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Abstract—Despite the substantial success of deep learning for
Automatic Modulation Classification (AMC), models trained on
a specific transmitter configuration and channel model often fail
to generalize well to other scenarios with different transmitter
configurations, wireless fading channels, or receiver impairments
such as clock offset. This paper proposes Contrastive Learn-
ing with Self-Reconstruction called CLSR-AMC to learn good
representations of signals resilient to channel changes. While
contrastive loss focuses on the differences between individual
modulations, the reconstruction loss captures representative fea-
tures of the signal. Additionally, we develop three data augmen-
tation operators to emulate the impact of channel and hardware
impairments without exhaustive modeling of different channel
profiles. We perform extensive experimentation with commonly
used realistic datasets. We show that CLSR-AMC outperforms its
counterpart based on contrastive learning for the same amount
of labeled data by significant average accuracy gains of 24.29%,
17.01%, and 15.97% in the Additive White Gaussian Noise
(AWGN), Rayleigh, and Rician channels, respectively.

I. INTRODUCTION

RF Sensing will be an integral part of future wireless
networks, enabling the learning and building of intelligence
in the network to support emerging applications such as
autonomous vehicles, smart homes, and human-computer in-
teraction. A recent research direction, Integrated Sensing And
Communication (ISAC), has attempted to efficiently unify
sensing and communication systems so that they can share
the same frequency band and hardware, and also benefit from
each other, i.e., communication-assisted sensing and sensing-
assisted communication [1,2]. Adopting Automatic Modula-
tion Classification (AMC), as an intermediate step between
signal detection and signal demodulation, in the ISAC receiver
would benefit in further improving spectral efficiency and
reducing receiver complexity [1] in a similar way as it is
done in cognitive radios [3,4]. Besides cognitive radios, AMC
has been crucial for many spectrum monitoring and security
applications. Thus, a reliable and robust modulation classifier
is essential to support those applications.

AMC has been studied for more than four decades. In
general, three methodological streams can be distinguished:
(1) Likelihood-Based (LB), Feature-Based (FB), and Deep
Learning (DL). LB methods define AMC as a multi-hypothesis
testing problem and can reach the optimal classification ac-
curacy under the assumption of the perfect knowledge of the
signal and channel models [5,6], however, it incurs prohibitive
computational cost as the number of modulation classes in-
creases [5]. On the other hand, FB methods are developed

ad-hoc, which does not guarantee optimality in the Bayesian
sense [7]-[9]. The human-crafted discriminative features are
extracted from underlying raw data (e.g., In-phase/Quadrature
(1/Q)). However, those features may have different values
under different transmitter and channel parameters leading to
performance degradation [10]. In contrast to LB, FB is more
favorable to deploy in practical systems due to its relatively
easy implementation and lower complexity. Due to its ability
to automatically extract discriminative features and perform
classification under lower computational cost, DL has been
preferred over the other two [6,11].

The great successes of DL for AMC are achieved under the
assumption that the training dataset (source/reference domain)
and test dataset (target domain) share the same data distri-
bution [12]-[15]. In other words, transmitter configuration pa-
rameters (signal shaping and sampling frequency) and channel
conditions are assumed to be known as a-priori. However, this
assumption is too strong and does not hold in practice. DL-
based AMC only learns to model signals that are represented in
the training data as accurately as possible. However, it cannot
make predictions with high-level confidence about signals
coming from unknown channel conditions or with unknown
transmitter configurations [10]. The wireless channel is in-
herently dynamic, with infinite possible channel realizations.
Moreover, wireless communications systems are constantly
evolving, and each new release/generation aims to increase
spectral efficiency either by introducing new modulation
formats (e.g., 256/1024 Quadrature Amplitude Modulation
(QAM) in Wi-Fi 6, up to 256 Amplitude Phase Shift Keying
(APSK) in satellite systems) or adopting self-optimization
algorithms which adapt transmitter configuration parameters
(e.g., bandwidth, coding rate, center frequency) according to
the current channel conditions [16,17]. Furthermore, for AMC
applications such as signal interception in the military, there is
no cooperation between transmitter and interceptor to obtain
transmitter configuration parameters. Thus, the question arises:
How to perform robust modulation classification when training
on all target scenarios is impossible?

Unsupervised Domain Adaptation (DA) is a relatively new
branch in DL, which aims to align the data distributions
of source and target domains. It has achieved great success
in image processing [18,19], and a few methods have been
adopted for AMC [20]-[22]. Those methods assume that a
large amount of labeled data exists for the source domain
while there is a large amount of unlabeled data for the target
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domains. Although unsupervised DA can boost the classifica-
tion performance for target unknown domains, it requires re-
training the whole Deep Neural Network (DNN) architecture
every time a new domain arises. Moreover, a domain detector
is necessary to prevent the out-dating of the trained classifier.
Further, unsupervised DA assumes that the unlabeled data are
class-balanced, however, this might not hold for data collected
in the wild. As there are infinite combinations of transmitter
and channel parameters, it is impossible to guarantee that
within such a large amount of unlabeled data, each class has
a balanced and sufficient amount of high-quality data for each
combination of transmitter and channel parameters.

