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Channel and Hardware Impairment Data
Augmentation for Robust Modulation Classification

Erma Perenda , Member, IEEE, Gérôme Bovet , Mariya Zheleva ,
and Sofie Pollin , Senior Member, IEEE

Abstract—Deep learning has achieved remarkable results in
modulation classification under two assumptions: a large amount
of labeled class-balanced data is available, and the test data
and training data follow the same distribution. However, due
to channel and hardware impairments, it is implausible that
these assumptions hold in practice. This paper proposes Model-
based Data Augmentation for Deep learning-based Modulation
Classification (MDA-DMC), to build a high-quality dataset from
a small amount of labeled seed data. MDA-DMC leverages two
well-known augmentation methods: adding Gaussian noise to,
and rotation of the seed signal constellations. Furthermore, we
develop two novel augmentation methods to combat channel
and hardware impairments: radial shift and stretching of the
signal constellations. We are the first to investigate the correlation
between these augmentation methods and the channel/hardware
impairments, demonstrating the adverse effect of the rotation
and stretching of signal constellations on classifier performance.
Consequently, the dataset must incorporate both augmenta-
tions to counterbalance performance degradation. MDA-DMC
compensates for hardware impairments when training and test
data channel models are identical. It also addresses fading
impairments with a few AWGN seed data for low-order mod-
ulation formats. However, classifiers trained on the augmented
dataset struggle to generalize channel impairments effectively
with higher-order modulation formats.

Index Terms—Modulation classification, deep learning, data
augmentation.

I. INTRODUCTION

AS AN intermediate step between signal detection
and demodulation, Automatic Modulation Classification

(AMC) initially emerged within military contexts to analyze
intercepted enemy signals [1]. Beyond its military applica-
tions, AMC has found extensive use in cognitive radios, where
it enhances spectral efficiency and reduces receiver complex-
ity [2], [3]. Leveraging the same advantages as in cognitive
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radios, AMC has been identified as the most fundamental part
of intelligent transceivers for 5G and beyond networks [4] and
future underwater optical wireless communications [5]. Given
these communication environments’ dynamic and complex
nature, the importance of a reliable and impairments-resilient
modulation classifier cannot be overstated.

In the literature, the AMC methods are broadly categorized
into three groups: (1) Likelihood-Based (LB), Feature-Based
(FB), and Deep Learning (DL)-based (DLB). LB methods
treat AMC as a multi-hypothesis testing problem where
the maximum likelihood criterion is applied to the received
signal directly or after some simple transformations, such as
averaging [6], [7]. While LB classifiers can achieve optimal
classification accuracy, they are computationally intensive and
rely on the impractical assumption of perfect knowledge of
signal and channel models, making them sensitive to unknown
channel conditions and hardware discrepancies like Sampling
Clock Offset (SCO), Carrier Frequency Offset (CFO) and In-
phase/Quadrature (I/Q) imbalance. Conversely, FB methods
are developed on an ad-hoc basis and lack optimality in
the Bayesian sense [8], [9], [10]. These methods involve
manually selecting discriminative features from raw data,
such as I/Q or Power Spectral Density (PSD). This approach
is labor-intensive and struggles to model all channel and
hardware discrepancies, potentially leading to performance
degradation [11]. Recently, DL has achieved great success
in AMC due to its ability to automatically extract discrimi-
native features using multiple hidden layers with non-linear
activations [7], [12]. DLB classifiers offer higher classification
accuracy and lower computational cost, making them the
preferred choice among the three classifier groups.

Most of the proposed DLB classifiers [13], [14], [15], [16]
achieved outstanding performance under two assumptions: (1)
there is a large amount of labeled class-balanced data, and (2)
the test dataset shares the same data distribution as the training
dataset. Data labeling typically necessitates the presence of
domain experts, leading to significant expenses. Moreover,
the numerous transmitter configuration parameters and the
omnipresence of various channel and hardware imperfections
result in limitless data distribution variations [11]. Let us
define a domain as an environment with one combination of
transmitter configuration parameters, channel and hardware
impairments. It is unrealistic to assume that labeled data can be
acquired for each domain, as the number of domains is infinite.
Many efforts have been made to enhance the robustness of
modulation classifiers across various domains, encompassing
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advanced loss functions [17], [18], [19], more sophisticated
Deep Neural Network (DNN) structures [20], [21], data aug-
mentation techniques [22], [23] and various combinations
thereof [17], [19]. Conventional data augmentation applies
simple mathematical operations to signal constellations and
enhances a labeled seed dataset with numerous signal distor-
tions to model different domains. Supervised classifiers trained
on the augmented dataset using a simple cross-entropy loss
achieve comparable performance to other classifiers employing
more advanced loss functions and complex training meth-
ods [19]. In line with the practices in image processing, AMC
data augmentation has employed two well-known augmenta-
tion methods: adding Gaussian noise to, and rotation of the
signal constellations [17], [19], [22]. Those operators are typi-
cally applied to randomly selected noisy and already impaired
signal constellations [17], [22]. However, data augmentation
performance has not received a thorough examination in the
context of AMC, leaving numerous questions unanswered.
This paper addresses three key questions: (1) the importance of
seed data quality, (2) potential performance degradation when
multiple augmentation operators are combined, and (3) the
correlation between easy-to-compute augmentation operators
and realistic signal impairments due to channel or hardware
imperfections.

This paper proposes Model-based Data Augmentation for
DLB Modulation Classification, denoted as MDA-DMC, and
carries out a thorough performance evaluation to answer the
above questions. MDA-DMC uses simple spatial and temporal
transformations of the signal constellations to generate a
domain-diverse high-quality dataset from a limited amount of
labeled seed data belonging to a single domain referred to
as a source domain. In addition to well-known augmentation
operators (i.e., adding Gaussian noise to, or rotation of the
signal constellations), we propose two novel augmentation
operators named radial shift and stretching of the signal
constellations. As the source domain, we choose a simple
scenario consisting of an Additive White Gaussian Noise
(AWGN) channel with a Signal-Noise Ratio (SNR) of 18 dB
and an ideal Radio Frequency (RF) front-end. Unlike more
complex channel models such as Rayleigh and Rician, the
collection of labeled data for AWGN is cheaper as it does
not have many hyperparameters such as path delay profiles
and Doppler spread. The choice of 18 dB is driven by two
considerations: (1) It mirrors a practical wireless environment
(e.g., LTE) characterized by good signal quality with minor
channel impairments [24], [25]; (2) Obtaining data in an
environment with an SNR exceeding 18 dB, featuring excellent
LTE signal quality, is likely challenging and would necessitate
a testbed with an expensive isolation chamber and hardware
with super low sensitivity. Notably, any SNR surpassing
13 dB (indicative of LTE good signal quality) would yield
comparable performance. We selected two baseline classifiers:
(1) the well-known simple 1D-Convolutional Neural Network
(CNN) classifier given in [14] and (2) the more sophisti-
cated Aggregated Residual Transformations for Deep Neural
Networks (ResNeXt)-based classifier optimized by Genetic
Algorithm (GA) proposed in [26]. Both classifiers utilize a
straightforward cross-entropy loss, as the primary focus of this

study is a comprehensive examination of data augmentation
performance rather than optimizing DNN architecture. We
selected simple and more sophisticated DNN classifiers to
compare their ability to generalize complex and non-linear
data. It is important to note that the augmented dataset
can be utilized with any other DNN architecture. The key
contributions of this paper are summarized below.
• This is the first detailed study of physical connection

between data augmentation operators and signal impair-
ments introduced by channel and hardware imperfections.

