the ques-
tion is how much? We find that when motion signal processing
is combined with patterns in English language, the leakage is
substantial. Reported results show that when a user types a word
W , it is possible to shortlist a median of 24 words, such that W
is in this shortlist. When the word is longer than 6 characters,
the median shortlist drops to 10. Of course, such leaks happen
without requiring any training from the user, and also under
the (obvious) condition that the watch is only on the left hand.
We believe this is surprising and merits awareness, especially in
light of various continuous sensing apps that are emerging in
the app market. Moreover, we discover additional “leaks” that
can further reduce the shortlist – we leave these exploitations to
future work.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection — Invasive software; C.3 [Special-
purpose and Application-based Systems]: Real-time and em-
bedded systems

Keywords
motion leaks; smartwatch; side-channel attacks; accelerometer;
gyroscope; security; malware; Bayesian inference; gesture

1. INTRODUCTION
Rich sensors on wearable devices are offering valuable data, en-
abling important applications in mobile health, user-interfaces,
context-awareness, activity tracking, gaming, etc. Of course,
such data are often “double edged swords” since they leak infor-
mation about aspects of lives that are considered private. In our
struggle to define what level of data exposure is appropriate, the
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core question often comes to: what can be inferred from a given
sensor data? Every so often, we find that highly surprising infer-
ences can be made from an apparently harmless data, forcing
us to push back on information exposure. While this is a broad
area of research, and immense work has been performed in this
direction, new platforms and applications warrant a continuous
vigil on information leakage. This paper looks into a narrow
piece of this general problem. We ask: can accelerometer and
gyroscope data from smart watches be mined to infer the words
that a user is typing. In other words, given that a user’s wrist
moves in the granularity of few centimeters while typing, can
the corresponding motion data be used to derive the keys that
the user has typed? If so, the ramifications are serious – a smart
watch app can be disguised as an activity tracker to heavily
leak a user’s emails, search queries, and other keyboard-typed
documents. Unlike keystroke loggers that need to find loopholes
in the operating system, the activity tracker malware can obtain
the user’s permission and easily launch a side channel attack.

Of course, this is not the first work that combines motion
data processing with language structure to infer higher level
semantics. Recent research have explored various systems
and applications, including writing in the air [1], remote con-
trol [2], gesture-based signing and authentication [3, 4], smoking
gestures [5], etc. While all these systems bear similarity in ab-
straction, unique challenges (and opportunities) emerge when
a particular application is addressed end to end. In our case,
we find that the absence of data from the right hand is a unique
constraint, and so is the issue of inferring which finger executed
the key-press. For a given position of the wrist watch, any one
of 3 or 4 different keys could have been pressed, which could
be further interspersed by unknown number of keys pressed by
the right hand. Moreover, not all users type with equal dexterity
– some use their little finger far less efficiently while others use
specific fingers when it comes to digits or corner keys. Finally,
detecting the typed key is also a function of where the finger
was previously, injecting a notion of dependency between con-
secutive inferences. With these and more application-specific
issues, global typing or motion models do not apply. While fun-
damentally new signal processing or learning algorithms may
not be needed, modifying existing techniques and systematically
integrating them into a whole is the crux of our contribution.

Importantly, the application of typing also offers a number of
opportunities that should be leveraged to improve the inference
capability of the watch. For instance, the watch motion is mostly
confined to the 2D keyboard plane, in contrast to 3D gestures in
air in other applications [3,6]. The orientation of the watch is rel-
atively uniform across various users and, in many users, moves



back to a reference position while typing (the “F” and “J” keys).
Finally, knowing spelling priors from English dictionary further
helps in developing Bayesian decisions. The combination of
these challenges and opportunities motivates the research, with
the aim of quantifying the degree of information leakage.

This paper develops Motion Leaks (MoLe), a completely func-
tional system on Samsung Gear Live smart watches. Briefly, two
of the authors pretend to be attackers and type 500 words each
wearing the smart watch on their left wrist. The accelerome-
ter and gyroscope data is used as training data, and processed
through a sequence of steps, including key-press detection,
hand-motion tracking, character point cloud computation, and
Bayesian modeling and inference. Then, 8 different volunteers
are recruited, and each asked to type 300 different English words
from a dictionary. The smart-watch sensor data from the vol-
unteers are transferred to our server, which then short-lists K
words, ranked in the decreasing order of probability (i.e., the first
ranked word is considered the most probable guess). The actual
words typed by volunteers are then revealed and each word’s
rank computed from the short-list.

We plot the distribution of rank across all the typed words. With
this being the core of the evaluation methodology, we obviously
test for various parameters and conditions, including different
word lengths, sensor sampling rate, different keyboards, etc. Cur-
rent limitations of this work include: (1) inability to infer non-
valid English words, such as passwords; (2) scalability across dif-
ferent watch models; (3) inability to parse sentences due to diffi-
culties in detecting the “space bar”. We have also not tested with
other wearable devices, such as Fitbits – we believe with some
customization, the attacks can be launched on those platforms
as well.

In light of these, the main contributions in the paper may be
summarized as:

• Identifying the possibility of leakage when users type while
wearing a smart watch. Developing the required building
blocks through techniques in key-press detection, hand-
motion tracking, cross-user data matching, and Bayesian
inference.

• Developing the system on Samsung Gear Live smart watches
and experimenting with real users. Performing experi-
ments across 8 users and revealing how typed words can
be inferred with reasonable accuracy. Individuals who
came to know about our results expressed a sense of alarm
and suggested that the findings be disseminated publicly.