In this paper, we propose data augmentation by using simple
spatial transformations of the signal constellations to generate
domain-diverse high-quality data by using a large amount of
labeled data from one source domain. Note that the domain
denotes one combination of transmitter and channel parame-
ters in this paper. As the source domain, we choose a simple
AWGN with a Signal-Noise Ratio (SNR) of 18 dB. Unlike
more complex channel models such as Rayleigh and Rician,
the collection of labeled data for AWGN is cheaper as it does
not have many hyperparameters such as path delay profiles
and Doppler spread. Spatial transformation operators emulate
the impact of channel and hardware impairments on the signal
constellations. The cleaner the signals, the better the precision
of data augmentation. We choose 18 dB as it specifies the
wireless environment (e.g., Wi-Fi and LTE) with good data
speeds. It is a trade-off between collecting a high-SNR trace
but not requiring the extreme case of ideal/infinite SNR that
requires a testbed with an expensive isolation chamber. In
other words, 18 dB allows the collection of training traces
in practical, real-world conditions while facilitating sufficient
improvement through the transform operations. Having the
pairs with different applied spatial transformations, we adopt
contrastive learning to learn good feature encodings that are
transformation-invariant. Contrastive learning [23] compen-
sates different transformations by minimizing the distances be-
tween signal pairs that belong to the same modulation (positive
pairs) and maximizing the distances between signal pairs with
different modulations (negative pairs). Additionally, we add
self-reconstruction to reconstruct the original signal from its
spatial transformed version to support learning transformation-
invariant features. Our proposed framework is Contrastive
Learning with Self-Reconstruction for AMC, referred to as
CLSR-AMC.

This paper makes the following contributions:

o We are the first to evaluate the robustness of contrastive

loss in cases where the source and target domains
are characterized with different channel conditions (i.e.,
cross-channel scenarios).

e We design a composite loss function that comprises
contrastive, reconstruction, and cross-entropy losses, and
show its benefits over models that treat these losses
independently.

e« We show that the proposed data augmentation signifi-
cantly improves the supervised classification performance

up to approx. 40% in unknown channel conditions.

II. RELATED WORK

There are three possible directions to construct a reliable
and robust AMC: (1) labeling, (2) blind estimation of unknown
transmitter and channel parameters, and (3) unsupervised DA.
Below we summarize the pros and cons of each direction. As
the proposed CLSR-AMC relies on contrastive learning, we
summarize its applications for AMC to date.

A. Labeling

Fully supervised State-of-the-Art (SoA) DL-based AMC
models [12]-[15] perform well only with sufficient training
data that covers all possible combinations of channel and
transmitter parameters. Two techniques can be adopted to
improve classification performance in cases where a small
(but not sufficient) amount of labeled data exists: (1) Transfer
Learning (TL) and (2) DL-based data augmentation. TL trains
a DNN on one or multiple domains with sufficient labeled
data and then uses a smaller amount of labeled data from
other domains to retrain only a tiny part of the DNN [10].
In contrast, DL-based data augmentation methods generate
additional high-quality labeled data required for AMC training
from a small amount of seed data [24]-[26]. However, all those
techniques are unrealistic due to: (1) the labeling process,
which even for a small amount of data, is costly, time-
consuming and tedious and usually requires the participation
of human experts; (2) the fact that the number of possible
combinations of transmitter and channel parameters is infinite.

B. Blind estimation of transmitter/channel parameters

Blind estimation of unknown transmitter and channel pa-
rameters helps to recover signals and reduce channel im-
pairments. Modulation classification and blind estimation of
channel and transmitter parameters can be done separately
[27] or jointly [28,29]. In [27], signal recovery utilizes the
cyclostationary features for Carrier Frequency Offset (CFO)
and symbol rate estimation. Afterward, the modulation clas-
sifier extracts statistical features of the recovered signal and
adopts a decision tree as a classifier. The main drawback of
cyclostationary features is that they cannot distinguish higher-
order modulations belonging to the same family, such as
QAM, PSK, and APSK. Further, a high number of samples is
required, which results in high computational costs. A costly
LB approach that jointly considers modulation classification
and symbol decoding under the assumption of perfect syn-
chronization in an AWGN channel with high SNR values
is presented in [28]. In contrast, [29] does not have such
an assumption and combines the features learned from both
raw and recovered signals. Signal recovery is made by linear
signal processing operations where CFO, noise, and fading
are compensated sequentially. CFO, noise filter parameters,
and equalization filter parameters for fading compensation are
estimated using a fully supervised DNN; thus, their estimation
accuracy heavily depends on available labeled datasets. Fi-
nally, [30] considers the dynamic optimization of the transmit
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filter to adapt the signal to new and unseen channel conditions
while keeping the modulation classifier fixed. However, this
approach is not applicable to our problem setting as it assumes
full cooperation between transmitter and receiver.

C. Unsupervised DA

Unsupervised DA has been actively studied in image pro-
cessing, and generally, three research streams can be identified:
discrepancy-based, adversarial-based and reconstruction-based
[18,19]. As discussed in the introduction, the main drawback
of unsupervised DA is the requirement for a large amount of
class-balanced unlabeled data for target domains.

