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Abstract—Traditional rate adaptation solutions for IEEE
802.11 wireless networks perform poorly in congested
networks. Measurement studies show that congestion in
a wireless network leads to the use of lower transmission
data rates and thus reduces overall network throughput
and capacity. The lack of techniques to reliably identify and
characterize congestion in wireless networks has prevented
development of rate adaptation solutions that incorporate
congestion information in their decision framework. To
this end, our main contributions in this paper are two-fold.
First, we present a technique that identifies and measures
congestion in an 802.11 network in real time. Second, we
design Wireless cOngestion Optimized Fallback (WOOF),
a measurement-driven rate adaptation scheme for 802.11
devices that uses the congestion measurement to identify
congestion related packet losses. Through experimental
evaluation, we show that WOOF achieves up to 300%
higher throughput in congested networks, compared to
other well-known adaptation algorithms.

I. I NTRODUCTION

The use of IEEE 802.11 wireless networks is on the
rise and an increasing number of people depend on a
wireless connection for their Internet access. A recent
survey indicated that about one-third of the Internet
users in the USA obtain connectivity through wireless
networks1. The proliferation of 802.11 networks and
users, however, brings forth its own set of problems.
IEEE 802.11 is a CSMA/CA based medium access
scheme wherein all the users share the medium as a
common resource.

A large number of users in a network can lead to
excessive load or congestion and impact network perfor-
mance. A case study of a large WLAN by Jardosh et al.
presented an example of the adverse effects of such con-
gestion [1]. In this network, more than 1000 clients at-
tempted to use the network simultaneously. The network
could not sustain this high load: users obtained unaccept-
ably low throughput, and many users were unable to even
maintain association with the APs. Eventually the net-
work broke down, causing frustration among the users.

One of the causes of the network meltdown was
IEEE 802.11’s rate adaptationscheme, an important
aspect of the protocol that affects network throughput.

1 http://www.pewinternet.org/pdfs/PIPWireless.Use.pdf (Feb 2007).

In a multi-rate 802.11 network, rate adaptation is
the operation of selecting the best transmission rate
and dynamically adapting this selection to variations
in channel quality. Measurement studies have shown
that current rate adaptation solutions do not perform
well in congested networks [2], [3]. These solutions,
not designed for operation in congested scenarios,
unnecessarily switch to a lower transmission rate. This
rate switch increases the channel occupation time,
thereby compounding the congestion.

Our goal is to design a rate adaptation scheme that
provides high network performance in both congested
networks and lightly-loaded networks. A preliminary
step required before we can develop a new rate
adaptation scheme is to identify and measure network
congestion levels in real-time. Traditional metrics, such
as network throughput, fail to characterize congestion in
a wireless network because of the locally shared nature
of the medium and the use of multiple transmission rates.
Thus, there is a need for a lightweight measurement
solution that can identify congestion in a wireless
network in real-time. This solution in turn provides
information to the rate adaptation scheme about the
current congestion level and enables an intelligent
decision of what data rate to use for transmission.

In this paper, we present a measurement-driven
approach to the characterization of congestion in
wireless networks and incorporate this information in
design of a congestion-aware rate adaptation scheme.
Our two main contributions are as follows. First,
we develop a congestion measurement technique for
wireless networks to identify congestion in real-time.
We passively measure thechannel busy time, the fraction
of time for which the medium is utilized in some time
interval. We evaluate the performance of the technique
in a large WLAN with active users connected to the
Internet. Second, we employ the channel busy time
congestion metric in the design and implementation
of a new rate-adaptation scheme called Wireless
cOngestion Optimized Fallback (WOOF). The use of a
congestion metric enables the rate-adaptation algorithm
to differentiate between packet losses due to congestion
and those due to poor link quality. Through experimental



evaluation in a congested wireless network, we show
that WOOF obtains significantly higher throughput (up
to a three fold improvement) than current solutions.

The remainder of the paper is organized as follows.
Section II describes the congestion measurement method
and its performance evaluation. We survey existing rate
adaptation schemes in Section III. Section IV presents
a performance analysis of rate adaptation schemes
in congested WLANs. Sections V and VI describe
the design and evaluation of the WOOF scheme. We
conclude the paper in Section VII. Throughout the
paper, we use the term data rate to refer to the rate of
transmissions in the wireless network as governed by
the physical layer signal modulation scheme.

II. CONGESTIONMEASUREMENT

Congestion in IEEE 802.11 wireless networks may
be defined as a state where the shared wireless medium
is close to being fully utilized by the nodes, because
of given channel conditions and/or external interference,
while operating within the constraints of the 802.11
protocol [3]. Identification of congestion in wireless
networks presents new challenges as compared to wired
networks.