The rest of the paper expands on these contributions, beginning
with some groundwork and measurements, followed by system
overview, assumptions, design detail, and evaluation.

2. SMART WATCH DATA: A FIRST LOOK
To understand the problem landscape, we take a first look into
the data from smart watches. Basic questions pertain to the
amount of wrist displacement for typed keys, whether displace-
ments for nearby keys are even visually discernible, whether the
displacements are consistent over time, etc. To this end, two of
the authors wore a smart watch and recorded the accelerometer
and gyroscope data as they typed each character one by one. The
positive X axis of the watch is parallel to the arm and pointed
towards the fingers, the positive Y axis is perpendicular and
upward, and the positive Z axis pointed upwards from the plane

of the arm. To capture ground truth, we placed a phone camera
right on top of the keyboard and recorded video at 30 fps (Figure
1). A green and a yellow sticker placed on the watch helps with
tracking the watch movement by using computer vision tech-
niques. The watch, the phone camera, and the keyboard logger
were all time–synchronized via the network time protocol (NTP).
The synchronization offers precise correspondence between
the sensor and visual data, extending semantic meaning to the
motion signals.

Watch&Coordinate&

Figure 1: Watch coordinate system and ground truth mea-
surement by recording hand typing with a smartphone camera
view.

Figure 2 shows an example sequence of video frames capturing
the process of typing the character “T”. The left hand starts from
a home position (i.e., the key “F”), moves along the +X direction
to press “T”, hits the key, and returns back to the home position.
The yellow arrow on the arm shows the displacement of the green
marker on the watch.

F

T T

F F

T

Figure 2: 3 video frames show the process of typing “T” from
“F”.

Figure 3 plots motion data from 20 different characters located
on the left side of the keyboard. For each graph, the X axis is time
and the Y axis is the displacement of the watch computed from
the accelerometer’s X axis data (the accelerometer’s Y and Z axes
are not shown). The light gray vertical bar in each graph marks
the time of the key-press, obtained from the keyboard logger.
Observe that the displacements align well with the keyboard’s
layout. The first row (12345) generates the largest positive
displacement and the last row (zxcvb) produces negative dis-
placement. The left fingers are initially placed on the third row
(asdf), so nearly no displacement is detected for these charac-
ters. Although preliminary, these signals offer first indication of
information leakage through watches.

Figure 4 shows the watch displacement for the same 20 keys, but
in 2D space (i.e., using the combined X and Y axes data from the
accelerometer). Each color represents one row on the keyboard.
While some keys (e.g., 1, t, r, 4, 5) are quite isolated, others over-
lap strongly – in particular, “asdf”, “zxcv” and “q23” exhibit the
strongest overlaps. This is not surprising. Cluster “asdf” is an
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Figure 3: The watch X axis displacements while a human types
20 characters. In the figures, X axis is time in seconds and Y axis
is watch X axis displacement in millimeter. The gray bar shows
the keystroke press and release time interval.

outcome of the fingers being on these keys in the home position
– the wrist hardly needs to move when typing these keys. Simi-
larly, the fingers move uniformly downward for “zxcv” resulting
in similarity between the keys. Finally, the hand movement for
“q” is similar to “2” and “3” even though they are all not on the
same row. This is because the little finger is shorter, and to type
the character “q”, it must move as much as the ring finger must
move to type “2”.
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Figure 4: Watch 2D displacements while a human types 20 char-
acters with her left hand. Each character is typed repeatedly
5 times. (0,0) is the initial location when left hand fingers are
placed on home position (“asdf”). Note that X and Y axes in the
graph are in the watch’s coordinate system.

Decoding characters gets more complicated when the user types
a word rather than just a single character. Figure 5 shows the
sequence of hand displacements where the word “teacher” is
typed. Obvious issues emerge: The wrist motion for each char-
acter is no longer aligned with the earlier observations since the
motion is relative to the previous position of the key. Observe
that “e”, “a” and “c” are all far away from their respective clusters
detected earlier in Figure 4. Moreover, we did not record “h”
(pressed by the right hand), rather a small random motion of the
left hand during this time. Finally, real world environments do
not have cameras, and hence the data is completely unlabeled –
a wrong decision about any of the keys can derail all subsequent
decisions. In sum, while sensor data from smart watches indeed

encode the human–typed information, decoding them reliably
in real world conditions presents non-trivial challenges.

X Displacement (mm)

-10 0 10 20 30

Y
 D

is
p

la
c
e

m
e

n
t 

(m
m

)

-5

0

5

10

e

r

ta

c

e

r

t
a

c

e

r

t
a

c

e r

ta
c

e
r

t
a

c
te

a

c

e r

Figure 5: Comparison of typing “teacher” continuously (in
black) against each character separately (in gray). Note that the
positions of “e”, “a” and “c” are away from their original points
due to sequential typing. Also, “h” is not captured due to right
hand typing.

3. SYSTEM OVERVIEW
This section presents a functional overview of MoLe; details of
the technical building blocks will follow in Section 4. In the sce-
nario of interest, we assume that the attacker has successfully in-
stalled the MoLe app in the user’s smart watch and is receiving
accelerometer and gyroscope data at the MoLe cloud server.

Figure 6 illustrates the flow of operations in the end to end MoLe
system. At the backend server, the attacker types each character
on a computer keyboard multiple times and computes a charac-
ter point cloud (CPC) similar to the one in Figure 4. The operation
is performed offline, and is stored separately for use later. The
cloud can also be computed from multiple people (e.g., accom-
plices of the attacker) strengthening the robustness of the attack.