1) Discrepancy-based DA: uses a certain criterion, such as
Maximum Mean Discrepancy (MMD) (measures the distance
between feature means), to fine-tune the DNN with unlabeled
target data to diminish the shift between source and target
domains. Although the discrepancy-based DA techniques have
been widely applied in image processing [31,32], to our
knowledge, none has been adopted for AMC.

2) Adversarial-based DA: adopts a domain discriminator,
which minimizes the distance between source and target
distributions through an adversarial objective. In [22], Domain-
Adversarial Neural Network (DANN) is proposed for AMC
cross-channel scenario. DANN consists of a modulation clas-
sifier, a domain classifier, and a shared feature encoder. DANN
integrates a Gradient Reversal Layer (GRL), which treats
domain invariance as a binary classification problem while
simultaneously maximizing domain confusion loss. In contrast
to DANN, Adversarial Discriminative Domain Adaptation
(ADDA) [21] and Adversarial Transfer Learning Architecture
(ATLA) [20] separately train feature encoders for source and
target domains. ADDA addressed the cross-channel scenario
with a large amount of unlabeled target data, while ATLA
addressed the cross-sampling rate scenario (different sampling
frequencies have been adopted in source and target domains)
with a small amount of labeled target data. ATLA is a
supervised method but utilizes an adversarial-based adaptation
approach.

3) Reconstruction-based DA: assumes that the data recon-
struction of the source or target samples can help improve
the performance of DA. One example is Deep Reconstruc-
tion Classification Network (DRCN) [33], which combines a
shared encoder with two pipelines. The first pipeline connects
the encoder with a supervised classifier trained with source
labels. The second pipeline connects the encoder with a
decoder which minimizes the reconstruction error of source
and target data in an unsupervised fashion. A Long-Short Term
Memory (LSTM)-based DRCN for AMC is given in [34],
while a Convolutional Neural Network (CNN)-based DRCN
for AMC is given in [35].

D. Contrastive learning and AMC

Contrastive learning has been developed in the context of
Siamese networks. A Siamese neural network consists of two
or more identical sub-networks, to learn similarities and dif-
ferences between data inputs [36]. There have been a few ap-
proaches for AMC based on Siamese networks and contrastive

learning [37]-[39]. In [37], contrastive loss is used to measure
the similarity of weights at different levels of CNN. Fully
supervised CNN-based Siamese networks with contrastive loss
were presented in [38]. [39] pre-trains the feature encoder
through self-supervised contrastive training (Semi-CLR) using
a large amount of unlabeled data. The Siamese network pairs
are realized through utilizing the random rotations of the input
I/Q data sample. Afterward, the feature encoder is frozen,
and the classifier is trained using a small amount of labeled
data. Both [38] and [39] showed that Siamese networks with
contrastive loss outperform the supervised approaches for the
same amount of labeled training data. However, both consider
only one signal and channel realization without evaluating
the robustness of the feature encoder to unseen signal and
channel realizations. Moreover, the Siamese networks and
classifier are trained independently, while our paper shows that
their joint training ensures better classification performance.
Further, Semi-CLR does not consider the class attribution.
Semi-CLR considers only augmented versions of one sample
as positive pairs, while all other samples in the training batch
are treated as negative pairs. However, it is highly likely that
the batch contains samples belonging to the same class which
should be treated as positive pairs but not negative pairs. To
solve this problem, our CLSR-AMC uses class information
to create correct pairs. In sum, CLSR-AMC enhances the
Semi-CLR framework by (1) adding a self-reconstruction task,
(2) adopting a weighted sum of reconstruction, classification,
and contrastive losses as a loss function, and (3) employing
supervised contrastive learning.

III. METHODOLOGY

This section describes the core of CLSR-AMC, including
the signal model fed to the input of AMC, preliminaries, the
proposed structure, and the optimization process.

A. Signal model

Assume that one active transmitter sends a vector of com-
plex symbols s € CV=. The symbols are encoded by adopting
modulation format m from a pool of known modulations M.
The encoded symbols are shaped with a pulse of duration T’
and upconverted to center frequency f., forming the trans-
mitted signal s(¢). This signal is transmitted over a dynamic
wireless fading channel modeled with an impulse response h.
Assuming one antenna at the receiver, after down-conversion,
the distorted and noise-corrupted received signal, r(t), is:

r(t) = (P2 AD gt — At) @ h(t,T) + v(t), (1)

where At is the timing offset, Af is the common frequency
offset, ¢ is the phase offset, v(t) is AWGN with mean 0 and
variance 202, and T represents the delays of the multipath
wireless channel. The received signal, r(t), is sampled in
the time domain with Nyquist frequency 1/7,.. The sampling
instance at timestep tj is given as tp = At + k - T,.. Thus,
the length of source samples N and received samples NN, are
related as N, = Ny - [Tlrl
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The N, raw I/Q samples are referred to as an instance,
represented as a matrix S with dimensions 2 — by — N,
where the first row holds / values, and the second row holds
the corresponding Q values. The AMC'’s task is to select a
modulation format m correctly from M by examining the
received signal, 7(t) represented by an instance.