The shared nature of the wireless medium causes a
node to share the transmission channel not just with
other nodes in the network, but also with external
interference sources. Unlike wired networks, where
throughput degradation on a network link is indicative of
congestion, in wireless networks throughput degradation
can occur due to a lossy channel, increased packet
collisions during congestion or external interference. In
addition, throughput of a wireless link is also directly
influenced by the rate adaptation algorithm through its
choice of transmission data rate. Clearly, if a lower data
rate is in use, the throughput for a given time interval
will be lower than with a high data rate.

For these reasons, the time available to a node
for transmission, governed by the current medium
utilization level, characterizes congestion in a wireless
network better than the observed throughput. Several
studies have proposed the use of medium utilization as a
measure of congestion in the wireless medium [3], [4].
Jardosh et al. show that medium utilization can be used
to classify network state asuncongested, moderately
congested, andhighly congested.

In this paper, we implement and evaluate a real-time
congestion measurement technique for wireless net-
works. The technique is passive in nature and measures
channel busy time, the fraction of time for which the
medium was utilized, during some time interval.

A. Channel Busy Time: A Passive Approach

Channel Busy Time (CBT) refers to the fraction of
time for which the wireless channel is busy within a
given interval. As measured at a wireless device, it
includes the time for transmission of packets from the

device, reception of packets, packet transmissions from
neighbors, the delays that precede the transmission of
data and control frames, and environmental noise.

Jardosh et al. outline a method to calculate medium
utilization by adding the transmission duration ofall
data, management, and control frames recorded by a
sniffer [3]. However, one drawback of this approach is
that it involves significant processing overhead for each
received packet, as it requires sniffing the network in
monitormode and accounting for transmission delays of
data and ACK packets, and the SIFS and DIFS intervals
that precede frame transmissions. These complexities
make it unsuitable for congestion identification in real-
time. In this paper, we present a practical light-weight
implementation of this metric for 802.11 networks using
a feature provided in Atheros chipset-based devices.

To measure the channel busy time, we use the reverse-
engineered Open HAL [5] implementation of the Mad-
Wifi driver for Atheros AR5212 chipset radios. Atheros
maintains 32-bit register counters to track “medium
busy time” and “cycle time”. The cycle time counter is
incremented at every clock tick and the medium busy
counter represents the number of clock ticks for which
the medium was sensed busy. The medium is considered
busy if the measured signal strength is greater than the
Clear Channel Assessment (CCA). For Atheros radios,
the CCA has been found to be -81dBm [6]. The ratio of
the “medium busy time” and the “cycle time” counters
gives the fraction of time during which the channel was
busy. In our implementation we expose an interface in
the /proc filesystem to read the counter values from
the registers periodically at an interval of one second.

Our implementation of channel busy time
measurement is based on the Atheros chipset. As
we show later in this paper, this metric can provide very
useful information for network protocol designers. We
believe that other hardware vendors should also expose
a similar interface and facilitate cross-layered wireless
protocol designs that maximize network performance.

B. Evaluation of Congestion Metric

To evaluate the performance of the proposed
technique, we use as a benchmark the medium utilization
as seen by a sniffer operating inmonitor mode. We use
the methodology proposed by Jardosh et al. to account
for the transmission duration ofall management,
control and data frames, along with the SIFS and
DIFS durations preceding each transmission [3]. This
helps determinine the accuracy of our low overhead
implementation of CBT by comparing against a fairly
comprehensive but high overhead mechanism.

Experimental Setup: In our experiments, we use two
Linux laptops equipped with Atheros chipset IEEE
802.11a/b/g cards and an access point to evaluate the
passive Channel Busy Time congestion measurement
technique. One laptop acts as a wireless sniffer and is

2



placed close to the AP to performvicinity sniffing [7].
As part of vicinity sniffing, the radio on the sniffer
laptop operates in monitor mode and captures all packet
transmissions using thetethreal utility. This tech-
nique allows us to study the wireless network activity in
the vicinity of the AP. The traffic trace from the sniffer
is used for the offline calculation of medium utilization
values during the experiment. The calculated utilization
value is then used to compare against CBT values during
the corresponding time interval of the experiment.

We calculate the medium utilization value using the
methodology proposed by Jardosh et al. [3]. In the
interest of space, we briefly summarize the technique as
follows. The medium utilization for a given time interval
is the sum of the time required for all data, management,
and control frames transmitted in the interval and the
necessary MAC delay components for each frame. The
second laptop, also placed close to the AP, continuously
measures and records the channel busy time as described
in Section II-A. In order to compare CBT values with
medium utilization values during corresponding
time intervals, the laptops are time synchronized to
milliseconds granularity using NTP. Note that both
laptops are tuned to the same channel as the AP.