Now, when the raw sensor data from the user arrives, it is passed
through a “Keystroke Detection” module, responsible for two
tasks. (1) It detects the timing of each key stroke by analyzing the
Z axis of the sensor data – every time a user presses a key, the
watch exhibits a discernible dip in the negative Z axis. (2) It com-
putes the net 2D displacement of the watch by processing the
signal through multiple steps, including gravity removal, mean
removal, double integration, and Kalman Filtering. The output of
the keystroke detection module is a set of < locati oni , t i mei >
tuples, where l ocati oni denotes the estimated location of the
watch at t i mei when the key was pressed. When all the lo-
cations are plotted on the 2D plane, an unlabeled point cloud
(UPC) emerges (note that the characters corresponding to each
point in this cloud is not known). Figure 7 shows a comparison of
the character point cloud developed offline by the attacker and
an unlabeled point cloud computed from the attackee’s data.

The UPC is forwarded to the “Cloud Fitting” module whose task
is to assign approximate labels to the points in UPC. For this, the
cloud fitting module obtains the CPC that was computed earlier,
and scales and rotates the convex hull of the CPC to best fit the
convex hull of the UPC. The output is a rotated and scaled CPC
which serves as the reference template for decoding the unlabeled
points in UPC.
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Figure 6: System Overview: The typed data from users are pre-processed through gravity removal and timing analysis blocks, super-
imposed on the refitted typing templates, and passed through a Bayesian inference model that leverages the patterns and structures
in English words to ultimately decode the typed words. Note, training is only required from the attacker’s end; no training needed
for the user.
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Figure 7: (a) Character point cloud computed from attackers
data; (b) Unlabeled point cloud computed from user’s data.

A “Bayesian Inference” module now accepts three items as input:
(1) the template output from Cloud Fitting, (2) the unlabeled
points from the UPC, and (3) a dictionary W of valid English
words, wi

1. Briefly, for each valid word wi , the Bayesian Infer-
ence module (BIM) computes the a posteriori probability that the
unlabeled points form wi . For instance, if wi is the word “dear”,
BIM computes the probability that the first unlabeled point is
“d”, the second unlabeled point is “e”, and so on. The product of
the probabilities is the final probability that the unlabeled points
is the word “dear”. BIM computes this probability for each word
wi , and outputs a ranked list of < wor d , pr obabi l i t y > tuples
as a guess of the user-typed word. If its a password, the attacker
can now try out all the guesses above some probability threshold;
if its an email or a search query, the attacker could manually try
to decode the text from the possible sets of words. Even though
MoLe does not offer a single suggestion, the probability estimate
associated to each guess dramatically reduces the search space
for the attacker. Results in Section 5.2 will quantify this reduction
from the attacker’s point of view.

1For practical purposes, W contains the 5000 most frequently
used English words, available from [7].

3.1 Assumptions
Before moving forward, we intend to enumerate a number of as-
sumptions we make. These assumptions make MoLe inadequate
for launching a real life attack, however, we believe that the as-
sumptions are not fundamental and can be relaxed with some
more work.

• The evaluation is performed in a controlled environment where
volunteers type one word at a time (as opposed to free-flowing
sentences).

• We assume valid English words – passwords that contain inter-
spersed digits, or non-English character-sequences, are not de-
codable as of now.

• We have used the same Samsung smart watch model for both
the attacker and the user – in reality the attacker can generate
the CPC for different watch models and use the appropriate one
based on the user’s model.

• We assume the user is seasoned in typing in that he/she roughly
uses the appropriate fingers – novice typists who do not abide by
basic typing rules may not be subject to our proposed attacks.

Under these assumptions, the design details and evaluation of
MoLe are presented next.

4. DESIGN DETAILS
We describe the main techniques executed by each module in
Figure 6.

4.1 Keystroke Detector
Given sensor signals as input, this module is responsible for com-
puting the time and location of each key-press present in the sig-
nal. The location is essentially a 2D vector with the origin as the
“F” key on the keyboard. Aggregating all the key-press locations
will yield the point cloud as discussed earlier.



Key-press Timing
The intuition to detect key presses is rooted in the hand’s mo-
tion in the vertical direction. When the finger dips while typing a
key, the wrist also undergoes a partial dipping motion, expected
to reflect in the Z axis of the watch. Figure 8 shows an example
of the Z axis motion when the user types the word “administra-
tive”. Using ground truth, we observe that the actual key presses
generally produce prominent peaks, however, false positives and
false negatives occur. False positive occur mainly during tran-
sition from one key to another – the hand moves up slightly to
make the movement, which manifests in Z-axis motion. False
negatives typically arise due to subtle Z axis motion for keys like
“asdf” that can go undetected.
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Figure 8: A simple peak detection scheme to detect keystrokes.
The left Y-axis represents acceleration and the right Y-axis indi-
cates displacement. Note that, for “a”,“d”,“s” keystrokes, lower
Z-axis acceleration is generated because of left hand’s initial
position. At time 2.7 and 3 seconds, there are two false detec-
tions due to the left hand moving from “a” to “t” and from “t” to
“v”.

To cope with these issues, we use bagged decision trees to clas-
sify keystrokes. A bagged decision tree is a ensemble classifier
that trains multiple decision trees by selecting different sub-
sets of feature and training examples. The classifier improves
the stability and accuracy by letting each subtree learn on the
attacker’s labeled data, apply the learning to the unlabeled
data, and then compute the final results via voting. To obtain
the labeled data, we first apply a simple threshold-based peak
detection method [8] on the Z axis acceleration, and label
true/false detection on the attacker’s template. We purposely set
the peak detection threshold to be low so that we do not miss
true keystrokes. Then we extract features within a time window
around the labels and train the classifier.