• We are the first to evaluate the robustness of DLB AMC
to hardware impairments such as CFO, SCO and IQ-
imbalance.

• We show that the proposed model-based data augmenta-
tion builds high quality dataset from a small amount of
labeled seed data and significantly improves performance
under different unseen channel and hardware impair-
ments.

• We show that the quality of seed data impacts
performance of data augmentation. The cleaner the seed
data, the more precise the emulation of channel and
hardware impairments.

The remainder of the paper is organized as follows. The
related work is presented in Section II. The preliminaries,
problem definition, and proposed data augmentation methods
are given in Section III. The results obtained from various
examined experiments are discussed in Section V. The con-
clusions are briefly presented in Section VI.

II. RELATED WORK

DL has achieved impressive breakthroughs in
AMC [7], [12] but fails when applied to signals with
unseen transmitter/channel parameters [11]. It also requires a
large labeled dataset to achieve high classification accuracy.
Many methods have been proposed to improve classification
performance in unseen conditions, such as blind estimation of
signal and channel parameters [27], [28], [29], unsupervised
Domain Adaptation (DA) [18], [30], [31], [32], [33], [34],
Deep Metric Learning (DML) [17], [19], Transfer Learning
(TL) [11], and data augmentation. Keeping in mind the
focus of this work, we summarize State-of-the-Art (SoA)
achievements of data augmentation methods in what follows.

Data augmentation expands the prior knowledge by aug-
menting the minimally available data samples and generating
more diverse samples to train the model. The simplest way to
enhance the modulation dataset for different noise conditions
is to add a random Gaussian noise [22], [35], [36]. Generative
Adversarial Networks (GANs) have been widely used to gen-
erate additional high-quality labeled data from a small amount
of seed data [37], [38], [39], [40]. One limitation of a GAN
is that it cannot generate data with a distribution that differs
from the existing data distribution since it attempts to learn
the feature distribution of the existing data. In contrast, Spatial
Transformer Network (STN) learns spatial transformations
and generates additional data which might have a different
distribution [11]. In [23], data is enhanced through the flip
operations designed for I/Q signal data characteristics. Two
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flip operations are proposed: (1) a left-right flip done along
the center of the time axis, and (2) an up-down flip along
the origin of I/Q coordinates. In addition to adding Gaussian
noise and flipping, the rotation method is introduced in [22],
showing that the rotation augmentation method outperforms
flipping. The authors randomly select 12.5% of data from
the dataset, incorporating noisy samples with SNR ranging
from −20 dB to 20 dB. In this context, adding Gaussian
noise is anticipated to yield suboptimal results, given that
introducing noise to instances already corrupted by noise could
lead to a higher presence of instances with lower SNRs within
the dataset. Nevertheless, the evaluation of augmentation
methods is conducted on a dataset featuring a combination of
channel and hardware impairments. Consequently, it becomes
challenging to discern the correlation between impairments
and the proposed augmentation methods.

In scenarios where unlabeled data is available, one can adopt
pseudo-labeling, a technique that involves assigning labels to
such data based on the model’s predictions, as demonstrated
in [41]. Before pseudo-labeling, the feature set, consisting of
10 hand-crafted features and 30 AutoEncoder (AE)-learned
features, undergoes optimization to remove redundant and
irrelevant features by using a fast correlation-based filter.
Moreover, [41] assumes that a few labeled samples are
available for each class at each SNR. Additionally, the applied
policy for pseudo-labeling cannot guarantee that the selected
label is correct, especially when applied to instances with
unknown channel and hardware imperfections due to their
substantial distribution shifts [11].

III. METHODOLOGY

This section describes the signal model fed to the classifier’s
input, problem statement, preliminaries, and proposed data
augmentation methods.

A. Signal Model

This paper considers a Single-Input, Single-Output (SISO)
system over a dynamic wireless fading channel modeled with
an impulse response h(t ; τ), in complex baseband equivalent
notation. The h(.;.) is a complex-valued function, τ represents
the path delays of the multipath wireless channel, and t is the
time variable. The input to the SISO system is a vector of
complex symbols a ∈ C

Ns , where Ns denotes the number of
samples per symbol. The symbols are encoded by adopting
modulation format m from a pool of known modulations M,
shaped with a pulse of duration Ts and upconverted to center
frequency fc , forming the real transmitted passband signal s(t).
The output of the SISO system is the down-converted complex
baseband signal, r(t), which is distorted and noise-corrupted
and given as

r(t) = s(t −Δt) � h(t ; τ)ej (φ0+2πΔft) + v(t), (1)

where � denotes convolution in the time domain, Δt is
a random time asynchronism between the transmitter and
receiver clocks, Δf is the carrier frequency offset, φ0 is the
phase offset, and v(t) is AWGN with mean 0 and variance 2σ2v .
The received signal, r(t), is sampled with Nyquist frequency

1/Tr , and Nr raw I/Q samples are fed to a modulation
classifier’s input. The Nr raw I/Q samples are referred to as
an instance, represented as a two-dimensional array, r, with
dimensions 2 − by − Nr , where the first row holds I values,
and the second row holds the corresponding Q values.

B. Problem Definition

This paper aims to enable robust modulation classification
with limited training data for numerous combinations of chan-
nel and hardware impairments and SNR. Particularly, we target
a source domain where labeled data is empirically collected
for a single SNR (18 dB) and single channel (AWGN) across
all target modulations, and then augmented this baseline to
match a large number of realistic cases. Let r ∈ C

Nr be an
available seed instance and m ∈ M = {1, 2, . . . ,M } be its
output label, where M is number of modulation classes. The
source domain, denoted by Ds , consists of ns labeled seed
instances from C

Nr . The data available for the source domain
are enhanced by applying data augmentation operators that
emulate the channel and hardware impairments to obtain the
enhanced dataset Da

s with na > ns labeled instances. The size
na depends on how many seed instances are augmented with
a range of possible augmentation methods, as will be detailed
below.