B. Problem definition

Our goal is to enable robust modulation classification with
limited training data across different channel conditions and
SNR. Particularly, we target a source domain where labeled
data is empirically collected for a single SNR (18 dB) and
single channel (AWGN) across all target modulations, and
then augmented to match a large number of realistic cases.
There are multiple target domains with unlabeled data. The
unlabeled target data is not available during training. The
source domain, denoted by D,, is composed of ng labeled
instances {s;,m;}7>,, where s; € Ss and m; € M, denote
the instance space and modulation space of the source domain,
respectively. Note that the instance space Ss is set of ng
matrices S, Ss = {S;[i = 1,...,ns}. Similarly, the target
domains, denoted by D,, contain n; instances {sj7mj};‘;1,
where s; € & and m; € M,. In this paper, only homoge-
neous classification tasks are considered, therefore, there is
Mg=M; = M={1,2,.... M}, where M is the number of
modulations.

Given the labeled source domain Dg, the objective of a
deep DA network is to learn a functional mapping g : S —
M, where S = S; U S;. The functional mapping ¢ can be
decomposed into a feature encoder and a modulation predictor.
The feature encoder maps the instances to a latent feature
space Z. The modulation predictor maps the latent features
to the modulation space. The details of how the functional
mapping g is found are explained in the following text.

C. Contrastive Learning with Self-Reconstruction for AMC

Our CLSR-AMC framework includes data augmentation
and DNN architecture. Both are detailed below. Additionally,
the definitions of losses adopted for optimizing the weights
are given. The optimization of DNN architecture and its
hyperparameters is detailed, as well.

1) Data augmentation: Data augmentation aims to imper-
sonate various degrees of channel impact on signal constella-
tions such as rotation and distortion. CNN-based AMCs learns
spatial features [10], and any spatial transformation of the
signal constellations may help the feature encoder to learn
better feature encodings. Adding Gaussian noise and rotation
of the signal constellations have been previously used for
data augmentation in AMC [39,40]. In addition, we add a
novel augmentation method named concatenation and down-
sampling to augment the data with real-world Rayleigh/Rician
channel effects. We briefly summarize each of them below.

1) Adding Gaussian noise: The received signal is distorted

by adding Gaussian noise with zero mean value and
random variance o2.

Augmentation (1) Augmentation (3)

No augmentation i
0.05 -

Quadrature
°

Augmentation (2)

Figure 1: An example of data augmentation output for BPSK.

2) Rotation of the signal constellation: Rotation emulates
the impact of phase offset. The phase offset might
be introduced by fading channels or local oscillators.
Augmented I/Q values by rotation with random angle 6

are calculated as
I cosf —sinf 1
o= Q| |sin® cosh Q
3) Concatenation and downsampling (CaD): One signal
is augmented twice by using previous operations. The
augmented signal versions are first downsampled by
factor 2 and then concatenated. This operation imperson-
ates the impact of Rician fading with one Line-Of-Sight

(LOS) signal path.

The allowed ranges for o and 6 define the type of aug-
mentation: (1) weak or (2) strong. Weak augmentation adds a
small amount of white Gaussian noise with o € [0.006, 0.02]
and small rotation with § € [~30 : 10 : 30]". On the other
hand, strong augmentation adds a bit higher amount of white
Gaussian noise with o € [0.02,0.05] and a rotation with 6 €
[—90 : 30 : 90]°. Data augmentation is run for each instance in
the source domain. One run of data augmentation on a certain
instance outputs four new augmented instances: (1) pure weak
augmented instance, (2) pure strong augmented instance, (3)
concatenation of two weakly augmented instances, and (4)
concatenation of one weakly augmented instance and one
strongly augmented instance. Fig. 1 shows the output of
data augmentation for a simple BPSK signal at SNR = 18
dB. Generated augmented instances are merged with non-
augmented instances, forming the new labeled dataset used for
the training of CLSR-AMC. Each augmented instance tracks
its corresponding non-augmented instance, which is used for
reconstruction loss.

2) Architecture overview: The DNN architecture of CLSR-
AMC is illustrated in Fig. 2. The architecture consists of
three branches: (1) contrastive learning, (2) classification, and
(3) reconstruction. The contrastive learning and reconstruction
branches are used only for training, while the classification
branch operates alone in the testing stage. Each branch
shares the same feature encoder but with different inputs.
The contrastive learning branch uses both inputs to force the
feature encoder to learn features invariant to augmentations.
The classification branch uses the first input, while the re-
construction branch uses the second input. However, each

2

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on March 28,2025 at 14:31:21 UTC from IEEE Xplore. Restrictions apply.



|
Classifica | ,| Cross-entropy | | Predictions
tion head loss, L. iy -
Predictions
0/1
rm——---sm-----------
A A : i
Weak ( 1
augmentation Feature |Flatten h 1 Contrastive | |
Encoder : loss, L,
51 :
1
Input signal, s oo oo ooe oo ) Cosine
Shared weights (w)l distance,
e R EeS)
1 1
] 1 _
i | Feature [Flatten 1 | L=acle T arL, + deolee
Strong ; ! | Encoder b
ation —2Q ! !
- 1 1 :
. Backpropagation
Input signal, s3 b _J ______________ ]
\_ Decoder || Reconstruction L, Predictions
loss, L, k73
T

Figure 2: CLSR-AMC framework. The classification branch consists of blocks s

haded in green. The reconstruction branch consists of blocks shaded in blue.

