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Abstract

Traffic analysis of mobile and Internet networks helps researchers understand people’s behavior and needs in the
context of these networks. Such analysis is an important facet of both the initial design as well as the iterative
improvement of applications that leverage such networks. In developing countries where the population is predominantly
rural, mobile communications with their high affordability and intuitive interface, are the first communication technology
introduced. Thus, the analysis of usage patterns of mobile networks is of great importance, as it facilitates better
understanding of people’s interaction with technology and their specific technological needs. We approach the D4D
challenge as a preliminary analysis on network usage patterns focusing particularly on usage in Rural areas. We also
analyze persistence trends of individual’s social groups in this mobile network. Based on our results, we provide a
discussion of possible practical applications that can leverage mobile networks.

1 Introduction

Mobile networks have revolutionized the way people communicate in the developing world and serve as a platform for
enhancement of many aspects of people’s day-to-day life. Applications that use underlying mobile networks span from
health care [5, 6, 11, 15] and education [18, 1, 14] to agriculture [7, 17, 16] and mobile banking [12]. Multiple successful
projects in Africa have spurred from observing people’s behavior in mobile or social networks. Johnson et. al., after
analysing facebook traffic, design a system to facilitate local content sharing within remote rural communities [9]. [12]
describes a system called mPesa that enables transfer of money in the form of airtime in rural Kenya. The design of this
system was inspired by analysis of mobile network usage in Kenya, which indicated that people tend to transfer airtime
between one another as a means for payment or financial support. Follow up studies on the adoption of mPesa in Kenya
show that theft decreased, as people no longer needed to carry cash.

Such projects are of critical importance to introducing new services and enhancing the wellbeing of people in under-
serviced areas. At the same time, special attention should be paid in the design process of these systems to make sure
that they meet an actual need in the community. Analysis of large scale datasets generated by the targeted communities
naturally facilitates the identification of actual community needs.

Due to the prevalence of mobile communication technologies in sub-Saharan Africa [13], it is particularly important
to understand how information is exchanged over these wireless infrastructures. As communication patterns emerge, it
becomes possible to improve current wireless infrastructures and develop new technologies and systems that effectively
leverage existing infrastructure. We are particularly concerned with how communication patterns might inform healthcare
systems for development. We approach Orange’s datasets on mobile call patterns in Côte D’Ivoire with this end in mind.

Our previous work introduces VillageCell [4], a comprehensive connectivity solution designed for rural areas. VillageCell
includes low cost free-to-air cellular coverage and exploits locality of interest to facilitate effective use of limited gateway
bandwidth. VillageCell has been deployed in rural Macha, Zambia. By understanding how mobile communication flows
with respect to population density, we begin to understand the feasibility of a similar connectivity solution for rural Côte
D’Ivoire. Additionally, we investigate how mobile communication flows socially. Social graph patterns that emerge provide
a preliminary understanding of how social relays might be exploited for information broadcast. We discuss how this can
be useful to the development of a healthcare system that uses cellular network technology.

2 Methodology

To facilitate extensive analysis of mobile network traces over different subsets of the Côte D’Ivoire population, we preprocess
our data. We now describe the preprocessing techniques and software we use. We also define a set of metrics we utilize in
the process of evaluation.
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Figure 1: Population density of Côte D’Ivoire.
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2.1 Datasets

Our analysis focuses primarily on information in Set 1 and Set 4 of the Orange Datasets. Dataset 1 represents mobility
data aggregated on an hourly basis for ten weeks from December 05, 2011 to April 22, 2012 and includes data about the
number of calls and call duration between antenna pairs. In addition, we use the antenna location data provided by the
ANT POS dataset. This set provides data that maps an antenna ID to its corresponding latitudinal and longitudinal
coordinates. Set 4 includes ego-centric social graphs that describe up to second order neighbors of 5000 users traced over
the entire period. We use this dataset to analyze persistence of social groups that a mobile subscriber communicates with.

As recommended by Orange, we use data from the AfriPop project. The data consist of high resolution population
density distribution information in ESRI Float format. We use this data to calculate and associate population density
with antenna locations given the ANT POS dataset.