Given the enhanced labeled dataset Da
s , the objective of a

DLB modulation classifier is to learn a functional mapping
g : CNr −→ M. The functional mapping g can be decomposed
into a feature encoder and a label predictor. The feature
encoder, z (r ; θ) : C

Nr −→ R
L, takes an instance r and

generates an encoding vector z(r) of length L (θ denotes the
parameters of the DNN architecture for feature encoding). The
label predictor maps the encoding vectors to the label space
M. The functional mapping g is found by training the feature
encoder and label predictor on the enhanced labeled dataset,
Da
s , utilizing the cross-entropy loss.

C. Loss Definition

The baseline classifiers are trained by adopting cross-
entropy loss. Categorical cross-entropy [42] is a measure of
the difference between two probability distributions. Softmax
is utilized to convert the learned classification embeddings into
the probability of belonging to each candidate modulation.
When used as a loss function, the two underlying distributions
are the predictions and the true classes of the samples.
Categorical cross-entropy can be written as:

Lce = − 1

NB

NB∑

i=1

M∑

j=1

mi ,j · log
(
m̂i ,j

)
, (2)

where mi ,j represents the ground truth, m̂i ,j is the prediction,
M is the number of modulation classes, and NB is the training
batch size.

D. Data Augmentation

CNN-based modulation classifiers learn spatial features
of signals, i.e., signal constellations [11]. Dynamic fading
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channel and hardware imperfections introduce spatial transfor-
mation of the signal constellations, such as rotation, shifting,
and scaling. Modeling the channel and hardware impairments
has many degrees of freedom, making it tedious. Thus, simple
mathematical operations are proposed to enhance a limited
amount of labeled data in the source domain. We use four
augmentation methods:

1) Adding Gaussian Noise (AGN): The received signal is
distorted by adding Gaussian noise with zero mean value
and random variance σ2. The noise variance is inversely
proportional to the desired SNR level. The emulation
of passing the received signal, r, through an AWGN
channel with a certain SNR [dB] consists of the following
steps:

a) Step 1: measure the power of the received signal

r =

[
I
Q

]

2XNr

as below,

Pr =
1

Nr

Nr∑

k=1

|rk |2; , (3)

where rk = ik + jqk denotes k-th sample in r with
in-phase value of ik and quadrature value of qk .

b) Step 2: translate SNR [dB] to linear scale SNRl =
10SNR[dB ]/10;

c) Step 3: generate Gaussian noise as

n =

[
nI
nQ

]
=

√
Pr

2 · SNRl
·
[
randn(1,Nr )
randn(1,Nr )

]
, (4)

where randn(·) generates 1 × Nr array of white
Gaussian noise samples with zero mean and unit
variance;

d) Step 4: add the generated noise to the received
signal as below,

rn =

[
Î

Q̂

]
=

[
I + nI
Q + nQ

]
. (5)

2) Rotation of the Signal Constellation (RSC): Rotation
emulates the impact of the phase offset. The phase
offset might be introduced by fading channels or local
oscillators. The phase offset impairs each point in the
constellation, causing a rotation in the counterclockwise
direction for a positive phase offset and a rotation in
the clockwise direction for a negative phase offset. The
augmented I/Q values by rotation with random angle θ
are calculated as

rr =

[
Î

Q̂

]
=

[
cos θ − sin θ
sin θ cos θ

]
·
[
I
Q

]
. (6)

3) Stretching of the Signal Constellation (SSC): Stretching
emulates the impact of the amplitude imbalance, which
occurs when the modulator’s in-phase and quadrature
components are not orthogonal. Noisy mixers used
for the signal downconversion are the sources of the
amplitude imbalance. A positive amplitude imbalance
causes horizontal stretching of the constellation, while a
negative amplitude imbalance causes vertical stretching.
The amplitude imbalance is characterized by the amount

Algorithm 1: Radial Shift of the Signal Constellation
(RSSC)

Input: Instance r, rotation step Δθ
Output: Radially shifted instance r̂

1 k ← 1
2 r̂ ← r
3 foreach (i , q) ∈ r do
4 θ ← k ·Δθ

rr =

[
î
q̂

]
=

[
cos θ − sin θ
sin θ cos θ

]
·
[
i
q

]
. (9)

r̂ [k − 1]← (î , q̂)
5 k ← k + 1

6

7 return r̂

of error in the amplitude, εr (|εr | > 1). A positive
amplitude-imbalanced impaired signal is given by

ri =

[
Î

Q̂

]
=

[
εr 0
0 1

]
·
[
I
Q

]
, (7)

while a negative amplitude-imbalanced impaired signal
is given by

ri =

[
Î

Q̂

]
=

[
1 0
0 |εr |

]
·
[
I
Q

]
. (8)

Note that | · | is necessary in Eq. (8) for a negative
amplitude imbalance value to ensure proper scaling
along the quadrature axis.

4) Radial Shift of the Signal Constellation (RSSC): Radial
shift emulates the impact of CFO and SCO caused by the
local oscillators at the transmitter and receiver. CFO also
occurs due to relative motion of the transmitter and/or
receiver. This phenomenon is well-known as Doppler
shift, and is directly proportional to the speed and direc-
tion of motion of the transmitter/receiver with respect
to the direction of arrival of the received multipath
wave [43]. CFO and SCO change the angles of points
in the constellation linearly over time, causing points in
the constellation to shift radially in the counterclockwise
direction for a positive frequency offset and in the
clockwise direction for a negative frequency offset.
Although the points are radially shifted, their magnitude
is unchanged [44]. The implementation of the radial shift
augmentation method is described in Algorithm 1.

The ranges of SNR, θ, Δθ, and εr are explored in the
evaluation section. The optimal number of augmentations per
method and the order of performing augmentation are also
assessed in the evaluation section. Each augmented instance
is normalized before it is added to the dataset Da

s . Figs. 1
and 2 show constellations of various modulated signals with
realistic and emulated channel and hardware impairments,
respectively. While the realistic and augmented constellations
may appear similar, the performance evaluation aims to assess
the precision of emulating different channel and hardware
impairments.
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Fig. 1. Constellations of several modulation types with realistic channel and hardware impairments at SNR=18 dB and upsampling factor of 1 (SC0 = 10
ppm, CFO = 15 kHz, IQ amplitude imbalance = 5 dB, IQ phase imbalance = 5 ◦).

Fig. 2. Constellations of several modulation types with emulated channel and hardware impairments.