The feature set includes: the width, height, prominence of the Z
axis peak; the mean, variance, max, min, skewness, and kurtosis
for each of the 3-axis displacement, velocity, acceleration, and
gyroscope rotation; the magnitude of acceleration/gyroscope;
and finally the correlation of each pair between acceleration
and gyroscope vectors. When the attackee’s sensor data arrives,
we apply the same peak detection scheme and obtain many
candidate keystrokes and their features. Then the classifier
identifies the validity of the keystroke and selects the max value
of Z axis acceleration to denote the timing of the key-press.
Figure 9 shows an example of the classification result of the word
“administrative”.
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Figure 9: Bagged decision classification results: A peak detec-
tion tool with low thresholds is first applied to the Z-axis accel-
eration data and marks potential keystrokes (both yellow tri-
angles and green circles). The classifier then identifies whether
the peaks are keystrokes or not. Note that for the first “a” and
“d”, since two peaks are too close, the classifier would identify
only one peak with highest Z-axis acceleration within a time
window.

Figure 10 shows the detection rate for each key press when us-
ing one author’s template model to test on 8 different volunteer
recruited in section 5.1 (and ground truth recorded by the key-
board logger software). Expectedly, the keys pressed by the right
hand are largely undetected.
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Figure 10: Keystroke detection rate for each character.

Key-Press Location Estimation
The core challenge here pertains to tracking the hand motion as
it moves from one key to another, and therefrom, infer the loca-
tion of each key-press. Tracking over time is non-trivial since the
required accuracy is high (in the granularity of key sizes); more-
over, incorrect detection of one key will affect subsequent results.
The hope we have is that the the left index finger periodically
moves back to the home key “F”, and hence, its an opportunity
to recalibrate the tracking process at the start and end of a se-
quence of typed characters.

As a first cut, we used the linear acceleration (offered by the na-
tive Android API) to compute displacement – we applied estab-
lished double integration and mean removal techniques. Figure
11 compares the X displacement computed by Android API and
MoLe, against ground truth (available from the camera). The er-
rors proved inadequate for our purposes. Hence, we developed
an improved tracking technique tailored to the MoLe application.
We define each of the steps below.
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(1) Find gravity to define an absolute coordinate system. Before
the attacker (or attackee) starts to type, his/her hand is stable –
we use this opportunity to estimate the direction of gravity in the
watch’s coordinate system; we can then estimate the orthogonal
plane, which is the absolute horizontal plane. We then project
the watch’s X axis to the absolute horizontal plane to get the ab-
solute X axis. Since the absolute Z axis is essentially along the
direction of gravity, the cross product of Z and X axes yields the
absolute Y axis. C = (X ,Y , Z ) is the absolute coordinate system
(represented by the watch’s coordinate system). Of course, since
the wrist orientation changes during typing, this representation
changes as well. Thus, at the starting point, we represent the ab-
solute coordinates as C (0) = (X (0),Y (0), Z (0)).

(2) Estimate and remove gravity. From the gyroscope, we es-
timate the rotation matrix over time R(t ) and use it to estimate
the variation in watch’s gravity g (t ), in the watch’s coordinate
system. We sample acceleration a(t ) in watch’s coordinate sys-
tem and it is polluted by gravity. Now we remove gravity and get
ar g (t ) = a(t )− g (t ).

(3) Estimate C (t ) and calculate projected acceleration. Note
that directly integrating ar g (t ) has no physical meaning even if
gravity has already been removed. This is because ar g (t ) is along
the watch’s axes and watch rotates overtime. Ideally, we want to
integrate along fixed directions of the absolute coordinate sys-
tem. Those directions are X (t ), Y (t ) and Z (t ) mentioned before
in C (t ) – we can get C (t ) with the help of the rotation matrix R(t ).
Thus, a′

r g (t ) can be obtained by projecting ar g (t ) to X (t ), Y (t )

and Z (t ). Integrating a′
r g (t ) now yields the speed v ′(t ), and inte-

grating v ′(t ) ultimately returns the displacement s′(t ).

(4) Calibrate by mean removal (speed and displacement). Of
course, this is erroneous, however, if we know that at time T ,
v ′(T ) = 0 and s′(T ) = 0 (i.e., the watch has come to a stop), we
can refine the estimates of speed and displacement by mean re-
moval.

(5) Kalman smoothing. The displacement estimation is still
not stable – occasionally the result becomes poor. We carefully
checked the data and detected that gravity estimation is not
entirely reliable. Thus, we apply a Kalman smoothing to a′

r g (t )

to estimate the gravity estimation error g ′
e (t ). The idea is to

think about a′
r g (t ) as g ′

e (t ) plus noise, where noise is gener-
ated due to the act of typing. We set a large noise parameter in
Kalman smoothing such that Kalman smoothing output does

not closely follow a′
r g (t ), but it shows the underlying shifting

trend hidden in a′
r g (t ). Now, we refine a′

r g (t ) to a′
r g (t )− g ′

e (t ).
The performance improves consistently.

Figure 12 plots the final result comparison between MoLe and
original Android API method. It is clear that MoLe provides better
watch displacement estimation.
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Figure 12: Comparison of MoLe and Android API displacement
result.

4.2 Point Cloud Fitting
From the estimated displacements for each key, MoLe generates
a unlabeled point cloud (UPC) for the attackee. Since the points
in this UPC are not labeled, we fit the attacker’s character point
cloud (CPC) to the UPC. The key intuition is that the relative mo-
tions between keys (reflected in the relative locations of the point
clouds) should bear similarity across all users. To achieve this fit-
ting, we compute the convex hulls for the CPC and the UPC.

