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Abstract—Transmitter detection and separation in radio spec-
trum scans is an essential component in emerging spectrum-
sharing networks, as it underpins situational awareness for
coexistence and enforcement. However, detecting transmitters in
noisy real-world traces is challenging and has been tackled with
limited practical applicability. Beyond noisy measurements, the
challenges stem from the need to simultaneously detect multiple
and possibly overlapping transmitter frequency bands and track
their transmissions over time.

We address these challenges with SCAN (Sparse reCovery
trAnsmitter detectioN): an unsupervised approach based on
sparse dictionary coding to jointly detect the frequency and
temporal behavior of multiple co-occurring transmitters in power
spectral density traces. We demonstrate SCAN’s applicability to
high-noise regimes and across various transmitter co-occurrence
scenarios, including when transmitters concurrently overlap in
time and frequency (akin to intentional or unintentional inter-
ference). We evaluated SCAN’s performance with synthetic and
real-world traces and in comparison with baselines. We show
that SCAN can characterize multiple transmitters even when
their power levels are the same. Furthermore, SCAN successfully
detects and characterizes 10 simultaneously observed trans-
mitters, whereas counterparts fall short even in 3-transmitter
scenarios. Finally, we demonstrate that SCAN can discern real-
world activity with WiFi, ZigBee, LTE and LoRa transmitters.

Index Terms—spectrum sensing, spectrum characterization,
coexistence, transmitter detection.

I. INTRODUCTION

The current exclusive allocation and assignment of spectrum
to specific technologies and operators has resulted in the
over-saturation of popular frequency bands, such as cellular,
while other bands, like UHF TV, remain underutilized. As
a result, shared spectrum access has become a foundational
design principle to address the issues of high costs, decreasing
network performance and deteriorated user experience.

A critical requirement of next generation spectrum sharing
is detailed characterization of spectrum use. Recent work has
resulted in a multitude of spectrum analytics algorithms with
various target outcomes including (i) detection of idle or
occupied frequency bands [1]–[4], (ii) detection of a particular
transmitter type [5], [6], (iii) identification of the number of
transmitters present [7], (iv) detection of transmitters’ time
and frequency activity [7], [8], (v) modulation recognition [9]–
[11], (vi) localization [12], and fingerprinting of individual de-
vices [13]. In this paper, we focus on transmitter detection and
characterization. Transmitter detection determines the number
of transmitters present in a spectrum trace. Transmitter char-
acterization is the identification of all time-frequency blocks
occupied by each of the detected transmitters. Transmitter

Figure 1. Overlapping LTE and RADAR transmissions in a high-noise
setting. Left is a visualization of the raw signal with a zoom in on an area
of overlap. Right shows SCAN’s detection of the two transmitters (LTE in
red and the RADAR in green). This case presents a particularly challenging
realistic scenario and demonstrates SCAN’s practical applicability.

detection and characterization are cornerstones in spectrum-
sharing, as they underpin detailed situational awareness nec-
essary for resource allocation and spectrum adjudication. Co-
existing technologies can use detection and characterization
to inform primary-secondary user interactions and underpin
secondary-secondary sharing. Enforcers can use detection and
characterization to pinpoint unauthorized spectrum activity.
Finally, policy makers can use these capabilities to evaluate
the adoption of spectrum regulations and inform new policy
based on historic analysis of spectrum use.

A particularly challenging and increasingly targeted practi-
cal scenario is the detection of narrow-band fleeting signals,
such as radar, in the presence of other broadband activity.
One such example is presented in Fig. 1 (left), which shows
coexisting LTE and navy radar Type 1 [14] in the Citizens
Broadband Radio Service (CBRS) bands. The radar activity is
short-lived, close to the noise floor and overlaps in time and
frequency with the LTE signal. While radars incur minimal
spectrum activity and provide ample resource to share, their
rapid and accurate detection is critical, as services such as
weather forecasting or the national defense rely on radars.

Existing spectrum analytics focus on detecting idle and
occupied bands [1]–[3], but do not support per-transmitter
characterization of temporal and frequency usage patterns.
While some recent work has explored the use of wavelet de-
composition [8], or Rayleigh-Gaussian mixture models [7] for
transmitter characterization, these methods are either limited
to single-transmitter scenarios [8] or struggle with realistic
settings involving multiple transmitters with similar signal-
to-noise ratio (SNR), or frequency overlap, such as the ones
from Fig. 1. Recent work has also employed supervised deep
learning [6], [15] to discern specific technologies such as radar
or LTE, however, these methods are only applicable to CBRS
and do not support characterization of time-frequency activity.