IV. EXPERIMENTAL SETUP

This section will introduce the chosen classifier baselines
and selected datasets for performance evaluation. The imple-
mentation details are also summarized.

1) Datasets: Two modulations sets are used: (1) a Basic
set, containing Nmod = 11 modulation formats typically used
in the literature: BPSK, QPSK, 8-PSK, 16/64-QAM, PAM4,
GFSK, CPFSK, BFM, DSB-AM and SSB-AM; and (2) an
Extended set, containing the basic ones and nine higher-order
modulations: OQPSK, 32/128/256-QAM, 16/32/64/128/256-
APSK (Nmod = 20). Both sets are synthetically generated
in MATLAB as for the data augmentation analysis we need
full control over various domains. Thus, the benchmark

datasets [45], generated for one channel model including
various random hardware impairments, are unsuitable for such
analysis. The code is published and available online.1 The
source and target domains contain I/Q samples (instances)
shaped with an upsampling factor of 4 and an Raised Cosine
(RC) filter with a roll-off factor of 0.35. Instances have a
size of Nr = 128 and Nr = 1024 for the basic and the
extended modulation sets, respectively. The extended modu-
lation set requires a longer signal observation because of the
higher-order modulations [11]. The source domain DS-Source
contains 100 instances for each modulation class for an 18

1https://github.com/ErmaPerenda/Modulation-dataset-generation-in-
MATLAB
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dB AWGN channel with ideal hardware. Each considered
target domain has 1000 instances for each modulation/SNR
pair across the whole SNR range of [−6:2:20] dB. The data
in the source domain is available during training, while the
data in the target domains is available during testing. The
target domains encompass the following channel and hardware
impairments:

1) DS-AWGN: AWGN with SNR ranging from -6 dB to
20 dB and the ideal RF front-end.

2) DS-Rayleigh: Rayleigh channel with a path profile:
delays of [0, 4.5, 8.5] μs and gains of [0,−1,−5] dB.
AWGN with SNR in the range of [−6, 20] dB is added
to the Rayleigh channel. The maximum Doppler shift is
set to 4 Hz. The RF front-end is ideal.

3) DS-Rician: Rician channel with K factor of 4, a path
profile with delays of [0,0.25, 3, 8] μs and gains of
[0, −2, −10, −3] dB. AWGN with SNR in the range
of [−6, 20] dB is added to the Rician channel. The
maximum Doppler shift is set to 4 Hz. The RF front-end
is ideal.

4) DS-iqImbalance: IQ imbalanced dataset with amplitude
imbalance ranging from − 10 dB to 10 dB, and phase
imbalance ranging from −10◦ to 10◦. The maximum
absolute amplitude imbalance of 10 dB corresponds to
a poorly designed quadrature frequency down-converter
in the absence of IQ imbalance acquisition and com-
pensation. The channel model is AWGN and the local
oscillator is ideal (SCO and CFO are zero).

5) DS-SCO: Sampling clock offset dataset with a clock
offset ranging from −20 ppm to 20 ppm. The maximum
offset of 20 ppm corresponds to a poorly designed
crystal oscillators. The channel model is AWGN, while
CFO is zero and the down-converter is ideal.

6) DS-CFO: Carrier frequency offset dataset with
frequency offset ranging from −10 kHz to 10 kHz.
The maximum offset of 10 kHz corresponds to
the performance of extremely bad CFO acquisition
algorithms. The channel model is AWGN, while SCO
is zero and the down-converter is ideal.

7) DS-Mix: We added random channel and hardware
impairments to each instance. The fading channel is
added with a probability of 70%. The fading channel
type is randomly chosen, either Rayleigh or Rician, with
the profiles outlined in DS-Rayleigh and DS-Rician,
respectively. In contrast, SCO, CFO, and IQ imbalance
impairments were addressed independently and added
with a probability of 100%, allowing a single instance
to undergo multiple hardware impairments. The specific
values for these impairments were randomly selected
from the ranges outlined in DS-SCO, DS-CFO, and DS-
iqImbalance, respectively.

2) Baselines: This work adopts two fully-supervised clas-
sifiers to assess the data augmentation performance: (1)
1D-CNN [14] and (2) ResNeXt-based classifier optimized
by GA [26]. Due to the shorter instance duration of 128
used in the basic modulation set, the two last Convolutional
and Pooling layers are removed from the 1D-CNN original
architecture. The original architecture of 1D-CNN is kept for

Fig. 3. ResNeXt-based classifier architecture. (The Conv, BN, Dropout, and
AvgPool denote Convolutional, Batch Normalization, Dropout, and Average
Pooling layers, respectively. The selu, relu, and tanh denote Scaled exponential
linear unit, Rectified linear unit, and Hyperbolic tangent activation functions,
respectively.).

Fig. 4. ResNeXt-based block structure with two parallel branches. Each
branch is a serial fusion of two Convolutional layers.

the extended modulation set. The GA best-found ResNeXt
architecture for the classifier consists of the feature encoder
with the architecture shown in Fig. 3 and the classification
head, which has one Dense layer with 166 dense units and tanh
activation. The feature encoder consists of one Convolutional
layer, four blocks with the structure shown in Fig. 4, and a
Global average pooling layer. Each block has two parallel
branches, each with two Convolutional layers with f filters,
kernel size k, and activation a. Note that we run GA for the
basic modulation set.

The alternative data augmentation techniques, GAN [40]
and STN [11], claim that classifiers achieve an accuracy
gain of up to 6% when trained on GAN and STN enhanced
datasets. As GAN attempts to learn the data distribution
of seed data, it enlarges the dataset with instances of the
same distribution. GAN is mostly used to prevent classifiers’
overfitting but not to combat distribution shifts due to channel
and hardware impairments. On the other hand, in our previous
work [11], we showed that STN improves accuracy by up
to 6%, but it is still sensitive to distribution shifts due to
channel or hardware impairments. In contrast, we proposed
MDA-DMC mainly to combat distribution shifts. Therefore,
a comparison of our proposed MDA-DMC with GAN-
and STN-based data augmentation is out of the scope this
paper.
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3) Implementation Details: All used models are imple-
mented in TensorFlow [46]. The training is performed over
Nepochs = 80 epochs and a batch size of 256 on a GPU server
with eight Nvidia RTX 2080Ti cards. Adam [47] is adopted for
weights’ optimization with its default recommended learning
rate of 0.001. Additionally, for supervised classifiers, 1D-CNN
and ResNeXt, we employ the learning rate decay that reduces
the learning rate by a factor of 0.2 when a validation loss has
not been improved over five epochs. The code is published
and available online.2

V. DATA AUGMENTATION PLATEAU

In this section, we will evaluate the performance of the
proposed MDA-DMC as a function of the realistic channel
and hardware impairments. As already mentioned, DS-Source
has 100 labeled instances for each modulation class at one
SNR value (18 dB). Those 100 instances per class are referred
to as the seed data in the text below. MDA-DMC consists of
four augmentation operators, and we will use the basic set
of modulations to explore its correlation with various channel
and hardware impairments. The overall performance of MDA-
DMC will be validated on the extended set of modulations.