Observing that the fitting parameters for up and down hand
displacements can be different, we compute 2 convex hulls for
the CPC – one for all the positive X displacements (denoted
by HC PC

pos ) and the other for all the negative X displacements

(denoted by HC PC
neg ). Similarly, we compute 2 convex hulls for the

UPC – HU PC
pos and HU PC

neg . We fit HC PC
pos to HU PC

pos and HC PC
neg to

HU PC
neg respectively.

To fit a convex hull H1 to another convex hull H2, we first cal-
culate their cords C1 and C2 which originate from the origin and
pass through their centroids. Then, we (1) rotate H1 such that
C1 aligns with C2, (2) scale H1 in the direction of C1 such that
C1 equals to C2, (3) scale H1 in the orthogonal direction of C1
such that the area of H1 equals to that of H2. Figure 13 shows an
example of point cloud fitting.

The metric for fitting is defined by the degree of overlap between
the CPC and UPC’s convex hulls. More precisely, we compute the
ratio of the intersection and union of the convex hulls.

An attacker might be able to generate multiple CPCs, perhaps
from her accomplices. MoLe performs the fitting for each of these
CPCs and selects the one that maximizes the intersection/union
ratio. The rotated and scaled CPC is now superimposed on the
UPC and a framework is ready to estimate labels for each point
in the UPC.

4.3 Bayesian Inference
Even if the keystroke detection and point cloud fitting are per-
fect, MoLe still does not know the characters typed by the right
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Figure 13: Point Cloud Fitting. Black points are the CPC attacker template and gray points are UPC from attackee. (a) Finding each
convex hull (b) Calculate the centroids and perform rotate and scale. (c) Point cloud fitting result.

hand. Thus, as a first step, we attempt to fill in these “holes” to
infer the complete word. The rather obvious step is to calculate
the posterior probability of each word in the English dictionary,
given the motion inferences from the left hand. The words corre-
sponding to the top-K highest probabilities can be enumerated
as candidates. We apply Bayes’ theorem formulated as:

P (W |O) = P (O |W )P (W )

P (O)
(1)

where

- W is a candidate word from the dictionary and O is the obser-
vation motion data
- P (W |O) is the posterior probability of the word given the ob-
served motion data
- P (O|W ) is the likelihood function that estimates the probability
of the word W based on the observed motion data
- P (W ) is the prior probability which captures the word’s occur-
rence frequency
- P (O) is the probability of the observation

Since P (O) is the same for all possible words, we are only inter-
ested in calculating P (O|W ) and P (W ). That is,

P (W |O) ∝ P (O |W ) × P (W ) (2)

P (W ) can be obtained from a contemporary English corpus. In
the current experiment, we assume P (W ) is equal among words,
meaning each word has same occurrence frequency. The key
goal translates to obtaining the maximum (or high) values of the
likelihood P (O|W ). In the following, we present a few opportuni-
ties to refine the likelihood function and the posterior probabil-
ity.

Step I: Using the Number of Keystrokes
Our first intuition is simply to employ the number of detected
keystrokes as observations to match the word. The keystroke de-
tector gives us the number of keys typed by the left hand and this
number is used to match each word. For example, when two keys
detected, matching the word “the” produces higher likelihood
than the word “teacher”, because the number of peaks generated
while typing “the” is much closer to 2 than “teacher”. Now, for
each of the detected keystroke, we would like to match them with
the characters in the word. Since the keystroke could be caused
by any characters in the word, we need to consider all possible
assignments.

To calculate P(O | W), we can write

P (O |W ) = P (N |W ) = ∑
(α1,...,αN )

P ((cα1 , ...,cαN ) |W ) (3)

where N is the number of keystrokes and (α1, ...,αN ) represents
one possible N -element combination from {1,2, ...,L} and L is the
word length. The summation adds up all possible combinations.
ci is the ith character in W ; P ((cα1 , ...,cαN ) | W ) is probability
that N peaks are generated by cα1 , ...,cαN .

For instance, let’s assume two keystrokes are detected and we
want to calculate the likelihood of the word “the” by using the
keystroke detector result in Figure 10.

P (O = 2 | W = "the") = 0.986∗0.035∗0.119 (cα1 = t ;cα2 = h)

+0.986∗0.965∗0.881 (cα1 = t ;cα2 = e)

+0.014∗0.035∗0.881 (cα1 = h;cα2 = e)

= 0.84

In above equation, 0.119 means the probability that “e” is not de-
tected and equals to (1− 0.881). In a similar way, we calculate
the probability that “t” is not detected (0.014) and “h” is detected
(0.035).

Thus, by iterating over all words in the dictionary, we can obtain
the likelihood for each word. Of course, further refinements are
possible.

Step II: Consecutive Characters
In some cases, our key-press timing module detects only one
keystroke for two consecutive characters such as “er”, “sa” or
“re”. These keys are adjacent on the keyboard and the watch dips
in so close succession that they are not separable. Therefore,
we treat these character pairs as one key. Figure 14 shows the
experimental results that these common character–pairs are
detected as zero, one, or two key-presses. Evidently, treating
them as a single key-press should be appropriate in a majority of
the cases.
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Figure 14: The probability of number of keystroke detections
for consecutive characters.