Testing Scenarios: We evaluate the congestion
measurement technique in two different environments.
We choose the two environments because of their vastly
different characteristics.

Testbed: We conduct the first set of experiments
in an indoor testbed of eight client laptops connected
to an access point. Each client initiates a bidirectional
UDP traffic flow with the AP. The rate of data traffic is
controlled at each client to generate a range of medium
utilization levels. The controlled environment of the
testbed gives us the flexibility to vary network load to
generate a range of medium utilization values and limit
external interference. We use UDP traffic as opposed
to TCP because TCP’s congestion control and backoff
mechanisms prevent us from controlling the rate at
which data is injected into the network.

IETF Wireless LAN: To verify the performance of
our technique in a real world network characterized by
live Internet traffic, a large number of heterogeneous
devices, dynamic user behavior, and other external
factors, we conducted experiments at the 67th IETF
meeting held in San Diego in November 2006. The
network at the IETF meeting consisted of a large
WLAN connected to the Internet with 38 physical AP
devices that provided connectivity to more than 1000
clients. The APs were dual-radio devices with one radio
tuned to the 802.11a spectrum and the other to the
802.11b/g spectrum. The APs were tuned to orthogonal
channels to enable spatial reuse. We chose to perform our
experiments with 802.11b/g as there were approximately
three times as many users on the 2.4GHz spectrum as
the 5GHz spectrum of 802.11a. The APs advertized the
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(a) Testbed: CBT vs medium utilization
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(b) IETF: CBT vs medium utilization

Fig. 1. Correlation between CBT and medium utilization.

following as accepted data rates (Mbps): 11, 12, 18, 24,
36, 48 and 54. This restriction on acceptable data rates
enables limiting the cell-size of each AP.

We conducted experiments during several sessions at
the IETF, each characterized by a different number of
clients connected to the AP. For example, a working
group meeting is typically attended by about 50-100
people on average. On the other hand, a plenary session
is attended by approximately 1000 people. The room
for the plenary session at the 67th IETF was serviced
by eight dual radio physical AP devices. The 2.4GHz
APs were tuned to the three non-overlapping channels
of the 802.11b/g spectrum. For the evaluation of our
congestion measurement techniques, we focused on Day
3 of the meeting, a day that included a plenary session.

Results:In Figures 1(a) and (b), we plot the CBT metric
against the medium utilization calculated based on snif-
fer data for each second, for experiments conducted on
the testbed and at the IETF meeting, respectively. Every
point in the graph represents the measured CBT value
compared to the calculated medium utilization value
during the corresponding time interval. Both Figures 1(a)
and (b) show a strong linear correlation between CBT
and medium utilization, with a linear correlation coeffi-
cient of 0.97 for the testbed network and 0.925 for the
IETF network. This high degree of correlation indicates
that channel busy time estimates the medium utilization
with high accuracy. From the graphs, we observe that the
CBT metric sometimes over-estimates the medium uti-
lization. This behavior is because CBT accounts for the
time during which the medium was busy, but no packet
was received, e.g., channel noise, packet collisions. Also,
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it can be seen from Figure 1(b) that the CBT metric
sometimes under-estimates the channel utilization value.
The specification for the Atheros chipset quotes the
radio sensitivity for some data rates (e.g., -95dBm for
1Mbps) to be lower than the CCA threshold. Thus, some
low data rate packets are received correctly at the sniffer
at a signal strength that is below the CCA threshold.

We now demonstrate the utility of real-time
congestion metrics in improving the performance of
congested wireless networks. Our focus is on rate
adaptation in wireless networks. In the following
sections, we first survey existing rate adaptation
algorithms. We then analyze the performance of rate
adaptation schemes in a large WLAN.

III. R ELATED WORK IN RATE ADAPTATION

Rate adaptation in a multi-rate IEEE 802.11 network
is the technique of choosing the best data rate for packet
transmission under the current channel conditions. The
IEEE 802.11 standard does not specify the details of the
rate adaptation algorithm to be used. Thus 802.11 card
vendors and researchers have proposed and implemented
a variety of rate adaptation algorithms.

The probability of successful transmission of a packet
for a given data rate can be modeled as a function
of Signal-to-Noise Ratio (SNR) of the packet at the
receiver [8]. A packet can be transmitted at a high
data rate if the SNR at the receiver is high and the
packet can be received without errors. On the other
hand, if the SNR is not high, a lower data rate helps
achieve more robust communication. Therefore, one of
the ideal metrics to base the choice of transmission data
rate is the SNR of a packet at the receiver. However,
under current IEEE 802.11 implementations, it is not
trivial for the transmitter to accurately estimate the
SNR at the receiver because signal strength exhibits
significant variations on a per-packet basis. This has led
to the development of various solutions that attempt to
estimate link quality through other metrics.