A. MDA-DMC Hyper-Parameters Settings

The MDA-DMC operators come with several hyper-
parameters whose value ranges should be determined. We
opted for the SNR range [−6, 20] dB with a 2 dB incre-
ment, aligning with standard settings found in benchmark
datasets. We employ a trial-and-error approach to find value
ranges for other hyperparameters. The ranges are selected
as a trade-off between performance gain and dataset size.
We omit the detailed results for simplicity and present only
the chosen ranges. RSC achieves the best results for θ ∈
[−180, 180)◦ with a step of 10◦. SSC is optimal for εr ∈
[−4,−1) ∪ (1, 4] with a step 0.4. RSSC is optimal for
Δθ ∈ [−40:2:40]◦ with a step of 2◦. Notably, employing
smaller steps for each MDA-DMC operator has no adverse
effect on classification performance; however, it significantly
expands the dataset size. Given the definition of MDA-DMC
operators outlined in Section III-D, one can conclude that
the classification performance is not adversely affected by
the order in which augmentations are applied. Next, we
studied the impact of each augmentation run on dataset
size and accuracy gain for each hyperparameter separately.
Our experiments revealed that conducting AGN only once
for each seed instance yields comparable gains compared to
augmenting each seed instance multiple times for different
random noise values. As the dataset size increases linearly with
each run, limiting AGN augmentations to only one per seed
instance makes sense. We obtained this observation after an
analysis based on 100 seed instances. Applying RSC, RSSC,
and SSC for each hyper-parameter value to each seed instance
results in an enormous dataset, necessitating powerful GPU
servers to facilitate efficient training. Initially, we began with
randomly selecting one seed instance for each modulation

2https://github.com/ErmaPerenda/MDA-DMC/tree/main

type and augmenting it per each RSC/SSC/RSSC hyperpa-
rameter value. However, experiments demonstrated that, for a
minimum of three augmentations per hyperparameter value,
both classifiers effectively generalize RSC, SSC, and RSSC-
augmented instances. Performing more augmentations per
RSC/SSC/RSSC hyperparameter value does not yield signif-
icant accuracy improvements but drastically increases dataset
size. Therefore, we chose to execute RSC/SSC/RSSC on
three randomly chosen seed instances for each corresponding
hyperparameter value, i.e., the total number of augmented
instances is equal to 3 ·M · (NRSC +NSSC +NRSSC ), where
M is number of modulation classes and NRSC ,NSSC , and
NRSSC denote number of hyper-parameter values for RSC,
SSC, and RSSC, respectively. Two augmented instances are
allocated for training and one for validation.

B. Correlation Between MDA-DMC Operators and
Channel/Hardware Impairments

First, we evaluate the robustness of the classifiers for
different channel and hardware impairments when they are
trained only on the labeled seed data from the source domain
(DS-Source). We refer to this case as the starting case in the
text below. Second, we compare performance gains due to
the artificially adding noisy instances per each seed instance
across the considered SNR range (i.e., SNR ∈ [−6:2:20] dB).
Next, we apply the other three MDA-DMC operators on the
AGN-augmented dataset and evaluate classifier performance
on the newly generated datasets. The results are summarized
in Tables I and II. The accuracy values for target domains,
DS-AWGN, DS-Rayleigh and DS-Rician are averaged over
the entire SNR range, [−6:2:20] dB. The accuracy values
for DS-SCO, DS-CFO and DS-iqImbalance are averaged
over the entire SCO, CFO and amplitude imbalance ranges,
respectively, for 0 or 18 dB.

The amount of labeled seed instances (DS-Source) is not
sufficient for both classifiers to generalize well, leading to
notably poor performance in each channel model, as indicated
in the first row in Table I. By artificially adding one noisy
instance per seed instance for each SNR value in the range
[−6, 20] dB with a step of 2 dB, AGN augmentation built
the dataset for which ResNeXt [26] increases the average
accuracy values by 35.41%, 19.73%, and 19.88% in the
AWGN, Rayleigh and Rician channels, respectively (the sec-
ond row in Table I). On the other hand, the 1D-CNN [14]
improves the average accuracy values by 16.03%, 13.99%,
and 22.69% in the AWGN, Rayleigh and Rician channels,
respectively. It is worth noting that RSC, RSSC, and SSC did
not yield any significant accuracy gains in the AWGN channel.
However, ResNeXt boosts the accuracy when trained on the
RSC-augmented dataset by an additional 13.52% and 15.78%
in Rayleigh and Rician channels, respectively. The RSC-
augmented dataset is more complex, making it challenging
for 1D-CNN to capture such complex non-linearities, thereby
achieving only modest accuracy gains of up to 3.8% in fading
channels. While the RSSC-augmented dataset enables the
classifiers to achieve a slight accuracy improvement in fading
channels, the SSC-augmented dataset confuses the classifiers
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TABLE I
CORRELATION BETWEEN MDA-DMC OPERATORS AND CHANNEL IMPAIRMENTS: ACCURACY GAINS/DROPS (%) VERSUS THE

STARTING CASE IN DIFFERENT CHANNELS FOR THE BASIC MODULATION SET. THE FIRST ROW CONTAINS THE REFERENCE

VALUES FOR DATASET SIZE AND AVERAGE ACCURACY VALUES (%) IN THE BRACKETS FOR THE STARTING CASE

Fig. 5. ResNeXt [26] sensitivity to the hardware impairments for the basic modulation set: SCO (left), CFO (middle), and IQ imbalance (right) in AWGN
at different SNRs.

TABLE II
CORRELATION BETWEEN MDA-DMC OPERATORS AND HARDWARE IMPAIRMENTS: ACCURACY GAINS/DROPS (%) VERSUS THE STARTING CASE IN

AWGN AT SNR=0 DB AND SNR=18 DB WITH DIFFERENT HARDWARE IMPERFECTIONS FOR THE BASIC MODULATION SET. THE FIRST ROW

CONTAINS THE REFERENCE VALUES FOR AVERAGE ACCURACY VALUES (%) IN THE BRACKETS FOR THE STARTING CASE

more, leading to adverse effects with accuracy drops of 7% in
the Rayleigh channel and 2.4% in the Rician channel.