The contrastive learning branch consists of blocks shaded in orange. All branches are used in the training stage, but only the classification branch is used in

the testing stage.

branch contributes to the loss function as described below. The
structure and hyperparameters optimization of each branch are
given below.

3) Loss function: The weights of the feature encoder are
updated over training epochs to minimize the loss function,
which is given as a weighted sum of contrastive loss L.,
reconstruction loss L, and cross-entropy loss L.

L=a.Lc+arLy + acelee, €)]

where ., o, and . are positive weight coefficients for
contrastive loss, reconstruction loss and cross-entropy loss,
respectively. The weight coefficient values range between 0
and 1 such that a. + o, + g = 1.

a) Cross-entropy loss: Categorical cross-entropy [41]
measures the difference between two probability distributions.
Softmax is utilized to convert the learned embeddings into
the probability of the input signal belonging to each candidate
modulation. When used as a loss function, the two underlying
distributions are the predictions and the true classes of the

samples. Categorical cross-entropy can be written as:
| Ns M
Lee = =N Z; Zlym ~log(9i,5), ©)
1=1 j=

where y; ; represents the ground truth, §; ; is the prediction,
M is the number of modulations, and Np is the training batch
size.

b) Reconstruction loss: This paper defines reconstruc-
tion loss as Mean-Squared Error (MSE) between the non-
augmented instance and the consequently reconstructed in-
stance by the decoder. It can be expressed as

1 Js
L, =— si— 87, 5
NB;( ) (5)

where Np is the training batch size.

c) Contrastive loss: Contrastive loss [23] runs over pairs
of samples, unlike loss functions that sum over samples, such
as cross-entropy loss. Mathematically, it is given below:

Np
Le = ﬁ 1221 <1 - yl) : (dci)2 + (yz) ’ {maa:(O,q - dCi)}27

(6)

where Np is the training batch size, the value of y; is the
true label (O for positive pairs, 1 for negative pairs), d. is
the distance measure between feature embeddings of the input
samples, and ¢ > 0 is a hyperparameter called margin, which
controls whether the distance of negative pairs contributes to
the loss [23]. As in [39], this paper adopts a cosine distance
to measure the similarity between feature embeddings of input
samples, s;, s, and is given as follows:

T
zl 2
de(zi, 7)) = — 5=, )
1zl 1]
where ||-|| denotes the I3 norm.

4) Optimization: The CLSR-AMC framework adopts Ag-
gregated Residual Transformations for Deep Neural Net-
works (ResNeXt)-based architecture for the feature encoder.
ResNeXt is CNN-based architecture that adds identity short-
cuts to resolve the vanishing gradient problem in CNNs [42].
The ResNeXt-based methods outperform traditional CNN-
based AMC, as shown in [10,13]. The decoder shares the
same structure as the feature encoder, where Pooling layers
are replaced with Upsampling layers, and Convolutional layers
are replaced with Convolutional transpose layers. The clas-
sification head consists of a few Dense layers. The number
of ResNeXt blocks in the feature encoder and decoder, and
the number of Dense layers in the classification head are
optimized by adopting a Genetic Algorithm (GA) inspired
by [43]. The hyperparameters include the number of filters,
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Figure 3: DNN architecture of the feature encoder. (BN denotes Batch
Normalization layer. AvgPool denotes Average Pooling layer.)
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Figure 4: ResNeXt-based block structure with two parallel branches. Each
branch is a serial fusion of two Convolutional layers

kernel size, activation type of Convolutional layers, number
of hidden units and activation type of the Dense layers are
also optimized by GA. Besides the DNN structure and its
hyperparameters optimization, there are also additional hyper-
parameters of CLSR-AMC, including the margin value for the
contrastive loss and the weight coefficients in the loss function
(Eq. 3). The GA proposed in [43] is modified to support
the optimization of the CLSR-AMC architecture (Fig. 2) and
additional hyperparameters while keeping the core functions
of GA the same as in [43]. The best-found architecture for the
feature encoder is shown in Fig. 3. It consists of six blocks
with the structure shown in Fig. 4. Each block has two parallel
branches, each with two Convolutional layers with f filters,
kernel size k and activation a. The classification head consists
of two Dense layers with the number of dense units 71, 72 and
activations relu, linear, respectively. GA found out that CLSR-
AMC with ¢ = 0.79, a, = 0.75, o, = 0.11 and a = 0.14
achieves the best performance.

IV. EXPERIMENTAL SETUP

1) Baselines: This work employs four baselines from the
literature: (1) LSTM-based DRCN (LSTM-DRCN) [34], (2)
supervised 1D-CNN classifier given in [13] (1D-CNN), (3)
supervised ResNeXt classifier with Spatial Transformer Net-
works (STN) module given in [10] (ResNeXt-STN), and (4)
Semi-supervised CLR framework for AMC given in [39]
(Semi-CLR). LSTM-DRCN is a supervised reconstruction-
based DA whose loss function is a weighted sum of reconstruc-

tion and cross-entropy losses. ResNeXt-STN includes an STN
module that learns spatial transformations for data augmen-
tation. Semi-CLR is a contrastive learning-based modulation
classifier that treats independently contrastive loss and cross-
entropy loss.