Receiver-Based Auto Rate (RBAR) [9] is a scheme
that proposes use of the RTS-CTS handshake by a
receiver node to communicate the signal strength of re-
ceived frames. The receiver measures the signal strength
of the RTS message and uses this information to select an
appropriate data rate for transmission of the data frame.
The transmitter is informed of the selected data rate
through the CTS message. A drawback of this scheme
is that it cannot be used in modern 802.11 networks
where the RTS-CTS messaging is generally disabled.

At the transmitter node, the most commonly used
information to help in choosing a data rate is the packet
loss information (i.e., when an ACK message is not re-
ceived). Auto-Rate Fallback interprets patterns of packet
loss (e.g., four consecutive losses) as triggers to change
the data rate [10]. Several other rate adaptation schemes,
such as AARF [11], also use packet loss patterns for rate

adaptation decisions. Most current 802.11 devices imple-
ment ARF or variations of ARF [12]. Recent work such
as SampleRate [13] show that ARF and AARF perform
poorly for links that are not always 100% reliable. There-
fore SampleRate uses a statistical view of packet loss
rates over a period of time (e.g., 2s [13]) to choose the
rate. We describe SampleRate in detail in Section V-B.

A common feature among all the above described rate
adaptation schemes is that they consider all packet losses
to be due to poor link quality. They do not distinguish
between packet losses caused by channel quality
and packet losses caused by either hidden terminal
transmission or congestion. Ideally, the rate adaptation
algorithm should only consider the packet losses due
to poor channel conditions, multipath effects, fading,
etc. Packet losses due to hidden terminals or congestion
should not affect the rate adaptation algorithm. On
observing packet loss, a rate adaptation scheme that
does not distinguish the cause of the packet loss reduces
the transmission data rate. In the case of packet loss
due to congestion or hidden terminals, such a reduction
of data rate is unnecessary. Even worse, the lower
data rate increases the duration of packet transmission,
thereby increasingcongestion and the probability of a
packet collision. Additional collisions result in packet
loss, which leads to further reduction in data rate.

The challenge for a rate adaptation algorithm is to be
able to identify the cause of a packet loss, i.e., whether
a packet was lost because of a bad link, hidden terminal
or congestion. In the absence of such a distinction,
rate adaptation algorithms may actually compound
network congestion [3]. In our work, we attempt to
probabilistically identify congestion-related packet
losses and minimize their impact on rate adaptation.

Two rate adaptation algorithms, namely Robust Rate
Adaptation Algorithm (RRAA) [14] and Collision-
Aware Rate Adaptation (CARA) [12], are designed to
minimize the impact of packet losses that are not due
to channel errors. RRAA selectively uses RTS-CTS
handshaking to avoid hidden terminal collisions. RRAA
was not designed to handle congestion in the network.
On the other hand, CARA builds upon ARF [10] and
suggests the use of an adaptive RTS-CTS mechanism
to prevent losses due to contention. However, CARA
requires turning on the RTS-CTS mechanism for the first
retransmission of a packet, i.e., upon failure of the first
transmission attempt. Most current hardware does not
support this facility and thus may require modification.
In contrast, our solution is implemented purely in
software. Moreover, CARA is built upon ARF and thus
inherits the problems of ARF, where it uses patterns
of packet loss for adaptation decisions. This has been
shown to lead to incorrect rate adaptation decisions [14].
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IV. RATE ADAPTATION DURING CONGESTION

We now analyze the behavior of current rate
adaptation schemes in a congested network. We focus
on the packet loss rates in such networks and their
impact on rate adaptation. In addition, we explore the
relationship between packet loss and congestion levels
in the network. The traffic traces from the 67th IETF
are used for this analysis.

We focus on the Wednesday plenary session of
the IETF meeting. This session had more than 1000
attendees in one large room with 16 APs. We choose
this session in order to study the packet loss behavior
in a network with high number of users and a high load
on the network. We assume the original transmission
of a packet to be lost if, in the trace, we observe the
packet transmission with the retry flag set. The fraction
of lost packets is calculated as the ratio of the number
of retransmitted packets to the sum of the number of
packets transmitted and the number of packets lost.