In order to understand the impact of the hardware impair-
ments on classifier performance, we trained ResNeXt [26] on
a large amount of labeled AWGN data for the entire SNR
range with the ideal RF front-end. The ResNeXt is then tested
on DS-SCO, DS-CFO and DS-iqImbalance datasets. Fig. 5
shows that even a minor SCO value of ±2 ppm results in
significant drops in accuracy, specifically 61%, 56%, 40%, and
26% at SNR of 18 dB, 12 dB, 6 dB and 0 dB, respectively.
The CFO value of ±2 kHz yields nearly identical accuracy
drops as the SCO value of ±2 ppm. In contrast, ResNeXt can
tolerate the amplitude imbalance of ±5 dB. When subjected
to an amplitude imbalance of ±10 dB, ResNeXt experiences
accuracy drops of 13%, 2.46%, 1.38% and 21.86% at SNR

of 18 dB, 12 dB, 6 dB and 0 dB, respectively. 1D-CNN [14]
follows the same accuracy drop trends as ResNeXt [26].

Table II shows that adding noisy instances improves
the accuracy in the presence of hardware impairments at
SNR=0 dB for both classifiers. Conversely, when we examine
the SNR of 18 dB, which matches the seed SNR, we observe
distinct behaviors from ResNeXt and 1D CNN. Specifically,
ResNeXt experiences a marginal accuracy drop of up to
5.63% for SCO and CFO-impaired data compared to the
starting case. In contrast, 1D-CNN exhibits a slight accuracy
improvement of up to 4.50%. Both classifiers have an accuracy
gain of up to 31.08% for IQ imbalance-impaired data at
SNR=18 dB. However, Fig. 5 shows that the classifiers are
robust to IQ imbalance at high SNR values. Therefore, the
AGN augmentation method cannot combat the impact of
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hardware impairments as it only eliminates a lack of noisy
data. Table II shows that a leading contributor to combating
SCO and CFO is RSSC, as it yields substantial accuracy
gains of 40% and 16% for both classifiers at SNR levels
of 18 dB and 0 dB, respectively. On the other hand, SSC
provides accuracy improvements of 6.30% and 7.87% for
IQ imbalance-impaired data at 18 dB for ResNeXt and 1D-
CNN, respectively. However, it is noteworthy that RSC has a
detrimental effect on IQ imbalance-impaired data, causing a
significant accuracy drop of 20% at 18 dB for ResNeXt.

In conclusion, AGN serves as a countermeasure against
the impact of noise, while RSC, RSSC and SSC combat
fading channels, SCO/CFO, and IQ imbalance effects, respec-
tively. Interestingly, classifiers trained on the RSC-augmented
datasets experience worse performance when tested with IQ
imbalance-impaired data. In contrast, classifiers trained on
the SSC-augmented datasets experience accuracy drops when
tested in fading channels. In what follows, we will examine
how those augmentation methods work jointly and whether
the adverse effects can be alleviated by achieving a balance
between RSC and SSC augmented instances within the dataset.

C. Overall Performance of MDA-DMC

We can treat each data augmentation type and all their
possible combinations as distinct domains. We split the data
augmentation process into two stages to establish balance
among the domains. In the first stage, RSC, SSC, and
RSSC are applied only to the AGN-augmented instances. In
the second stage, each augmentation method is applied to
instances that the other two methods have augmented, i.e.,
RSC augments the SSC- and RSSC-augmented instances;
SSC augments the RSC- and RSSC-augmented instances, and
RSSC augments the SSC- and RSC-augmented instances. RSC
has 35 angle values, SSC has 18 εr values, and RSSC has
40 Δθ values. The number of augmentations for each type
and modulation/SNR pair should be balanced with the number
of seed instances. In our initial setup, there are 100 seed
instances, with 90 allocated for training and 10 for validation.
To find the optimal augmentation process, we executed four
experiments wherein we applied the AGN augmentation (1)
one, (2) two, (3) three, and (4) four times to each seed instance
per each modulation/SNR pair. In the first stage of data aug-
mentation, each augmentation type selects (1) one, (2) three,
(3) four, and (4) six instances augmented with AGN for each
modulation/SNR pair in experiments 1-4, correspondingly. In
the second phase of data augmentation, each of these three
augmentation methods selects (1) one, (2) one, (3) two, and
(4) two instances that were previously augmented by the other
two methods, corresponding to experiments 1-4, respectively.
Since SSC offers only half the potential augmentations per
instance compared to RSC and RSSC, we have two options
to balance them. We can either decrease εr step to 0.2 or
double the number of augmentations for both stages of data
augmentation. We explored both possibilities using the same
AGN settings as in experiment 1. In particular, experiment #
1a denotes the scenario where SSC adopts an εr step of 0.2. In
contrast, experiment # 1b maintains the same εr step of 0.4 as

TABLE III
NUMBER OF INSTANCES PER MODULATION/SNR PAIR FOR EACH

MDA-DMC AUGMENTATION METHOD IN DIFFERENT

DOMAIN-BALANCED EXPERIMENTS

experiment #1, but doubles the number of SSC augmentations
for both data augmentation stages. The SSC setting with
the best performance is selected and applied in experiments
2-4. The number of instances per modulation/SNR pair for
each augmentation method in each experiment is summarized
in Table III. We compare these experiments to the baseline
scenario, where 1000 labeled instances are accessible for each
modulation/SNR pair in AWGN for the basic modulation set,
involving both ResNeXt [26] and 1D-CNN [14]. Subsequently,
we assess the most effective augmentation approach for the
extended modulation set. The results are summarized in
Tables IV and V.

The first three rows in Table IV show that it is better to
have fewer SSC augmentations compared to RSC and RSSC
augmentations. Let us compare the obtained accuracy values
for experiments 1, 1a, and 1b. The classifiers achieve the
highest accuracy gains in AWGN and fading channels for
experiment 1 with the εr step of 0.4, where the number of SSC-
augmented instances is half compared to the number of RSC-
and RSSC-augmented instances. With more SSC augmentations
in the training dataset, the classifiers focus more on capturing
IQ imbalance while violating the discriminative features for
channel impairments. As we observed in the earlier analysis,
the classifiers tested on SCO and CFO-impaired data appear to
be relatively insensitive to the presence of SSC augmentations
in the training dataset. Both classifiers achieve slightly higher
accuracy for IQ imbalance impairments for the experiments
with εr step of 0.4 (see the first three rows in Table V) than
the step of 0.2. As a trade-off between classifier robustness to
channels and hardware impairments, for experiments 2-4, we
opted for the SSC settings used in experiment 1 (Δεr = 0.4).
By increasing the number of instances per modulation/SNR
pair for the augmentation methods from 1 to 6 (experiment
1 and experiment 4), the dataset size expands by a factor of
3.5. With this larger dataset, ResNeXt achieves a maximum
accuracy gain of up to 4.36% for the Rician channel, whereas
1D-CNN achieves a maximum accuracy gain of 7.35% for CFO
impairments. Since experiment 2 features a training dataset size
that closely matches the baseline scenario’s training dataset
size, we will proceed to assess their performance for both the
basic and extended modulation sets. The augmented dataset
from experiment 2 will denote MDA-DMC augmented dataset
(i.e., Da

s ) in the text below.
The augmented dataset size for both modulation sets is

approximately 80% of the dataset size in the baseline case. In
the baseline case, training is conducted for AWGN with the
entire SNR range with the ideal RF front-end and experiences
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TABLE IV
MDA-DMC OVERALL PERFORMANCE FOR DIFFERENT SETTINGS: ACCURACY GAINS/DROPS (%) VERSUS THE BASELINE CASE IN DIFFERENT