To address these challenges we propose SCAN, a general
framework for unsupervised transmitter detection and char-
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Figure 2. Overview of SCAN’s detection process for a sample PSD input with overlapping LTE and radar: The framework learns a sparse dictionary encoding
for the transmitter’s time and frequency activity. The outer product of these encoding give the full transmitter characterization. It computes a residual PSD
matrix, excluding detected regions. This process repeats using the residual as input until the termination criteria are met (described in § V).

acterization based on multi-dictionary sparse representations.
SCAN detects all time-frequency blocks of transmitter ac-
tivity, as illustrated in Fig. 1(right) even in the presence of
co-occurring, overlapping, narrow-band/fleeting transmitters,
and in diverse interference scenarios. Specifically, we model
transmitter detection as a low-rank sparse coding in power
spectrum density (PSD) scans, where individual components
(rank-1 encodings) map to individual transmitters. Existing
multi-dictionary coding solvers are constrained to the same
optimizer for all dimensions of the data, e.g. greedy in 2D-
Orthogonal Matching Pursuit (OMP) [16] and convex relax-
ation in Temporal Graph Signal Decomposition (TGSD) [17],
[18] and cannot explicitly model domain constraints. Our
solution exploits transmitter properties such as occupation of
contiguous frequency bands and intermittent temporal activity.
We design domain-informed dictionaries and employ them in
a novel joint optimization scheme.

Fig. 2 illustrates a detection of radar and LTE using SCAN.
SCAN inputs a 2D PSD matrix, where the rows and columns
present temporal and frequency activity, respectively. SCAN
is iterative and detects one transmitter at a time. In the first
iteration, SCAN takes as input the PSD matrix. It then learns
the best dictionary representations for a transmitter’s frequency
and time activity and outputs a detailed transmitter characteri-
zation using these learned dictionaries. SCAN then masks out
all regions detected as occupied by the first transmitter and
supplies the residual PSD as an input to the second step. This
process repeats until the stopping criteria is met, at which point
all transmitters have been detected and characterized.

We evaluated SCAN with synthetic and real-world traces.
Our synthetic traces provide control of the number of transmit-
ters, their time-frequency overlap, and power levels. The real-
istic traces encompass practical scenarios such as LTE-radar
coexistence in CBRS, LoRa, WiFi, ZigBee and LTE traces. We
compare SCAN with baselines and show robust and consistent
performance, including in very challenging conditions with
low-SNR, narrow-band and short-lived transmitters.

This paper makes the following contributions:
• Novelty: We propose a general unsupervised method,

called SCAN, for transmitter detection and characterization
based on multi-dictionary sparse coding. It detects narrow-
band, low-power and fleeting transmissions across various
coexistence scenarios.

• Performance: We evaluate SCAN on (i) synthetic, (ii)
controlled over-the-air, and (iii) real-world spectrum scans
and demonstrate its superiority over counterparts from the
literature in single- and multi-transmitter scenarios.
• Applicability: SCAN is unsupervised, and thus, applica-

ble across any spectrum band and technology. We demonstrate
this with coexisting radar-LTE in the CBRS bands, and with
in-situ detection of LoRa, WiFi, ZigBee and LTE.

II. RELATED WORK

Spectrum characterization has been targeted in the past to a
various level of detail and through a variety of methodological
approaches. In early cognitive radio of key interest was the
detection of idle and occupied spectrum bands [19], however,
attributing activity to transmitters was not tackled. Methods
using edge detection in raw [1]–[3] or pre-processed [4]
PSD scans were predominantly used for this purpose. More
recently, a need for transmitter detection and detailed time-
frequency characterization has emerged and is tackled through
both supervised and non-supervised approaches. In what fol-
lows, we detail advances and limitations of recent work.