Figure 2 plots the medium utilization levels and
the fraction of data frames that were lost during the
Wednesday plenary session. During periods of high
utilization, the number of packet losses also increases.
This can be attributed to the losses caused by medium
contention (i.e., when the backoff counters of two or
more nodes expire at the same time.) Alarmingly, the
percentage of lost packets is as high as 30%. With such
a high number of packet losses, any rate adaptation
scheme that relies on packet loss as a link quality
metric is highly likely to lower the data rate, often to
the minimum possible transmission rate.

To analyze the impact of such high packet loss rates
on rate adaptation schemes, we study the distribution
of data rates. The access points at the IETF meeting
advertized only the following data rates (in Mbps) as
supported: 11, 12, 18, 24, 36, 48, and 54. A client that
supports 802.11b only is limited to use the 11 Mbps
data rate alone and thus cannot perform rate adaptation.
To study the distribution of data rates, we consider
only the data packets sent to/received from clients that
support 802.11g2. Table I shows the distribution of data
rates for only the 802.11g clients observed during the
session. We see that 73% of the packets used the lowest
possible data rate. This behavior can be attributed to the
rate adaptation schemes. The high rate of packet loss
forces the rate adaptation scheme to consider the link
to be of poor quality and, thus, use lower data rates.

Previous work has observed a similar effect of conges-
tion on rate adaptation [2], [7]. In a congested network,
a majority of the 802.11 packets use the lowest possible
rate. Such packets also consume a large fraction of the
medium time, since they take a longer time for trans-
mission. These packets are more susceptible to collisions

2We consider a client to be 802.11g-enabled if a) it specifies an 802.11g data
rate in the association message, or b) in the entire traffic trace, we observe at
least one packet to/from the client using an 802.11g data rate.
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Fig. 2. Medium utilization and packet loss rate in a congested 802.11
network.

Rate (Mbps) Packets (%) Rate (Mbps) Packets (%)
1 0% 12 3.95%
2 0% 18 1.53%

5.5 0% 24 2.76%
6 0% 36 3.90%
9 0% 48 3.59%
11 72.94% 54 11.51%

TABLE I
DATA RATE DISTRIBUTION FOR 802.11G CLIENTS DURING THE

WEDNESDAY PLENARY SESSION.

(e.g., by hidden terminals). Switching to a lower rate as
a result of contention losses is not only unnecessary but
also increases the medium busy time. Thus it is important
to understand the cause of a packet loss and respond
appropriately in the rate adaptation algorithm.

V. W IRELESS CONGESTIONOPTIMIZED FALLBACK

(WOOF)

The discussion in the previous section leads us to
conclude that rate adaptation schemes must identify the
cause of a packet loss and account only for packet losses
that are not congestion-related. To this end, we now
discuss the design and implementation of Wireless cOn-
gestion Optimized Fallback (WOOF), a rate adaptation
scheme that identifies the cause of packet losses. Packet
losses related to congestion are omitted in the determi-
nation of an appropriate transmission data rate. Thus the
decision relies only on losses due to poor link quality.

A. Identification of Congestion-Related Packet Loss

In Section II-B we noted that Channel Busy Time
(CBT) was a good predictor of network congestion
levels. We now explore the relationship between the
CBT metric and packet loss rate.

Figure 3 plots the packet loss rate as a function of the
Channel Busy Time during the corresponding time inter-
val of the Wednesday Plenary session. The plotted rates
are averages over 30 second time windows. We observe a
strong linear correlation with the packet loss rate and the
observed CBT values; as the CBT increases, the proba-
bility of a packet loss due to congestion also increases.

Unfortunately, our analysis of packet loss versus
CBT values for other sessions in the 67th IETF did not
exhibit such strong correlations. However, we note that
the average packet loss rate was higher during periods
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Fig. 3. Relationship between channel busy time and packet loss rate
during the Wednesday plenary session.

of high utilization in these sessions. These observations
lead us to conclude that the CBT information can be
used as a good indicator of packet loss caused by the
congestion levels in the network. The exact relationship
of CBT may vary depending on environmental factors.
A rate-adaptation scheme that uses CBT as a heuristic to
identify congestion-related packet losses must therefore
be dynamic and capable of adapting to changes in the
environment. In the design of WOOF, we initiate our
prediction heuristic with the initial setting of a linear
relationship between packet loss and CBT. We then
dynamically adapt the weight of this relationship based
on the observed network performance to model the
current environment.

The CBT metric only helps in identifying the cause
of a packet loss, i.e., whether it was congestion-related.
The rate adaptation scheme must continue to deal with
packet losses caused by other factors such as poor link
quality. Thus we claim that Channel Busy Time provides
supplemental information that a rate adaptation scheme
should use in addition to packet loss information. To
do so, we borrow the basic framework of the design of
SampleRate [13] scheme in order to handle the packet
loss information in WOOF. We now outline the operation
of SampleRate, and then discuss the design of WOOF.