2.2 Antenna classification

We employ the new European Union typology of “predominantly Rural”, “Intermediate”, and “predominantly Urban”
areas. This typology is a modification of the Organisation for Economic Co-operation and Development (OECD) method-
ology that seeks to minimize distortions caused by large variations in the area of local administrative units [2]. Using the
new OECD method, rural local administrative units are defined as areas with a population density below 150 inhabitants
per km2 applied to grid cells of size 1 km2. Likewise, urban local administrative units are defined as areas with population
density of at least 300 inhabitants per km2 applied to grid cells of size 1 km2. The 1 km2 cell size provides fine granu-
larity, which makes the OECD method equally applicable to countries outside the European Union. See Table 1 for the

Table 1: OECD population density classifications

Density per km2 Classification

0-149 Rural
150-299 Suburban
300+ Urban
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Figure 2: The effect of removing the ego (depicted with a square) from the ego-centric social graph.
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Figure 3: Building a persistence graph.

classifications per km2 we employ. Note that our classification of “Suburban” directly corresponds to [2]’s classification
of “Intermediate”.

We utilize the population density information contained in the AfriPop data set and use Quantum GIS to project it
as a raster layer. The AfriPop data includes population density information formatted as the number of people per 100
square meters for Côte D’Ivoire. We then re-sample the density data at a lower resolution creating a grid of 2 km squares
assigning population density for each as the mean density values of the AfriPop data bounded by the new grid. Each
square is assigned to one of the population density categories using the OECD typology. This allows us to create the
population density map shown in Figure 1. The different shades indicate the different density classifications as defined
by OECD - Rural, Suburban, and Urban. As shown, the majority of land area in Côte D’Ivoire is classified as Rural.
Interestingly, World Bank [3] population statistics show that the rural population represents 51.2 percent of the total
population in the country while the urban population accounts for 48.8 percent. Our grid assigns population density at a
resolution suitable for associating antennas with the underlying population statistics.

2.3 Ego-centric graphs analysis

We examine the ego-centric social graphs dataset to determine persistence of social groups for each ego over time. We also
analyze the likelihood that one or few nodes – top nodes, persist over time in an ego-centric graph. We hypothesize that
such persistent nodes can be used as information relays in an egocentric graph. Our analysis indicates that such persistent
nodes indeed exist. Their feasibility as information relays, however, needs further analysis that requires richer datasets
providing information about frequency and duration of phone calls as well as physical location of the communicating
parties.

J =
A ∩B

A ∪B
(1)

The Jaccard similarity changes between 0 and 1, where 0 indicates no overlap and 1 indicates full overlap.
In order to extract the separate social groups of an ego, we remove the ego node from each ego-centric social graph
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(Figure 2) and analyze the connected components that remain after the ego is removed. Each connected component corre-
sponds to one social group. Note that in the text we use the terms connected component and social group interchangeably.

After extracting the connected components we evaluate the persistence of these components over time. A connected
component is 100% persistent over two consecutive periods if the nodes in this connected component are the same in the
two periods. For this evaluation we define a persistence graph G = (N,E,W ) with N nodes, E edges and W weights
assigned to each edge. Each node in G is a connected component labeled with the period, to which it belongs. An edge
exists between two connected components if they overlap in consecutive periods. The weight assigned to each edge is the
Jaccard similarity, J , between the connected components. J for two sets A and B can be calculated as follows:

Figure 3 presents an example of building the persistence graph for a single ego over three consecutive periods. The
left-hand side of the picture presents the set of neighbors in each of the three periods. The social groups comprised by
these neighbors are color-coded. The right-hand side of the picture presents the resulting persistence graph. Edges exist
only between connected components that overlap fully or partially in consecutive periods. There is no edge between
connected components that persist over non-consecutive periods (e.g. there is no edge between node “group1:period1”
and node “group1:period3”).

Our persistence analysis is based on the described persistence graphs and consists of two parts. First, we analyze the
in- and out-degree distribution of the nodes in the persistence graph. We note that if the social groups of an ego persist
over time, all the nodes in the persistence graph should have in- and out-degrees of either 0 if the node belongs to the
first or last period, or 1, if the node is in the intermediate periods. In cases where social groups do not persist, nodes can
have a degree of 0 if the corresponding social group does not re-appear in following periods. Nodes can also have in- and
out-degrees larger than 1 if social groups merge or split in consecutive periods.