Step III: Adding Watch Displacement
MoLe is now ready to leverage the actual watch displacement. As-
suming fingers are placed over the home position (“F” and “J”),
recall that the key-press location estimation module computes
the location of each key press (Figure 4). Of course, the estimated
location is not accurate due to the noise in the hardware, minute
differences in the hand motions, minute differences in hand’s 2D
orientation, etc. However, given that the CPC has been fitted to
the user’s UPC, it is now possible to better predict the word by
taking displacement into consideration. Thus, equation 3 can be
rewritten as:

P (O |W )

= P (N ∩di , i = 1,2, ..., N |W )

= ∑
(α1,...,αN )

P ((cαi , ...,cαN ) |W )p((d1, ...,dN ) | (cαi , ...,cαN ),W )
(4)

where p((d1, ...,dN ) | (cαi , ...,cαN ),W ) is probability density of
typing cα1 , ...,cαN of W at character displacements d1, ...,dN , and
di is the ith character displacement in W .

MoLe models each character’s location as a Gaussian distribu-
tion. Assuming the distribution of displacement di only depends
on current character cαi , we simplify Equation 4 as:

P (O |W ) = ∑
(α1,...,αN )

P ((cα1 , ...,cαN ) |W )
N∏

i=1
p(di | cαi ) (5)

where p(di | cαi ) is probability density of di given character cαi .

Step IV: Character Transitions
We assumed above that each character displacement is indepen-
dent. However, typing a word consists of sequential movements
and the current displacement is indeed influenced by the loca-
tion of the previous character. Figure 15 illustrates an example
– we compare the displacement of “a” when previous char is “v”
versus “r”. Clearly, the distributions are different. For “ra”, the dis-
placement of typing “a” is shifted towards the position of char-
acter “r” because the little finger types “a” right after “r”, before
returning to home position. For “va”, the displacement of “a” is
clear close to “v”, because of the same reason.
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Figure 15: Comparison of “a” displacement while previous
character is “v” or “r”. The key locations of v and r are marked
in the figure.

Given this observation, we extend the likelihood function to the
following:

P (O |W ) ≈ ∑
(α1,...,αN )

P ((cα1 , ...,cαN ) |W )
N∏

i=1
p(di | cαi ,cαi−1 ) (6)

Now the displacement probability density p(di | cαi ,cαi−1 ) not
only consider cαi but also the previous char cαi−1 .

Step V: Keystroke Interval
Timing of the key-presses on the left hand should also encode in-
formation about missing keys. We ask, given the time detected
interval between consecutive keystrokes, what is the probability
that there are N right hand characters between them? Correct
guesses of N can obviously help. For example, when typing the
word “t h a n k s” (characters typed on the left hand are under-
lined), the observed interval between “t” and “a” may be expect-
edly shorter than between “a” and “s”.

Figure 16 plots the distribution of time intervals for increasing
lengths of character sequences. These sequences consists of
right hand characters in the middle and are surrounded by
two left characters. Unsurprisingly, the time interval generally
increases with the number of keystrokes. However, we observe
high variance. For example, even though the segment “-b i l i t-”
and “-t i o n a-” both have three right hand characters in the mid-
dle, the average interval of “-t i o n a-” is shorter than “-b i l i t-”
due to hand geometry and typing familiarity.
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Figure 16: Y-axis is the time interval between two detected
keystrokes and X-axis is the number of sequence length.

Therefore, for better timing observation, we should obtain the
time interval distribution of every possible character-sequence
that is preceded and followed by two left-hand characters, and
use this distribution in the Bayesian model.
The observation can be written into

P (O |W )

= P (N ∩di , i = 1,2, ..., N ∩ t j , j = 1,2, ..., N −1 |W )

≈ ∑
(α1,...,αN )

P ((cα1 , ...,cαN ) |W )
N∏

i=1
p(di | cαi ,cαi−1 )p((t1, ..., tN−1)

| (cα1 , ...,cαN ), (d1, ...,dN ),W )
(7)

where N − 1 interval distributions, t j with j = 1,2, ..., N − 1, are
added into the observation. Note that the attacker and attackee
are typing at slightly different speeds. MoLe compensates this
speed bias with a factor k, calculated from the ratio of attacker
to attackee’s average typing interval.



5. EVALUATION
5.1 Data Collection and Methodology
MoLe has been implemented on the Galaxy Gear Live smart
watch, which runs the latest Android Wear platform. When
activated, the MoLe client on the watch continuously logs ac-
celerometer and gyroscope readings at 200Hz, along with times-
tamps. The sensor data is stored locally during data collection
and transferred to the backend (MATLAB) server for analysis.

MoLe is evaluated with 8 subjects, recruited by advertising about
these experiments in the university campus. The subjects were
offered an incentive of $10 per hour, and each subject invited to
our lab for a 2 hour session. All subjects were familiar with En-
glish typing (5 of them are native English speakers, 3 of them were
females). Each subject was asked to type 300 English words ran-
domly selected from 5000 most frequently used words [7]. The
word-length ranged from 1 to 14, and was equally distributed. In
total, we test 2400 words across all users.

Each subject was seated at a desk in front of a Lenovo laptop.
Our experiment GUI popped up one word at a time on the laptop
screen – the volunteer’s task was to type the same word in a text
box on the screen. If any of the character is incorrectly typed, we
discard the data and let the subject re-enter the word. Between
each word recording, we ask the subject to initialize their hand
position on “F” and “J”. During the typing, the laptop was also
programmed to record the timing of the keystroke – this will later
serve as ground truth. To collect the offline training data, two
of the authors (pretending to be attackers) performed the same
procedure, but with Top-500 longest words in the dictionary.
Long words help capture the diversity of the typing patterns. The
whole data collection is done a Lenovo ThinkPad equipped with
a regular full-sized keyboard.