B. SampleRate

SampleRate is a rate adaptation scheme that accounts
for the time required for successful transmission of
a packet [13]. The basic idea of SampleRate is to
choose the data rate that is expected to consume the
least medium time, i.e. the data rate with maximum
throughput. Note that this rate need not always be the
highest possible rate (i.e., 54 Mbps) because of poor
link SNR and variable link quality. SampleRate uses
frequent probing of different data rates in addition to
the currently used data rate to calculate the Expected
Transmission Count (ETX) [15] for each data rate. The
ETX represents the average number of transmission
attempts required for successful reception of a packet.
The Expected Transmission Time (ETT) is calculated
using ETX information at a given data rate and accounts
for the backoff times when the ETX metric predicts that
a retransmission is required (i.e., ETX>1). SampleRate

then chooses to transmit data packets using the data
rate with the lowest expected transmission time.

While SampleRate is able to successfully adapt the
data rate in the presence of link variability, it does
not respond appropriately when congestion occurs.
In particular, it does not distinguish the cause of
packet loss; all packet losses contribute towards the
calculation of ETX. Previous research has observed this
phenomenon of SampleRate’s data rate reduction [16].
Congestion losses impact SampleRate’s estimation of
ETX at the different data rates and lead to a sub-optimal
choice of transmission rate.

C. Design of WOOF

We base the design of the WOOF solution on that
of SampleRate. In particular, we build on SampleRate’s
framework of calculation of ETT and use this
information to choose the best data rate. In addition,
we incorporate the ability to discern the cause of packet
loss, in order to enable operation in congested networks.

In Section IV we observed that channel busy time can
be used as a metric to predict congestion-related packet
loss. We incorporate this insight into the design of
WOOF with the following enhancement to SampleRate.
We use effective packet lossinstead of the observed
packet loss for calculation of ETX and the resulting
calculation of ETT. Whenever we observe a packet
loss, we associate a probabilityPCL that the loss was
due to congestion. We then account for the fraction
of packet loss that was not due to congestion in the
calculation of ETX. In other words, we weight every
packet loss proportionally to the probability that it was
not a congestion-related loss.

EffectiveLoss= ObservedLoss· (1 − PCL)

For the calculation ofPCL, we use the following equa-
tion to capture the relationship between Channel Busy
Time and packet loss:

PCL = β · CBTF

whereCBTF represents Channel Busy Time Fraction
andβ represents the confidence factor,0 ≤ β ≤ 1. The
CBT values are measured over intervals of time of size
W seconds.

The confidence factor,β, is a measure of the degree
of correlation betweenCBTF and congestion-related
packet loss. The confidence factor is adaptively varied
based on the observed network performance. The value
of β is calculated as follows. At the end of each
measurement interval,W , we compare the performance
of rate adaptation in the current interval to that during
the previous interval. The metric for performance
comparison is the transmission time consumed during
the interval. To enable comparison of transmissions using
a diverse set of data rates, we normalize the measured
transmission time with respect to the corresponding
time using a fixed data rate, e.g., 54 Mbps. If the metric
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indicates an improvement in performance in comparison
with the previous interval of measurement, the value of
β is increased in steps of 0.05. This increase inβ models
the increased confidence in usingCBTF to distinguish
congestion-related packet losses. Similarly, when the
metric indicates a drop in performance,β is decreased
by 0.05. The confidence factorβ enables WOOF to
adapt to different network environments. In particular,
this enables WOOF to ensure good performance (at least
as good as SampleRate) in situations of low SNR links
and high congestion. In Section VI-D, we examine the
impact of the measurement window,W , and its effect
on the convergence time forβ values. In Section VI-C,
we evaluate the performance of WOOF under different
combinations of link SNR and congestion levels.

D. Implementation

We implemented WOOF as a rate adaptation module
for the MadWifi driver v0.9.2. We chooseW=1s as the
window of observation and recalibration. A large value
of W reduces the responsiveness to changes in the en-
vironment utilization. Smaller values ofW increase the
processing load due to frequent recalibrations. We set the
initial value of β to 0.5. At each intervalW , the driver
calculates the Channel Busy Fraction. In addition, the
normalized network performance, as described in Sec-
tion V-C, and the value ofβ are updated at each interval.

VI. EVALUATION

We evaluate the performance of WOOF in two
network scenarios: a WLAN and a multihop mesh
network. We first describe the experiments in the
WLAN environment.