2) Datasets: Two modulations sets are used: (1) a Basic
set, containing N,,,q = 11 modulation formats typically used
in the literature: BPSK, QPSK, 8-PSK, 16/64-QAM, PAM4,
GFSK, CPFSK, BFM, DSB-AM and SSB-AM; and (2) an
Extended set, containing the basic set and nine higher-order
modulations: OQPSK, 32/128/256-QAM, 16/32/64/128/256-
APSK (N;,0q4 = 20). Both sets are synthetically generated in
MATLAB. The training and validation datasets contain 1/Q
samples generated with an upsampling factor of 4, Raised
Cosine (RC) filter with a roll-off factor of 0.35, and SNR
of 18 dB under simple AWGN. The testing datasets have
the same upsampling factor and RC filter configuration as
the training dataset. The testing datasets contain data from
multiple domains:

e AWGN with SNR ranging from -6 dB to 20 dB.

e Rayleigh channel with a path profile: delays of [0, 4.5, 8.5]
us and gains of [0,—1,—5] dB. AWGN with SNR in range
[—6,20] dB is added to the Rayleigh channel. The maximum
Doppler shift is set to 4 Hz.

e Rician channel with K factor of 4, a path profile with
delays of [0,0.25,3,8] us and gains of [0,—2,—10,—3] dB.
AWGN with SNR in range [—6, 20] dB is added to the Rician
channel. The maximum Doppler shift is set to 4 Hz.

For each combination of SNR and modulation type, 1000
testing instances are generated with a size of N = 128 and
N = 1024 for the basic set and the extended set, respectively.
The extended set requires longer signal observation because
of the higher-order modulations [10].

3) Implementation details: Both CLSR-AMC and the cho-
sen baselines are implemented in TensorFlow [44]. The train-
ing is performed over N¢pocns = 80 epochs and a batch size
of 256 on a GPU server with eight Nvidia RTX 2080Ti cards.
Adam [45] with learning rate of 0.001 is adopted for weights
optimization.

V. PERFORMANCE EVALUATION

CLSR-AMC assumes a single source domain using AWGN
channel model with SNR = 18 dB. A cross-channel scenario
evaluates classification performance when the SNR value
changes and/or the channel model changes from the source
to the target domain. In this section, various simulation
experiments are presented, illustrating the performance of
the proposed framework for cross-channel scenarios. First,
we examined the impact of weight coefficient values in the
proposed loss function (Eq. 3). Second, we assessed whether
the classification performance increases with multiple runs of
data augmentation per instance. Third, we compare CLSR-
AMC to baselines from the literature for both datasets.

A. Impact of loss function weights on performance

CLSR-AMC adopts the loss function as the weighted sum
of contrastive «., reconstruction o,., and Cross-entropy Q.
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Table I: CLSR-AMC average accuracy (%) vs weight values in the loss
function (Eq. 3).

. Basic dataset
Weights - —
AWGN [ Rayleigh Rician
GA optimized 81.65 68.76 61.06
Qce =1,ar =, =0 80.95 68.93 59.71
ac =100 = ace =0 55.95 52.01 45.84
ar =1,0c = 0ce =0 41.41 37.75 34.51
ace =0,ac =0 =0.5 62.30 57.50 50.87

losses. The weight values are optimized by GA [43] and the
resulting values are a. = 0.75, o, = 0.11 and a. = 0.14.
Note that these values are optimal for the GA best-found
feature encoder DNN architecture (see Fig. 3), and they may
differ for the other architectures. With each new run, GA may
find another best DNN architecture and its optimal weight
values. To justify gains due to the GA best-found weight
values, we run four experiments with manually set values
for edge cases: (1) ace = 1, ap = . = 0, 2) a. = 1,
ar =0ee =0, B) ar =1, ac = aee =0, and 4) aee = 0,
a,r = o, = 0.5. In the last three experiments, CLSR-AMC is
first trained with defined weight values. Afterward, the feature
encoder is frozen, and the classification head is re-trained
with the labeled dataset. All presented results are on the basic
dataset. The accuracies are averaged for the entire SNR range
of [—6,20] dB and summarized in Table 1.

Table I shows that CLSR-AMC with GA-optimized weights
achieves the best results. CLSR-AMC behaves as the super-
vised classifiers with the augmented dataset when the cross-
entropy loss is only active. Contrastive loss learns better
classification features than reconstruction loss by achieving
14.54%, 14.26%, and 11.33% higher accuracy in the AWGN,
Rayleigh, and Rician channels, respectively. For a case when
CLSR-AMC is trained jointly for contrastive and reconstruc-
tion losses, it achieves higher accuracy by 6.35%, 5.49%, and
5.03% in AWGN, Rayleigh, and Rician channels, respectively,
than in the case when it is trained only with contrastive loss.

B. Impact of the amount of augmented data on performance

One run of data augmentation per instance outputs four
augmented instances. We choose the four augmentations per
instance to ensure that each instance in the source domain has
its weak and strong augmentations for both operations rotation
and CaD. To assess whether CLSR-AMC achieves better
classification performance if the number of data augmentation
runs per instance increases, we run three experiments with (1)
2, (2) 3, and (3) 4 runs of data augmentation per instance.
The accuracies are averaged over the entire SNR range,
SNR = [—6,20] dB, and the results are presented in Table II.