CHANNELS FOR THE BASIC (BD) AND EXTENDED (ED) MODULATION SETS. THE FIRST/FORTH ROW CONTAINS THE REFERENCE VALUES FOR

DATASET SIZE AND AVERAGE ACCURACY VALUES (%) IN THE BRACKETS FOR THE BASIC/EXTENDED MODULATION SET AND THE BASELINE CASE

TABLE V
MDA-DMC OVERALL PERFORMANCE FOR DIFFERENT SETTINGS: ACCURACY GAINS/DROPS (%) VERSUS THE BASELINE CASE IN AWGN AT

SNR=0 DB AND SNR=18 DB WITH DIFFERENT HARDWARE IMPERFECTIONS FOR THE BASIC (BD) AND EXTENDED (ED) MODULATION

SETS. THE FIRST/FORTH ROW CONTAINS THE REFERENCE VALUES FOR DATASET SIZE AND AVERAGE ACCURACY VALUES (%)
IN THE BRACKETS FOR THE BASIC/EXTENDED MODULATION SET AND THE BASELINE CASE

high accuracy drops when tested for different channel and
hardware impairments. The proposed MDA-DMC aims to
achieve the same accuracy in AWGN with the ideal RF
front-end as the baseline case while increasing the accu-
racy for different channel and hardware impairments. In all
tested scenarios with the augmented dataset, ResNeXt per-
forms better than 1D-CNN. The augmented dataset comprises
highly complex data, requiring a more complex and deeper
DNN architecture to capture these complexities effectively.
Therefore, the subsequent analysis will focus solely on the
comparison for ResNeXt.

Compared to the baseline case, ResNeXt with the aug-
mented dataset has a lower accuracy by 6.69% and 7.88%
in AWGN with the ideal RF-front end for the basic and the
extended set of modulations, respectively. On the other hand,
it has a higher accuracy by 13.50/16.81% and 17.20/11.98%
for the basic/extended modulation set in the Rayleigh and
Rician channels, respectively. Data augmentation significantly
improves the accuracy by 13.38/19.02% and 42.36/38.82% for
the basic/extended modulation set for SCO-impaired data at
SNR of 0 and 18 dB, respectively. Similarly, the accuracy
gains of 12.29/16.89% and 44.57/33.77% are achieved for the
basic/extended modulation set for CFO-impaired data at SNR
of 0 and 18 dB, respectively. In contrast, compared to the
baseline case ResNeXt with the augmented dataset has a lower

accuracy by 2.21% and 5.58% for the basic modulation set and
IQ imbalance-impaired data at SNR of 0 and 18 dB, respec-
tively. On the other hand, for the extended modulation set with
IQ imbalance-impaired data, it has a higher accuracy by 3.37%
at SNR of 18 dB while a lower accuracy by 5.96% at SNR
of 0 dB. The proposed data augmentation methods enhance
the classifiers’ resilience against SCO and CFO impairments,
as evident in Fig. 6 compared to Fig. 5. The minor adverse
effects are present for AWGN and IQ imbalance-impaired data.
In comparison to the basic modulation set, both classifiers are
highly sensitive to IQ imbalance for the extended modulation
set (accuracy is less than 70% at 18 dB).

To investigate the origins of these ResNeXt performance
fluctuations, let us analyze the confusion matrices for the
extended modulation set across various testing datasets in
Figs. 7–12. Compared to the baseline case, MDA-DMC
exhibits misclassifications within the QAM modulation family
under conditions identical to those in which seed data are
captured, as shown in Fig. 7. Notably, it is intriguing to
observe that 100 seed instances are sufficient for distinguish-
ing higher-order APSK modulations. However, higher-order
QAM modulations demand more seed instances to capture
all symbol transitions adequately. In contrast to the baseline
case, MDA-DMC facilitates accurate classifications of analog,
higher-order APSK, and low-order digital modulations in
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Fig. 6. ResNeXt [26] sensitivity to the hardware impairments after data augmentation for the basic modulation set: SCO (left), CFO (middle), and IQ
imbalance (right) in AWGN at different SNR values.

Fig. 7. Confusion matrices for DS-AWGN at SNR=18 dB when ResNeXt is trained for the baseline (left) and augmented (right) datasets.

Rayleigh fading. However, intra-QAM family misclassifica-
tions persist in the presence of Rayleigh fading. Figs. 8 and
9 illustrate that MDA-DMC exhibits heightened sensitivity to
Rician fading at equivalent SNR. Similarly, under hardware
imperfections, MDA-DMC misclassifies QAM modulation
types. Conversely, MDA-DMC accurately classifies all other
modulations under substantial SCO impairment of 10 ppm
and CFO impairment of 5 kHz. However, under IQ imbalance,
MDA-DMC experiences misclassifications in APSK and QAM
due to the similarity induced by stretching, thereby adding
complexity to the classification process. The differentiation
of similar complex modulations under channel and hardware
impairments may require a more sophisticated DNN architec-
ture and a specialized loss function for the feature encoder.
Nevertheless, such considerations fall beyond the scope of the
current study.

D. MDA-DMC Performance Under Joint Channel and
Hardware Impairments

The analysis above assessed the performance of MDA-
DMC in two cases: (1) hardware impairments in the presence
of AWGN and (2) fading impairments in the presence of
AWGN and with an ideal RF front end. Additionally, each
hardware imperfection was examined independently. In prac-
tical scenarios, every transmitted signal encounters a variety
of channels and hardware impairments during its journey to
the receiver. RF-front ends at both the transmitter and receiver
sides introduce several hardware imperfections, including
SCO, CFO, and IQ imbalance. Hence, in the subsequent
analysis, we investigated the effectiveness of MDA-DMC
emulation in situations where multiple channel and hardware
impairments can coincide. First, we created a labeled DS-Mix
dataset, simulating joint channel and hardware impairments.
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Fig. 8. Confusion matrices for DS-Rayleigh at SNR=10 dB when ResNeXt is trained for the baseline (left) and augmented (right) datasets.