The WLAN scenario allows us to control the
experiment parameters and the environment. The
WLAN consists of one laptop acting as an AP and eight
laptops as client devices. Each laptop is equipped with
an IEEE 802.11b/g radio based on the Atheros chipset.
The laptops use Linux (kernel version 2.6) as their OS
and MadWifi as the driver.

We compare the performance of WOOF against that of
SampleRate. Previous work has shown that SampleRate
performs better than ARF and AARF in most network
scenarios [13], [14]. Thus we expect WOOF to provide
better performance than ARF and AARF in all cases
where WOOF performs better than SampleRate.
In addition, for the WLAN we also compare the
performance against a scenario wherein the data rate of
the client-AP link is fixed at the best possible rate. This
scenario, called the StaticBest scenario, gives us an
estimate of the upper-bound on the network performance.
The best static rate is determined by running a simple
performance test at each data rate immediately prior to
the corresponding tests with SampleRate and WOOF.
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Fig. 4. Performance comparison between WOOF and SampleRate.

A. Impact of Network Load

In the following set of experiments, we examine the
impact of network load on the rate adaptation schemes.
The clients implement either SampleRate, WOOF, or
use the fixed data rate (StaticBest). The load on each
of the eight clients is varied from 100 Kbps to 7 Mbps
to vary the overall load on the network from 800 Kbps
to 56 Mbps. The network performance for each offered
load is measured using theiperf utility and UDP
traffic for 5 minutes. For each trial of the experiment,
the drivers on the AP and clients are reset. This is
followed by an initial warm-up period of 60 seconds
for each client during which clients transmit low-rate
traffic (10Kbps) to the AP.

Figure 4(a) graphs the total network throughput as
a function of the offered load. Each data-point is an
average based on five trials of the experiment. The error-
bars indicate the minimum and the maximum through-
put values over different experiment trials. We observe
that the network throughput for StaticBest saturates at
about 32 Mbps and for Sample-Rate at 7 Mbps. The
throughput for WOOF is around 29 Mbps, close to
that of Static-Best. From the graph, we observe that
for non-congested scenarios (offered load<8 Mbps), all
three schemes are able to sustain the offered load. In
other words, WOOF matches the performance of the
other schemes in low congestion environments. With
the increase of congestion (offered load>8 Mbps),
SampleRate is affected by the congestion-related packet
losses and, thus, begins to use lower data rates. WOOF
correctly identifies these packet losses as congestion-
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related and continues to use high data rates, resulting
in better throughput.

B. Impact of the Number of Clients

We now examine the impact of contention in the net-
work and study the network performance as the number
of clients increases. The experimental configuration is
similar to the one described in the previous section.
In this case, however, we incrementally increase the
number of clients associated with the AP from one to
eight. Each client offers a load of 10 Mbps UDP traffic.

Figure 4(b) plots a graph of the total network
throughput versus the number of clients in the network.
At low contention levels (<4 clients), we observe that the
throughput of SampleRate increases almost linearly to
reach a maximum of about 24 Mbps. Once the network
starts to become congested (≥4 clients), however, the
average throughput for SampleRate starts to drop. With
eight clients, the throughput for SampleRate is 7 Mbps.
This drastic reduction in network throughput, about
70%, is because, with increased contention, SampleRate
reduces the data rate, adding to the congestion. In
contrast, the drop in throughput for WOOF is from
33 Mbps to 30 Mbps, i.e. only a 10% reduction. We ob-
serve that the throughput reduction for StaticBest is also
about 10%. Therefore, we conclude that the reduction
in throughput is primarily due to actual packet losses.

C. Performance in Poor Link Conditions

We now conduct experiments to understand the per-
formance of WOOF under different network conditions.
In particular, we are interested in the scenarios wherein
the links are weak i.e., the SNR of received packets
is low. We conduct the experiments similar to that in
Section VI-B. We consider four different combinations
of link SNR and congestion levels. The good SNR link
scenario has all of the client links with sufficient SNR
to operate at 48 and 54Mbps. The low SNR scenario
is acheived by increasing the physical distance between
the clients and the AP, and decreasing the transmit power
of all the radios. The StaticBest rates for the clients in
this scenario ranges between 2Mbps and 18Mbps. We
chose two congestion levels: low congestion corresponds
to two clients with an offered load of 5Mbps each; high
congestion corresponds to eight clients with offered load
of 5Mbps each.

Low SNR High SNR

Low Congestion SampleRate: 0.79 SampleRate: 7.67
WOOF: 0.73 WOOF: 7.45

High Congestion SampleRate: 0.55 SampleRate: 10.63
WOOF: 0.79 WOOF: 23.04

TABLE II
NETWORK THROUGHPUT(IN MBPS) UNDER DIFFERENT

COMBINATIONS OF SNRAND CONGESTION LEVELS.