Table II shows that accuracy values differ by a maximum
of 2% in each channel and for each considered number of
data augmentation runs. One run of data augmentation per
instance is enough if there are 1000 labeled instances for
each modulation in the source domain. However, more data
augmentation runs might be needed when only 2 labeled
instances per modulation are available, as shown later.

Table II: CLSR-AMC average accuracy (%) vs no. of data augmentation runs.

No. of augmentation Basic dataset

runs AWGN [ Rayleigh [ Rician
1 81.65 68.76 61.06
2 81.88 69.30 62.10
3 80.98 70.53 61.17
4 81.72 70.36 63.34

C. CLSR-AMC vs baselines for cross-channel scenarios

As CSLR-AMC includes both data augmentation and
weighted loss function, it is necessary to identify performance
gain due to the data augmentation and performance gain
due to the weighted loss function. To assess the benefit of
the proposed weighted loss function, we compare CLSR-
AMC with Semi-CLR and supervised baselines (1D-CNN and
ResNeXt-STN) for different amounts of available labeled data.
On the other hand, to assess the benefit of data augmentation,
we compare CLSR-AMC with supervised baselines (1D-CNN,
LSTM-DRCN, ResNeXt-STN) when we equip them with data
augmentation. The comparison is made for both the basic and
extended datasets.

1) CLSR-AMC: Performance gain due to the loss function:
Semi-CLR originally assumes that it has two labeled instances
for each SNR/modulation pair and a large amount of class-
balanced unlabeled data. In contrast, CLSR-AMC assumes that
it has 1000 labeled instances for each modulation at SN R
of 18 dB. First, we will evaluate the robustness of Semi-
CLR to channel model changes. Second, we will evaluate
the benefits of the proposed weight loss function in CLSR-
AMC under a limited amount of labeled data. Hence, we
run three experiments depending on which data are available
to Semi-CLR for training: (1) 1000 labeled instances for
each modulation at SNR = 18 dB in AWGN, (2) 1000
labeled instances for each modulation at SNR = 18 dB
and 1000 unlabeled instances for each modulation/SNR pair
over the entire SNR range, SNR = [—6,20] dB in AWGN,
and (3) two labeled instances and 1000 unlabeled instances
for each modulation/SNR pair over the entire SNR range,
SNR = [—6,20] dB in AWGN. For the first two experiments,
CLSR-AMC is trained with its original settings, while for
the third experiment, CLSR-AMC is trained under the same
settings as Semi-CLR but without the usage of unlabeled
data. For each experiment, 1D-CNN and ResNeXt are trained
with available labeled data plus augmented data as the output
of one run of data augmentation per each instance in the
labeled dataset. The classification accuracies are averaged for
the entire SNR range and summarized in Table III.

CLSR-AMC significantly outperforms Semi-CLR for each
experiment and both datasets. CLSR-AMC and supervised
classifiers perform better when a large amount of labeled
data is available just for one SNR value than in a case
where are only two labeled instances per each SNR value. As
data augmentation provides instances for other SNR values
and channel models, they can generalize well for the entire
SNR range in each channel. In contrast, one run of data
augmentation is not enough when there are only two samples
per SNR value. The supervised classifiers are overfitting, and
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Table III: Average accuracy (%) for CLSR-AMC vs baselines in different cross-channel scenarios.

Exp. Tested for Basic dataset Extended dataset
CLSR-AMC | Semi-CLR 1D-CNN ResNeXt- CLSR-AMC | Semi-CLR ID-CNN ResNeXt-
STN STN
AWGN 81.65 46.10 73.46 79.05 69.60 26.25 63.85 72.26
#1 Rayleigh | 68.76 41.67 63.48 69.94 58.02 23.97 55.07 63.09
Rician 61.06 36.25 59.06 62.95 44.83 17.50 44.89 42.66
AWGN 81.65 42.94 73.46 79.05 69.60 30.26 63.85 72.26
#2 Rayleigh | 68.76 41.56 63.48 69.94 58.02 27.89 55.07 63.09
Rician 61.06 40.39 59.06 62.95 44.83 23.10 44.89 42.66
AWGN 70.54 46.25 49.46 46.04 55.84 30.15 39.24 44.40
#3 Rayleigh | 60.88 43.87 47.72 43.62 47.31 28.73 37.28 40.21
Rician 53.63 37.66 44.74 44.57 39.82 22.17 33.37 32.03

for the basic dataset their performance significantly drops by
33.01/24%, 26.32/15.76%, and 18.38/14.32% for ResNeXt-
STN/1D-CNN in the AWGN, Rayleigh, and Rician channels,
respectively. The performance deterioration is similar for the
extended dataset for both ResNeXt-STN and 1D-CNN. On
the contrary, CLSR-AMC can perform quite well even un-
der such a limited amount of data. Its accuracy drops are
much lower: 11.11/13.76%, 7.88/10.71%, and 7.43/5.01%
for the basic/extended dataset in the AWGN, Rayleigh, and
Rician channels, respectively. Semi-CLR performs the worst
for the first experiment, where only labeled data are available
without unlabeled data. Compared to Semi-CLR for the basic
dataset, CLSR-AMC has a higher average accuracy of 24.29%,
17.01%, and 15.97% in the AWGN, Rayleigh, and Rician
channels, respectively. CLSR-AMC also achieves similar accu-
racy gains for the extended dataset. Table III shows that CLSR-
AMC benefits from the proposed weighted loss function in a
case with a small amount of labeled data.