For full ground truth recording, we mount an Android Samsung
Galaxy S4 phone on top of the keyboard and use the front camera
to capture the video of hand movement. We apply the camera
calibration toolbox in Matlab [9] to calibrate the camera pixel,
and measure the watch distance and location from each frame
(Figure 1).

5.2 Performance Results
The following questions are of interest in this section:

• How well can MoLe guess each word (i.e., in an ordered list of
guesses by MoLe, what is the rank of the actual word?)

• What factors affect this rank?

• How different opportunities contribute towards overall perfor-
mance.

• How can we prevent the threat introduced by MoLe ?

• Does keyboard matter?

• Can humans guess better by looking at a sequence of candidate
guesses?

(1) How well can MoLe guess each word?
Figure 17 plots the CDF of rank, computed from each of the 2400
words typed by the subjects of the experiments. The average
across all 8 subjects is shown in black, while MoLe’s performance
for each individual subject shown in gray. We observe that the
median rank of a word is 24, while for 30 percentile, the rank is 5.
Put differently, when a user types a word, there is a 30% chance

that MoLe would narrow down the typed word to only 5 possibil-
ities, and a 50% chance to only 24 possibilities. Given that 5000
words are possible, this is an appreciable reduction of the search
space, and makes it amenable to brute-force attacks.
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Figure 17: CDF of rank computed for each of the 2400 words
typed by 8 subjects.

Figure 18 plots the ranks of typed words for each test subject. The
ranks are generally higher (i.e., MoLe’s guesses are better) for sub-
jects S2, S5, and S8. On examining the video and sensor traces
for these subjects, we find that they have lower variance in their
hand movements, probably because they type as per the pre-
scribed guidelines. We also test the case with perfect key-press
detection (i.e., using the actual number and timing of keystrokes
only from the left hand, gathered from the ground truth timing
information recorded during the experiments). Surprisingly, the
30th percentile drops sharply to 1, meaning that MoLe can ex-
actly guess the word; the 50th percentile drops to 6. Clearly, fur-
ther improvements in key-press detection is the key to improving
MoLe.
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Figure 18: Rank of average, across users and with perfect key-
press detection

(2) What factors affect the rank?
Figure 19 plots the median rank of words for increasing word-
lengths. The rank generally decreases with word length greater
than 6, primarily because (1) there are greater number of
keystrokes that get detected in a longer word, and (2) because
the number of words of that length reduces, in turn reducing the
number of words to be confused with. Words of length 4−7 on
the other hand, have less keystrokes; also, there are many more
words of such lengths, adding to the difficulty of detection.
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Figure 19: Median rank plotted against increasing word length
– 4−7 length words show worse performance due to fewer keys
to be detected while such words occur in large numbers.

Figure 20 shows the number of left hand characters in a word.
With increasing number of left characters, MoLe naturally gains
richer information about the word, ultimately improving its abil-
ity to guess. When a word contains more than 5 left characters,
MoLe is able to bring down the rank below 20. When left charac-
ter are 2 to 4, performance degrades because a large number of
words have the same 2−4 left hand characters in them.
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Figure 20: Variation of rank against the number of characters
typed by the left hand.

(3) Impact of Each Bayesian Opportunity
Section 4.3 leveraged a number of opportunities under the
Bayesian model. Figure 21 shows the break-down of contribu-
tions from each of them. Using only the number of detected
keystrokes (step 1 and 2 in section 4.3), MoLe performs rather
poorly on the dataset. When the displacement information is
added (step 3 and 4), MoLe improves the rank from 340 to 49 at
50th percentile. Finally, when time interval is incorporated (step
5), the median rank improves from 49 to 24.

(4) Impact of Sampling Rate
Figure 22 characterizes the impact of sensor sampling rate
(200Hz, 100Hz, 50Hz, 20Hz) on the median rank of words for
all of the subjects. Evidently, MoLe’s ability to guess degrades
drastically with lower sampling rates – median ranking falls as
64, 141 and 1218. Perhaps this could be a way to mitigate the
attack through smart-watches. A typing classifier could first
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Figure 21: Contribution of different opportunities towards the
overall performance of MoLe.

detect whether the user is typing, and if so, the sampling rate of
the sensor data can be diminished to less than 50Hz.
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Figure 22: Lower sensor sampling rate rapidly reduces the abil-
ity to guess the word, perhaps indicating a way to thwart MoLe’s
attack.

(5) Keyboard Variant
The difference in the shape of desktop and laptop keyboards may
translate to decoding errors with MoLe. To test this, subject S5
was asked to repeat the same data collection process on a desk-
top keyboard. Figure 23 plots a histogram of the rank differences
of each word, when decoded from the two keyboards. We no-
tice that 45.2% of rank differences are less than 10. More specif-
ically, the laptop keyboard presents a median rank of 10 and 30
percentile rank of 4. The computer keyboard’s median rank is 14
and 30 percentile rank is still at 4. The results show that the sys-
tem performance is close between two keyboards, even though
the attackers used the laptop keyboard for training the system. If
the attackers generated models from various keyboards, and ap-
plied the best one during the keystroke detector and cloud fitting
process, the results can be even better.