Fig. 9. Confusion matrices for DS-Rician at SNR=10 dB when ResNeXt is trained for the baseline (left) and augmented (right) datasets.

For each modulation/SNR pair, we generated 1000 instances
experiencing various impairments, with SNR ranging from
−6 dB to 20 dB. Second, we run three scenarios depending on
the dataset for which the ResNeXt classifier was trained: (1)
the MDA-DMC augmented dataset, (2) the DS-AWGN dataset,
and (3) the DS-Mix dataset. Third, for each scenario we
tested the trained ResNeXt classifier for the DS-Mix dataset.
Each scenario was executed for both modulation sets, and the
summarized results can be found in Fig. 13.

Despite DS-AWGN having 1000 labeled instances for each
modulation/SNR pair, the classifier trained on it demonstrates
poor generalization power, yielding an accuracy of approx-
imately 20%. In contrast, under an ideal scenario where
numerous labeled instances for joint channel and hardware
impairments are assumed during the training stage (80% of the
DS-Mix dataset), the classifier achieves 80% and 70% accu-
racy at high SNRs for the baseline and extended modulation
sets, respectively. MDA-DMC generates the augmented dataset
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Fig. 10. Confusion matrices for DS-SCO at SNR=18 dB and SCO = 10 ppm when ResNeXt is trained for the baseline (left) and augmented (right) datasets.

Fig. 11. Confusion matrices for DS-CFO at SNR=18 dB and CFO = 5 kHz when ResNeXt is trained for the baseline (left) and augmented (right) datasets.

from 100 labeled instances for each modulation type at an
SNR of 18 dB. The classifier trained on this augmented dataset
significantly enhances accuracy compared to the baseline case
(DS-AWGN). It reaches 65% and 55% accuracy at high SNRs
for baseline and extended modulation sets, respectively. The
observed accuracy gap of 15% compared to the classifier
trained for DS-Mix is likely attributed to MDA-DMC not
emulating fading channels optimally. Consequently, further

research on enhancing the emulation of fading channels is
needed.

E. Does the Seed Data Properties Matter?

The seed data depends on: SNR value and number of
instances per modulation. The above analysis is done for
default properties’ values: SNR = 18 dB and 100 instances per

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on March 28,2025 at 14:33:53 UTC from IEEE Xplore.  Restrictions apply. 



1276 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 10, NO. 4, AUGUST 2024

Fig. 12. Confusion matrices for DS-iqImbalance at SNR=18 dB and amplitude imbalance of 6 dB when ResNeXt is trained for the baseline (left) and
augmented (right) datasets.

Fig. 13. ResNeXt [26] performance under joint channel and hardware
impairments (DS-Mix) for different training settings and both modulation sets
(basic (BD) and extended (ED)).

modulation. Although we justified why we chose 18 dB, we
will assess how data augmentation’s performance is impacted
by changing the seed data properties.

1) SNR Value of Seed Data: To assess the impact of
SNR, we run three experiments with SNR of: (1) 0 dB, (2)
10 dB, and (3) 20 dB. We run each experiment for both basic
and extended modulation sets while adopting ResNeXt as
a classifier since it outperforms 1D-CNN in each evaluated

scenario, as shown above. Fig. 14 shows accuracy averaged
over the whole SNR range for each experiment. The results
show that the cleaner the seed data, the higher the accuracy
for each channel and hardware impairment case, as augmen-
tation can easily be used to add noise but not to remove
it. To illustrate, consider the classifier’s performance under
hardware impairments at 0 and 18 dB. At 0 dB, the classifier’s
performance remains relatively consistent when the seed SNR
exceeds 0 dB. In contrast, as the seed SNR increases to 18 dB,
the classifier’s performance notably improves in the presence
of hardware imperfections.

2) Seed Data Set Size: To assess the impact of seed data
set size, we compare (1) 10, (2) 25, and (3) 50 instances
per modulation/SNR pair. To keep the same dataset size,
we run AGN (1) 10, (2) 4, and (3) 2 times for each seed
instance for experiments 1 to 3, respectively. We keep the
optimal settings for the other data augmentation methods for
each experiment. We run each experiment for both basic and
extended modulation sets while adopting only the ResNeXt
classifier. Fig. 15 shows accuracy averaged over the whole
SNR range for each experiment. MDA-DMC achieves nearly
identical accuracy with 50 seed instances per modulation/SNR
pair compared to 100 seed instances per modulation/SNR pair
for the basic modulation set. Conversely, for the extended
modulation set, accuracy experiences a slight increase as
the number of seed instances increases from 50 to 100. As
demonstrated earlier, the extended modulation set demands
more seed instances to distinguish higher-order QAM modu-
lations effectively. Data augmentation performance decreases
by up to 15% for channel impairments and up to 17% for
hardware impairments when we decrease the number of seed
instances from 100 to 10. As we showed in our previous
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Fig. 14. Data augmentation performance vs the seed data SNR value for different channel and hardware impairments evaluated for the basic modulation set
(left) and the extended modulation set (right).

Fig. 15. Data augmentation performance vs seed data set size for different channel and hardware impairments evaluated for the basic modulation set (left)
and the extended modulation set (right).

work [11], CNN-based modulation classifiers learn both spatial
features and the transitions between signal constellation points.
Ten seed instances per modulation are insufficient to capture
all transitions among the constellation points, especially for
higher-order modulations.

VI. CONCLUSION

Robust modulation classification under realistic condi-
tions is challenging primarily due to the non-linear effects
introduced by channel and hardware impairments. DLB
modulation classifiers demand a substantial amount of
class-balanced labeled data encompassing every possible

combination of channel and hardware impairments. Data
augmentation emerges as a cost-effective and practical tool to
emulate diverse channel and hardware impairment scenarios.
By collecting a few labeled seed data, our proposed MDA-
DMC with four augmentation methods makes the classifier
robust to hardware impairments with an accuracy gain of
up to 40%. MDA-DMC achieves significant accuracy gains
for channel impairments up to 17.20%. The results showed
that MDA-DMC emulates joint channel and hardware impair-
ments very well. Nonetheless, a 15% accuracy gap persists
compared to scenarios with perfect channel and hardware
impairments knowledge. While MDA-DMC brings about
significant performance enhancements, future research should
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emphasize a deeper understanding of how fading channels
impact constellation shapes. This knowledge can facilitate
the development of more finely tuned augmentation methods,
potentially bridging the observed performance gap.
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