Table II lists the network throughput in each of the
scenarios for both SampleRate and WOOF. We see

that the performance of WOOF under low congestion
scenarios are comparable to that of SampleRate. During
high congestion, we observe that WOOF improves the
network throughput for both the SNR scenarios. There-
fore, we conclude that WOOF provides performance
gains in congested networks while having minimal im-
pact in uncongested networks. Further, WOOF responds
appropriately when the link quality is poor by decreasing
the data rate to a rate more suitable to the poor link
quality.

D. Choice of ParameterW

We now explore the impact of using different values
for W , the interval of recalibration for WOOF. We use
the same experimental configuration as in Section VI-A.
Each of the eight clients has an offered load of 10 Mbps.
Table III shows the average network throughput for
different W values. We observe that for lowW values,
below 2s, the network throughput remains high and fairly
stable. ForW > 2s, we see that the throughput values
decrease. At high values ofW , the throughput is com-
parable to those obtained by SampleRate. A low value
of W enables WOOF to adapt to network conditions
quickly and obtain better performance. However, a low
value ofW also increases the processing load on the rate
adaptation algorithm and the device driver. A high value
of W makes WOOF less responsive to the environment.
Based on these tradeoffs, we recommend a value of
W = 1s.

W (seconds) Throughput (Mbps)
0.25 28.77
0.5 27.63
1 28.85
2 27.72
4 21.98
8 16.44
16 14.92
32 10.30

TABLE III
IMPACT OF MEASUREMENT INTERVALW.

Closely related to the choice of value ofW is the
number of recalibration cycles required for theβ value
to stabilize in response to a change in the environment. In
our WLAN testbed we found that the median number of
cycles forβ to stabilize is six. Similarly, in the MeshNet
environment that we describe in the next section, the
median number of cycles was five. Together withW , the
number of cycles forβ to stabilize impacts the time delay
for WOOF to respond to a change in the environment
(e.g. arrival of a new node in the network).

E. Performance in a Mesh Network

Having obtained insight into the different performance
aspects of WOOF in the WLAN environment, we con-
duct a set of experiments in an uncontrolled mesh
network. The purpose of the experiments is to understand

8



 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6  7  8

N
et

w
or

k 
T

hr
ou

gh
pu

t (
M

bp
s)

Flow Topology

SampleRate-UDP
WOOF-UDP

SampleRate - TCP
WOOF - TCP
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the performance of WOOF in real network deployments.
We conduct our experiments on the UCSB MeshNet
testbed [17]. The MeshNet is an indoor multihop IEEE
802.11 network with 25 dual-radio devices. For our ex-
periments, we use a subset of these nodes connected to a
single gateway node. We use only one radio of each node
operating in the 802.11b/g mode. SRCR [18] is used as
the routing protocol. The physical distance between the
nodes and the presence of barriers in the form of walls
and doors result in a majority of the links operating at
low data rates, even in the absence of competing traffic.

We study the performance of the network by
measuring the sum of throughputs achieved by the
individual nodes in the network. To model the flow
behavior in a mesh network, all the flows originate
from the gateway node. The number of flows and the
destination node for each flow is chosen randomly, but
we ensure that there are a minimum of three flows in
the network at all times. A combination of the selected
number of flows and the corresponding destination
nodes constitutes a flow topology. The experiment is
conducted for seven different flow topologies, and for
both SampleRate and WOOF. We repeat the experiment
for both TCP and 10 Mbps UDP flows.

Figure 5 compares the throughput of SampleRate
and WOOF for these experiments. From the graph we
see that WOOF provides higher network throughput for
both UDP and TCP as compared to SampleRate. The
median increase in throughput for UDP is 54.49%. The
throughput gains for TCP, however, are less pronounced,
with a median improvement of 20.52%. This behavior
can be attributed to the dynamics of TCP congestion
control mechanisms and its sensitivity to packet loss.

VII. C ONCLUSION

Congestion in an IEEE 802.11 network causes a
drastic reduction in network performance. Critical to
tackling this problem is the ability to identify and
measure congestion. In this paper we have presented
a passive technique that measures the utilization of
the wireless medium in real-time. We then used
the congestion measurement technique to develop a
rate adaptation scheme called WOOF. Performance

evaluation showed up to a three-fold gain in throughput
with the use of WOOF in a congested network. In
addition to WOOF, we believe that our congestion
measurement technique can be used to design new
solutions that perform well under congestion scenarios.
For example, the CBT metric can be used for bandwidth
estimation to facilitate effective flow admission control.
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