(6) Recovery via Human Observation
Although MoLe is not able to detect spaces and separate the
words at this moment, we are interested to know how the threat
would become even worse if this limitation is relaxed. To this
end, we ask subject S5 to enter (one-by-one) the words from an
actual sentence. Table 1 shows MoLe’s end-to-end prediction
result for each of the words in the sentence (which contains 8
words). For each word, the Top-5 guesses are listed from top to
down. As would be expected, the words in each column bear
similarity in the character sequences embedded in them. For
example, W6 typically starts with “t” or “th” and W8 contains
many left hand characters. We present this table to colleagues in



Rank W1 W2 W3 W4 W5 W6 W7 W8
1. motor pistol profound technology angel those that disappear
2. monitor list journalism remaining spray today tight discourse
3. them but originally telephone super third tightly secondary
4. the lost original meanwhile fire through thirty adviser
5. then most profile headline shore towel truth discover

Table 1: Can you guess the correct sentence? The words in each column are ranked in decreasing order of probability; also note that
some words may not feature in the top −5 words presented in each column. The answer is made available at end of the paper2.
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Figure 23: A histogram shows the rank difference of each word
between 2 keyboards. The trend indicates that most words have
similar rank, so the difference is low.

our department and most of them could recover the sentence in
a few minutes. We encourage the readers to reconstruct sentence
on their own – the answer is made available at end of the paper2.

6. POINTS OF DISCUSSION
We discuss a few limitations and opportunities for improvement.

(1) Confined to separate words. MoLe is not yet a real-world
attack since it is not able to detect the space bar and separate
out words from a sentence. Also, without any priors on digit se-
quences, it is difficult to detect what digits users are typing. Addi-
tional work is necessary to further separate out these keystrokes.
However, we believe there is opportunity. We have found early
evidence that the magnetic field on the keyboard is quite telling
of the position of the wrist. With some signal processing, the
magnetic field may offer valuable hints on how the wrist is mov-
ing and when it is coming back to its original position. We leave
this to future work.

(2) Applying nature language processing. To recover the whole
sentence, techniques from nature language processing (NLP)
may also apply. For example, we can apply N-gram language
models which predict the N th word given a previous N −1 word
sequence. Thus, even if a few words have low accuracy in the
sentence, it may still be possible to infer the sentence, or even
the broad semantic content.

(3) Typing activity classifier. In a real world attack, we would first
need to subject the sensor data to a classifier which will output
whether the user is typing or not. Only when the user is known to
be typing, should MoLe be applied on the data. We have not de-
veloped a “typing or not” detector in this paper, but believe that it

can be developed (perhaps from the orientation of the watch and
the slight back and forth movement). Also, we need to be able to
identify whether the watch is worn on the left or right hand, left
to future work.

7. RELATED WORK
We categorize this section into inferring keystrokes on traditional
computer keyboards and sensor information leaks on smart de-
vices.

Inferring keystrokes on computer keyboards
Many researches have attempted to infer keystrokes on com-
puter keyboards. Various modalities have been leveraged, such
as acoustics signal [10, 11], input timing analysis [12–14], RF ra-
dio [15], and electromagnetic emanations [16]. These researches
have successfully delivered high accuracy results. However, none
of them use motion sensor data; also, to intercept physical sig-
nals and decode the data, these methods are typically required to
install additional hardware or software, which make them some-
what difficult to widely deploy the attacks. In contrast, MoLe can
be launched with ease on top of commericially available wear-
able devices. Marquardt et al. demonstrated the (Sp)iPhone [17]
and show that it is possible to use the accelerometer on iPhone
to recover text entered on a keyboard when the phone is placed
nearby, on the same table surface. Both (Sp)iPhone and MoLe
exploit side channels, however, MoLe uses the wrist motion data
in 3D, different from the surface vibrations in (Sp)iPhone.

Sensor Information leaks on smart devices
Researchers have studied side channel attacks to infer keystrokes
on smartphones and tablets [18] [19] [20] [21]. The core idea be-
hind these works is that when typing on different locations
on a virtual keyboard, the keystrokes cause distinct vibra-
tions/rotations. The motion data on smartphones can thus
be used to infer the tapped location. TouchLogger [19] and
accessory [18] are the early works, and use accelerometer only
to infer tap location on screen. Cai et al. [20] and Miluzzo et
al. [21] advance the technique to infer keystrokes and show
that gyroscope has better accuracy than accelerometer based
inference. MoLe bears similarity in that it is also a side channel
attack. However, there are two main differences. Firstly, above
works are feature-based. They design features to capture distinct
screen motions caused by the touches and train models with
these features to infer the touch positions. In contrast, since
smartwatch is on the user’s wrist, we track the movement of the
wrist to infer what the user has typed. Secondly, we are only able
to sense partial keystrokes with one hand, as well as indirect data
of the wrist. To recover the whole input word, MoLe must rely
much more strongly on the Bayesian models. GyroPhone [22]
presents a new type of threat to intercept human speech by using
gyroscope on smartphone. The authors found that the MEMS
gyro sensors are able to pick up air vibrations from sound at



low frequency. MoLe is still different since it attempts to extract
semantic understanding of the human’s hand motions.

8. CONCLUSION
This paper demonstrates that sensor data from smart watches
can leak information about what the user is typing on a regu-
lar (laptop or desktop) keyboard. By processing the accelerome-
ter and gyroscope signals, tracking the wrist micro-motions, and
combining them with the structure of valid English words, rea-
sonable guesses can be made about typed words. Given the ex-
citement around a smart-watch app store, such an attack can
be severely penetrating into the private lives of humans. While
we find that diminishing the sampling rate of the accelerome-
ter and gyroscope can alleviate the attack, we believe additional
side channels like magnetic field variations need to be carefully
investigated. Otherwise, wearable devices could soon become a
“double edged sword” slowing down future innovations on this
platform.
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