Further we attempt to quantify the level to which social groups overlap by considering the weights of the edges in
the persistence graphs. As detailed earlier, edges are drawn between nodes that overlap fully or partially in consecutive
time periods. The weights assigned to these edges are the Jaccard similarity between the nodes connected by these edges.

For each transition between period t and period t + 1 we find the normalized Jaccard similarity ĴS
(t,t+1)

between these

periods: that is the sum of edge weights W
(t,t+1)
i divided by the number of edges |E(t,t+1)| between the two periods.

ĴS
(t,t+1)

=

∑|E(t,t+1)|
i=1 W

(t,t+1)
i

|E(t,t+1)|
(2)

We then find the average Jaccard similarity for the entire persistence graph by summing the normalized Jaccard similarities
and dividing this sum by the number of period transitions K.

J̄S =

∑K
j=1 ĴS

(t,t+1)

j

K
(3)

Informally, the higher the average Jaccard similarity, the more persistent the social graphs of an ego are over time.
We present our results for social groups persistence in Section 3.6.

3 Evaluation

We begin our analysis by investigating temporal trends in mobile communication in general and across areas of different
population density types. We expect to observe regular temporal trends along weekly and monthly intervals, with Rural
areas having temporal trends distinctive from those of Urban areas. Progressing from temporal trends, we explore trends
related to population density. Again, we expect to see differences in call duration and call frequency based on the population
density of the sender. Next, we seek observable relationships between the distance between sending and receiving antennas
and call duration and frequency. Finally, we examine patterns in social groups. We hope to observe consistency in social
groups over time.

3.1 Usage patterns over time

We evaluate the cellular network activity patterns over the entire capture period. In Figures 4(a) and 4(b) we plot
aggregate number of calls and call duration per day. As the figure shows, there is no distinctive call pattern on a weekly
or monthly basis; instead subscriber activity seems to be widely correlated with events in the country. We hypothesize
that the peaks from the beginning of the period coincide with the weeks before and after the parliamentary elections on
December 11th, 2011, while the second peak is most likely traffic around the New Years Eve. The increased utilization
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Figure 4: (a) Number of calls and (b) call duration over time.
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Figure 5: (a) Number of calls and (b) call duration over time.
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Figure 6: (a) Number of calls and (b) call duration over time.
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Figure 7: Antenna Usage

from the end of March and April is likely associated with the military coup in Mali and the associated ECOWAS1 summit
that took place in Abijan, Côte D’Ivoire. Such irregular usage pattern is very different than what had been observed in
cellular network traces from the western world [10].

The lack of weekly pattern is further confirmed by Figure 5. We average the number of calls and call duration over
the entire capture period in a one week window. Each point on the plot presents an average over four hours over all
occurrences of each day of the week (that is the first data point from the graphs presents the average number of calls and
call duration for the hours from Midnight to 4 AM for all Mondays in the capture period). The figure clearly presents
diurnal pattern of network activity with slight increase over the weekend, however, the standard deviation of this graph
is very high, indicating that the network activity varies dramatically over the observed period.

Next we analyze whether the calling patterns of rural areas differ from those in urban areas within Côte D’Ivoire. In
Figure 6(a) and 6(b) we plot the aggregate number of calls and call duration for each day of the observed period. We
analyze four categories of calls depending on the source and destination antenna type: Urban to Urban (U-U), Rural to
Rural (R-R), Urban to Rural (U-R) and Rural to Urban (R-U). As the figures show, calling patterns for all four categories
follow similar trends, where the number of calls and the aggregate call duration between Urban antennas is about three
times higher than between Rural antennas. We also note that while the number of Rural to Rural calls is larger than the
number of Rural to Urban and Urban to Rural, the aggregate call duration for these three categories is the same. This
result indicates that while calls between Rural residents occur more often, they are shorter in comparison to calls between
Urban and Rural residents.

3.2 Antenna activity map

We seek patterns of mobile communication flow in Côte D’Ivoire by associating antennas with their geographical location
and the population density of their location. The resultant mapping of antennas to location can be seen in Figure 7. We
associate each antenna with the underlying population density of their location in order to assign the Rural, Suburban, or
Urban typology. Antennas are shaded based on the total number of outbound calls they originate throughout the entire
sampling period with darker colors signifying busier antennas. It is evident that antennas are densely clustered in urban

1http://www.ecowas.int/
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locations while more sparsely located in predominantly rural regions. We also find that high activity antennas are often
located along major transportation corridors.