2) CLSR-AMC: Performance gain due to the data augmen-
tation: The comparison with supervised baselines (1D-CNN,
LSTM-DRCN, and ResNeXt-STN) is suitable to assess the
performance gain due to the data augmentation. Thus, we
run three experiments: (1) supervised baselines are trained for
AWGN with 1000 labeled instances for each modulation/SNR
pair over the entire SNR range, SNR = [—6,20] dB, (2)
supervised baselines are trained for AWGN with 1000 labeled
instances for each modulation at SNR = 18 dB, and (3)
supervised baselines are trained for AWGN with 1000 labeled
instances for each modulation at SNR = 18 dB and lever-
aging the proposed data augmentation where four augmented
instances are added per each labeled instance. CLSR-AMC
is trained only for AWGN and SNR = 18 dB with its
data augmentation. Such trained models are evaluated in the
AWGN, Rayleigh, and Rician channels.

Fig. 5 and Fig. 6 show accuracy versus SNR in different
channels for the basic and extended datasets, respectively. All
baselines experience significant accuracy drops by approx.
30%, 40% and 60% in AWGN with the unknown SNR,
Rayleigh, and Rician channels, respectively (see Figs. 5 and 6,
middle column). The proposed data augmentation helps each
baseline to boost accuracy up to approx. 40% for unknown
channel conditions (see Figs. 5 and 6, right column). CLSR-
AMC performs similarly in fading channels as the supervised
baselines with the augmented dataset. CLSR-AMC achieves

the accuracy gain due to contrastive loss in the AWGN channel
for SNR > 10 dB. The accuracy gains are up to 7.8%,
13.8%, and 6.8% versus ResNeXt-STN, 1D-CNN, and LSTM-
DRCN, respectively, for the basic dataset (see Fig. 5 right top).
The accuracy gains are up to 4.8%, 13.0%, and 5% versus
ResNeXt-STN, 1D-CNN, and LSTM-DRCN, respectively, for
the extended dataset (see Fig. 6 right top). A gain due to
reconstruction loss can be noticed for low SNR values in
AWGN and is equal to 4%, 5%, and 10.2% versus ResNeXt-
STN, 1D-CNN, and LSTM-DRCN, respectively, for the basic
dataset. In the Rayleigh channel, LSTM-DRCN and CLSR-
AMC achieve the best performance due to reconstruction
loss in their loss functions. Fig. 5 and Fig. 6 show that
reconstruction loss can deal with the Rayleigh fading but not
with the Rician fading.

VI. CONCLUSIONS

Supervised DL-based modulation classifiers are very sen-
sitive to changes in the transmitter and channel parameters
as such variations cause large data distribution shifts. A few
unsupervised DA methods have been adopted to combat dis-
tribution shifts, but under the unrealistic assumption of a large
and complete class-balanced unlabeled dataset that covers each
possible combination of transmitter and channel parameters.
That assumption does not hold in the wild because the
possible combinations of transmitter and channel parameters
is unbounded. In this paper, we proposed CLSR-AMC, which
assumes that only a large amount of labeled data is collected
in the simplest channel conditions, AWGN with an SNR
commensurate with that of a real-world indoors link (in our
case 18 dB). CLSR-AMC applies simple data augmentation
operations to emulate the impact of fading channels or in
general data distribution changes to the signal constellations.
We show that with four augmentations per labeled instance,
the classification performance improves up to approx. 40%
in unknown channel conditions. We also demonstrate that
the proposed weighted sum of contrastive, reconstruction
and cross-entropy losses provides better results than when
loss functions are treated independently. The weighted loss
function outperforms the fully supervised baselines in the high
SNR, simple AWGN channel regime by 6.8% and 5%, when
trained on the same augmented and labeled basic and extended
datasets, respectively. This means all networks are trained on
exactly the same data, but our proposed method learns the
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Figure 5: CLSR-AMC comparison with the supervised classifiers in different channels (AWGN top, Rayleigh middle, Rician bottom) and the basic dataset
when classifiers are trained forr AWGN SN R = [—6,20] dB (left); AWGN SNR = [18] dB (middle); AWGN SN R = [18] dB including proposed data
augmentation for all baselines (right). CLSR-AMC is trained for AWGN SN R = [18] dB and includes data augmentation.
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Figure 6: CLSR-AMC comparison with the supervised classifiers in different channels (AWGN top, Rayleigh middle, Rician bottom) and the extended dataset
when classifiers are trained for: AWGN SNR = [—6,20] dB (left); AWGN SNR = [18] dB (middle); AWGN SN R = [18] dB including proposed data
augmentation for all baselines (right). CLSR-AMC is trained for AWGN SN R = [18] dB and includes data augmentation.

differences between domain variations and class variations operations in CLSR-AMC to emulate their impacts to the
better. Additionally, our results show that the reconstruction signal constellations.

loss can combat the impact of the Rayleigh fading, but not
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