Energy-based occupancy detection is a widely used group
of techniques for spectrum sensing [1]–[4]. In this method,
collected PSD values are compared against a predefined
threshold. PSD bins that exceed the threshold, are identified
as a occupied, whereas those falling below the threshold are
deemed idle. Energy detection methods generally have low
computational complexity and do not require prior knowl-
edge of spectrum activities. However, choosing an appropriate
threshold for energy detectors is often difficult especially
in low SNR and dynamically-changing conditions [20]–[24].
This leads to missed detection and false alarms, making edge
detection unreliable in realistic noisy and dynamic environ-
ments. Furthermore, while these works focus on idle/occupied
band detection, they cannot attribute activity to longitudinal
transmitter operation, and thus cannot support fine-grained
time-frequency transmitter characterization. In contrast, SCAN
detects individual time-frequency transmitter activity blocks,
and is sensitive in low-SNR regimes.

Detailed transmitter detection and characterization has
been tackled through both supervised [6], [15], [25]–[27] and
unsupervised [7], [8] methods. AirVIEW [8] uses wavelet-
based signal processing and denoising to characterize indi-



vidual transmitters in high-noise regimes. However, AirVIEW
cannot be readily extended to multi-transmitter scenarios.
TxMiner [7] uses unsupervised clustering of PSD data for
multi-transmitter detection and characterization. However, it
falls short in discerning transmitters with similar power levels
and cannot model narrow-band and short-lived transmitters
that incur minimal spectrum activity. In contrast, SCAN is
designed to detect multiple transmitters across various SNR
regimes and with narrow-band and short-lived activity.

A counterpart stream of work uses supervised methods
for transmitter classification (i.e. detection of the transmitter
type). These often rely on deep learning (DL) and treat
transmitter detection as an object detection problem [6], [15],
[25], [26], [28]. Their purpose is to identify whether a specific
transmitter type is present, and not to discern the transmitter’s
time-frequency activity. In addition, these methods operate
in single-transmitter scenarios and are trained to recognize
naval radar, WiFi, or LTE signals. Most recently Spectrum
Stitching [27] (which we henceforth refer to as STS) proposed
a multiclass DL-based semantic spectrum segmentation frame-
work that can detect, characterize, and classify transmitters
in both time and frequency at the I/Q level. These methods
require extensive training and are not easily applicable for
detecting arbitrary transmitter types. Additionally, they fall
short in low SNR regimes, as shown in our evaluation. In
contrast, SCAN targets detection and characterization (but
not classification) for multiple arbitrary transmitter types and
across various SNR regimes. SCAN can be complementary
to deep-learning based approaches as it can serve as a pre-
processing step to enhance low-SNR images before feeding
them into a DL framework for transmitter type classification.

III. BACKGROUND

In this section, we review the evolution of transmitter
detection in the literature, and motivate the need for SCAN
through several experimental demonstrations.

Transmitter detection is a concept that has evolved to refer to
a gradient of spectrum analytics tasks with increasing details of
transmitter characterization including active/idle band detec-
tion to ascertain the presence of an incumbent [4], [29], [30],
transmitter bandwidth detection [6], [25], and more recently
detailed characterization of the time-frequency activity of all
present transmitters [7], [8], [27]. In this paper we focus on
the last task which encompasses and generalizes the previous
two. Formally, transmitter characterization algorithms must
support the detection of five metrics as depicted in Fig. 3(left),
including: (i) the exact number of transmitters present, (ii)
the frequency band occupied by each transmitter (∆f ), (iii)
the active time duration of each transmission (∆t), (iv) the
inter-arrival time (∆i), and (v) the gap between consecutive
transmissions (∆T ). These five properties comprise a thorough
characterization of a transmitter’s time-frequency activity.

We demonstrate limitations in existing literature through
two toy examples with multiple transmitters sharing the spec-
trum. The first scenario is based on a controlled over-the-
air spectrum trace captured via a USRP B210 sensor (Fig.3),

while the second is based on a synthetically generated trace
capturing a wide-band long-lived transmitter coexisting with
a narrow-band short-lived one (Fig. 4). The over-the-air spec-
trum scan consists of two intermittent periodic transmitters T1

and T2, operating in an unused TV White Spaces channel at
center frequencies of 571.9 MHz and 572.1 MHz, respectively,
with 3 transmissions each. The gain of the two transmitters
is 55 dB resulting in similar sensed power. The transmitters
differ in packet size, where T2’s packet size is twice that
of T1. The synthetic trace consists of a narrow-band short-
lived transmitter overlapping in frequency with a wide-band
transmitter. The wide-band transmitter occupies 100 frequency
bins and 30 time steps, and has a mean power level of −85
dBm. The narrow-band transmitter occupies 20 bins and 4 time
steps, and has a mean power of −95 dBm.