Table 2: Antenna Density Classifications

Classification Antenna Count Source Calls

Rural 529 146,481,488
Suburban 90 21,529,115
Urban 598 331,630,147
Unknown 21 65,393,926

We join the antenna location and the population density datasets using Quantum GIS and plot all antennas onto a
Côte D’Ivoire population density map. This allows us to associate a population density value of the underlying grid with
each antenna and assign the OECD typology for each antenna that is provided with geographic information in ANT POS.
Table 2 shows the number of antennas that fall into each of the classifications as well as the total number of calls originated
from each antenna type. Of note, we see that relatively few antennas are classified as Suburban. As the antenna location
dataset is not fully complete we do not associate any density information for those antennas that do not correlate to a
square on the grid. Such antennas are classified as “Unknown” when processing call records.

3.3 Population density

In terms of data density, Figure 8 shows there are observably more records for antenna pairs involving source antennas
with population densities with less than 500 inhabitants per km2. Likewise, Figure 1 shows that the geographical area
of Côte D’Ivoire largerly consists of sparsely populated areas regions. This leads us to examine the distribution of Set 1
in terms of population density. Additionally, the distribution shown in Figure 8 demonstrates a clear dichotomy between
densely populated regions and sparsely populated regions. This leads us to classify antennas into one of three population
density categories: Rural, Suburban, and Urban. In Seciton 3.5, we then classify each identifiable recorded connection in
Set 1 based on its directionality: Rural to Rural, Rural to Suburban, Rural to Urban, Suburban to Suburban, Suburban
to Rural, Suburban to Urban, Urban to Urban, Urban to Suburban, or Urban to Rural.

Figure 8: Distribution of population density (per sq km) associated with source antenna.
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As evidenced by Figure 1, population density in Côte D’Ivoire varies between Rural and Urban areas. We explore the
relationship between the population density of a sending antenna and the average number of outbound calls associated
with the antenna. Because of the predominant use of “Calling Party Pays” (CPP) policy in sub-Saharan Africa, we
focus on the number of outbound calls sent from an antenna rather than incoming calls received by an antenna [13][8].
According to Figure 8, it appears that a large cluster of data points occur in population densities below 500 inhabitants
per km2 and a smaller cluster occurs in population densities above 15,000 inhabitants per km2. In order to normalize for
this, we calculate the mean number of calls and the mean call duration for population densities per km2 in Figure 9(a)
and Figure 10(a). The mean values in Figure 9(a) illustrate the tendency for the outbound number of calls to decrease
as population density associated with the sending antenna increases. Likewise, Figure 10(a) illustrates the tendency
for the call duration to decrease as population density associated with the sending antenna increases. Due to the CPP
policy, we anticipated a larger mean number of outbound calls and mean call duration from antennas associated with the
highest population density, which is associated with Côte D’Ivoire’s financial district and center of commerce. In order
to explore why the mean number of outbound calls and call duration were greater for lower population densities, we plot
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the standard deviation of the number of outbound calls and call duration in Figure 9(a) and Figure 10(b). We observed
more variation in the standard deviation values associated with lower population densities. We attribute the variation of
standard deviation of the number of outbound calls and call duration for lower populaiton densities to be indicative of
sparse antenna placement. For instance, many of the lower population densities associated with low standard deviations
of number of outbound calls and call duration only have one or zero antennas associated with them. This makes it more
difficult to ascertain a “normal” call pattern for areas of low population density, even though most of the geographical area
has low population density values (see Figure 1). However, Figure 7 may demonstrate why we observe such erratic mean
number of outbound calls and mean call duration in areas of low population density. As can be seen in Figure 7, there
are several antennas associated with low population densities that have a high number of outbound calls associated them.
In Section 4 we discuss how infrastructure can be inferred based on population density and call frequency associated with
antennas.
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Figure 9: (a) Population density vs. mean number of outbound calls and (b) Population density vs. standard deviation
of number of outbound calls
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Figure 10: (a) Population density vs. mean call duration and (b) Population density vs. standard deviation of call
duration.

3.4 Mean call duration as a function of distance

We investigate the relationship between call distance and the average duration of calls. We calculate the distance in
kilometers between all pairs of antennas with known geographic location using the Haversine formula [19] and inputting a
mean earth radius of 6,372.80 km. We group connection distances into the nearest 10 km in order to calculate aggregate
statistics for each group.

Next we calculate the mean call duration for each of the distance groups. We process Set 1 to find distance information
for each record and associate call duration and call counts to the associated distance. Records that include antennas for
which we do not have location information are ignored. The impact of distance between source and destination antenna
on mean call duration is seen in Figure 11. In general, we observe an increase in average call durations as connection
distance increases. We hypothesize that the reason for such a pattern is the calling parties have fewer opportunities for
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in-person interactions due to the geographic distance. Lastly, note that with relatively fewer call records for distances
greater than 500 km, more noise is introduced into the graph. Given more call records we expect that the relationship
trend between distance and average call duration would hold.
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Figure 11: Antenna distance vs. mean call duration.

3.5 Call typology classifications

We investigate the potential correlation between population density and calling patterns by associating antennas with
known locations to the corresponding local population density. This process yields antennas denoted as Rural, Suburban,
Urban, or Unknown for the antennas which have no geographic location. We process Set 1 to classify call records by
each typology source and destination pair in order to investigate potential communication patterns. In this analysis we
do not consider records for antennas with no geographic data or records without valid antenna IDs. As seen in Figure
12, the majority of the identifiable connections are classified as Urban to Urban connections. This is followed by 20% of
connections classified as Rural to Rural. Connections classified as Rural to Urban or Urban to Rural each account for 9%
of connections.
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Figure 12: Classification of communication between antenna pairs.

Next, we search for differences in mean call duration across the connection classifications with results shown in Figure
13. We find that the two call classifications with the longest mean call duration are Urban to Rural and Rural to Urban.
An observable phenomenon is that calls confined to the same source and destination density type are noticeably shorter
on average compared to calls between mixed pairs. Given our prior finding of the relationship between call distance and
average duration we posit that the majority of calls that do not cross classification boundaries are confined to a smaller
geographic region. For instance, we believe Urban to Urban calls are more likely to be sourced from and destined for the
same urban area. Lastly, an interesting observation is that calls originating from Urban antennas generally have a longer
duration for any destination type. We believe this is due to the common policy of “Calling Party Pays” and higher buying
power of individuals who reside in urban areas.

This trend leads us to look at the average distance between connecting antennas associated with each connection density
classification type. Figure 14 shows the relationship between the average call distance for each connection classification type
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Figure 13: Call durations for classified connections.

and the average call duration. We see that the longest average distance between connecting antennas occurs between Rural
to Urban and Urban to Rural connections. The shortest average distance occurs between similar-to-similar connections
such as Rural to Rural, Urban to Urban, and Suburban to Suburban. As we would expect based on Figure 11, we see
classifications associated with longer average distances between connecting antennas also associated with longer average
call duration.
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Figure 14: Mean distance for classified connections.

We investigate associating call patterns and population density for calls that are sourced and destined for the same
antenna ID. This is motivated by the observation in Figure 12 that roughly 75% of all observed calls are categorized as
Rural to Rural or Urban to Urban. We process Set 1 and identify records that include two valid antenna IDs where the
source and destination match. We find in Table 3 that 57% of all Rural to Rural calls are both sourced from and destined
for the same antenna. We posit that this is due to fewer available antennas to associate with in predominantly rural areas.
Furthermore, the cellular coverage provided by a single antenna in rural settings is typically larger, which means that a
higher proportion of local users are associated with the same antenna. Calls between users in the same general vicinity
in a Rural area are likely to involve only one antenna. Interestingly, Urban connections sourced from and destined for
the same antenna represent 23% of all Urban to Urban calls. We believe that the higher density and smaller cell range of
Urban antennas provides more diverse antenna association possibilities for users.

Table 3: Percent of calls made between same source and destination antenna

Classification Percentage of calls

Rural to Rural 57%
Suburban to Suburban 88%

Urban to Urban 23%

Our final analysis is focused on antennas for which we have no population density information. These antennas include
those that are not provided with geographic coordinates in the ANT POS data set as well as those identified in Set 1 with
an invalid (‘-1’) antenna ID. We classify call records from Set 1 where at least one antenna in the connection is a part
of the “Unknown” antenna classification and gather statistics. Figure 15 illustrates that calls between two unclassified
antennas are typically shorter than those in which one side of the connection is “known.” Given our prior observation that
mean call durations are noticeably shorter when the source and destination antenna classification is not mixed we believe
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that calls between two unclassified antennas remain within the same density classification, though unknown. Analysis
of records in which one of the involved antennas is classified as known shows that calls involving a Rural antenna for at
least one half of the connection are longer on average than other types. Also of note is that calls with one half of the
connection known are more similar to patterns associated with mixed classification calls than those remaining within the
same classification.

Figure 15: Mean call durations for connections including unclassified antennas
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3.6 Egocentric graphs

We now examine the ego-centric social graphs provided in dataset 4. Our analysis focuses on persistence of social groups
with which individual egos communicate. We regard this analysis as preliminary work on identifying persistent neighbors
within one’s social network, who can serve as reliable information relays.

First we provide high level analysis of the average number of social groups with which each ego communicates over the
entire capture period from December, 2011 to April, 2012. For this analysis we sum the number of connected components
that appear in each two-week period and divide this sum by the number of capture periods (i.e. 10). Figure 16(a) plots
a CDF of the average number of connected components for each ego. While the average number of components across
egos spans from 1 to 10, the majority of egos – 68%, have between 2 and 5 connected components on average. Further,
we examine how the number of connected components deviates for each ego. Figure 16(b) plots a CDF of the standard
deviation of the number of connected components per ego over the observed period. Almost half of the egos (47%) have
standard deviation of less than 1, while 96% of all the egos have standard deviation of less than 4. This indicates that the
number of connected components in an ego-centric graph remains relatively constant over time.

Next we analyze the persistence of these social groups over time. First, we look at the in- and out-degree distribution
of nodes in the persistence graphs. As detailed in Section 2.3, a node in period t would have in- or out-degree of 0 if
it belongs to the first or last observed period or if it does not overlap with any node from the preceding (t − 1) or the
following (t+ 1) period. Nodes would have in- and out-degree of exactly 1 if they persist over time and degree larger than
1 if they split or merge over consecutive periods.

We calculate that out of all the nodes in all persistence graphs, 9.49% belong to the first period (i.e. have in-degree of
0) and 8.93% belong to the last period (i.e. have out-degree of 0). At the same time Figure 17(a) indicates that in nearly
60% of the cases nodes have in- or out-degree of 0. This means that about 50% of all the social groups that we observe
did not occur in the preceding and following periods. 40% of the nodes have in- or out-degree of 1, which means that
these 40% of the social groups persisted in consecutive periods. Only about 3% of the cases have in- or out-degree larger
than 1, which means that social groups rarely split or merge over consecutive periods.
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Figure 16: (a) The number of connected components per ego and (b) the standard deviation of the number of connected
components per ego over the observed period.
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Figure 17: (a) The in- and out-degree of nodes in all persistence graphs and (b) the average Jaccard similarity for each
persistence graph.
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Figure 18: Number of occurrences of the first, the second and tenth most frequent neighbor.

This result indicates an important quality of the observed ego-centric social graphs: there are two distinctive types of
social groups with which an ego communicates – (i) those that likely occur only once (in- and out-degree is 0) and (ii)
those that likely persist over time and strictly correspond to one social group from the preceding and one social group from
the following period. The former group can be associated with one-time calls, for example calling to schedule a doctors
appointment, while the latter can be associated with calls recurring over time, such as these between relatives and friends
who stay in touch.

We continue our evaluation of social groups persistence by analyzing the weight of edges (representing the similarity)
of social groups in consecutive periods. We leverage the average Jaccard similarity metric as defined in Section 2.3; the
closer this similarity is to 1, the larger the overlap between social groups in consecutive periods. Figure 17(b) plots a CDF
of the average Jaccard similarity for the 5000 ego-centric graphs. The median of this CDF is only 0.22, which means that
on average the overlap of social groups over time is relatively small – about 22%.

Finally, we evaluate the frequency of occurrence of the neighbor that appears most often in the social network of an
ego. For this evaluation we count in how many of the ten observed periods does each neighbor appear. We then sort the
neighbors in decreasing order of appearance frequency. We compare the first, second and tenth most frequent neighbors
to determine if there are groups of neighbors that appear more often and what would be a typical size of such groups.

Figure 18 presents our results. The median value for the first top neighbor is 8, while for the second and the tenth top
neighbor it decreases to 6 and 3, respectively. These results indicate high persistence of at least one neighbor in the social
graph. At the same time, a group of two most persistent neighbors would appear ten times in only 6.8% of the cases,
which indicates that a group of most persistent neighbors would typically have very few members.

4 Discussion and conclusion

Our analysis of the Orange mobile network dataset indicates that the usage patterns in Côte D’Ivoire differ drastically
from the typical cellphone usage in countries from the western world [10]. Due to the lack of weekly or monthly utilization
pattern, we hypothesize that the network utilization is not shaped by people’s daily routines, rather peaks in utilization
coincide with events in the country.

96% of the territory of Côte D’Ivoire can be categorized as Rural based on the population density [3]. 51.2% of the
country population lives in Rural areas while 48.8% lives in Urban areas. At the same time the number of antennas
deployed in Rural areas is slightly lower than these deployed in Urban. About a fourth of all the network activity is
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initiated by Rural areas, a half of the network activity comes from Urban residents and the remaining fourth is a mix
of Suburban and traffic that cannot be identified (due to lack of antenna ID information). This lower activity of Rural
compared to Urban residents can be attributed to one of two factors: (i) the population coverage by mobile phone networks
is lower in Rural than in Urban areas and (ii) people in Rural areas have lower purchasing power to afford to use mobile
communication services. We observe higher number of conducted calls in all scenarios where the mobile call originators
and terminators are within close proximity, which indicates high locality of interest in mobile phone communications in
Côte D’Ivoire. These results make a strong case for the need of an alternative solution for local voice communication such
as [4].

In our evaluation of the relationship between population density and mobile phone usage in Section 3.3, we were
surprised to find erratic usage corresponding to very sparsely populated areas, with mean values oscillating between ten
and two mean calls per hour. This was in contrast to the more consistent mean number of outbound calls associated with
higher population densities. We attribute this to two related factors: sparse antenna placement in sparsely populated areas
and antenna placement coinciding with transportation infrastructure. Figure 7 illustrates the coincidence of antennas
and the major road system. Even though they are located in regions with low population density, antennas placed
alongside major roads transmit a higher number of outbound calls than antennas placed in sparsely populated areas
away from infrastructure. Although 42% of recorded antennas are associated with areas classified as Rural, over 96% of
square kilometers comprising Côte D’Ivoire’s surface area is classified as Rural. With a disproportionate few antennas
representing areas of low population density and those antennas behaving in observably different manners based on
proximity to infrastructure, it is unsurprising that call duration and frequency are so erratic when observed across areas
of low population densities.

We leverage the ego-centric social graphs dataset to analyze the persistence of social groups with which an individual
communicates. Our results indicate that two types of social groups exist in the provided ego-centric graphs: (i) social
groups that likely occur once and can be attributed to communication activity such as scheduling an appointment, and
(ii) social groups that occur persistently over time, which can be associated with regular communication with other
subscribers. While the overlap of such persisting social group over time is not very large, there are one to two individuals
for each subscriber that persist over the observed period.

Our first hand experience in rural Zambia indicates that often health care initiatives are jeopardized by the lack of
reliable information channel between health care providers and targeted individuals. Thus, advanced mechanisms for
information dissemination in the context of health care will help significantly improve these services in rural areas. The
trends we discover in social groups persistence can serve as a basis for development of algorithms for selection of information
relays in egocentric social networks. We hope that the knowledge obtained from such analysis can be further incorporated
in information dissemination mechanisms in cases where the ego has limited or no access to a cellphone. We note, however,
that while these results are encouraging, further analysis of social groups is needed. Such analysis should focus on social
trends in Rural areas specifically and needs to incorporate more information related to individuals’ location as well as
direction, frequency and duration of calls.
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