Fig. 3(right) and Fig. 4(right) illustrate characterization of
the above scenarios using TxMiner. Highlighted in red are
regions from the trace detected by TxMiner as a transmitter.
We first focus on the over-the-air trace characterization in
Fig. 3. All spectrum activity is detected as a single transmit-
ter, due to the comparable power level of both transmitters.
Furthermore, the temporal behaviour of the second transmitter
is not correctly characterized, leaving half of the transmitter
activity undetected. The synthetic trace characterization in
Fig. 4(right) suffers a different set of problems. TxMiner is
only able to detect the wide band transmitter (in red) but fails
to detect the frequency occupancy or the temporal behavior of
the narrow band transmitter. This is due to the minimal amount
of activity generated by the narrow-band transmitter, which
makes it challenging for existing work to model and detect
the corresponding transmitter. These shortcomings can hinder
spectrum sharing, causing missed opportunities or interference
with primary users. A fast, sensitive detector like SCAN
enables efficient band utilization for opportunistic access.

IV. PRELIMINARIES

PSD data, while extremely noisy, can be sparsely repre-
sented via an appropriate basis (dictionary), since transmit-
ter activity (the underlying signal) spans contiguous time-
frequency regions. Our proposed method, SCAN, is motivated
by sparse dictionary coding [31], hence, we first introduce
necessary notation and preliminaries from the literature before
describing the method in the following section. The input data
for our problem of transmitter detection is a PSD scan X ∈
Rt×f with t rows corresponding to time steps and f columns
corresponding to frequency bins. A single transmission burst
Bj is a contiguously-occupied time-frequency block of con-
stant power, i.e. Bj is a submatrix of X (for example, there
are 4 LTE transmissions in Fig. 1). A transmitter Ti = (Bij)
is a sequence of at least one intermittent transmissions. We
model the observed spectrum scan X as a mixture of b ≥ 0
transmitters and noise:

X =

b∑
i=1

Ti + ϵ (1)



Figure 3. Detection produced by TxMiner [7] in
red (right) for a spectrum trace with two non-
overlapping transmitters with similar power levels
(left). TxMiner fails to separate the two transmitters
or correctly characterize their temporal activity.

Figure 4. Detection by TxMiner [7] in red (right)
for two overlapping transmitters — a narrow-band
short-lived and a wideband long-lived; with differ-
ent power levels (left). TxMiner is unable to detect
the short-lived signal.

Figure 5. SCAN frequency band selection. (left)
Input signal ZT occupying bins 3-4, (right) a dic-
tionary H with atoms (vertical bars) representing
candidate occupied bands, with lengths 1 to f bins.
The red atom is best-aligned with the input.

where ϵ ∈ Rt×f represents independently and identically
distributed (i.i.d.) Gaussian noise across all elements of the
matrix. The noise matrix ϵ has the same dimensions as X .
Given X , our goal is to detect all transmitters Ti, i.e. the
“location” of frequency-time blocks for each Ti.

The above observation model and associated detection prob-
lem aligns closely with the extensive literature on sparse
dictionary coding [31]. In its simplest form, a vector signal
x ≈ Φw is approximated as a sparse linear combination
of a few atoms from a predefined dictionary Φ, via the
coefficients in w. The choice of Φ is critical for performance in
downstream tasks [32], [33]. Given the multi-modal nature of
spectrum scans X (occupied frequency versus time), a single
dictionary is insufficient to characterize both the temporal
patterns and frequency bands of a transmission Ti. Instead,
for such 2D signals, one can use a separate dictionary for
each mode (i.e., multi-dictionary sparse encoding) [17], [34],
[35]. The two-dictionary formulation extends the basic one
with separate dictionaries for each signal dimension, given as:

min
Z

f(Z) s.t. X = ΦZHT , (2)

where the left dictionary Φ contains atoms corresponding to
column (temporal) patterns, the right dictionary H contains
atoms corresponding to row (frequency band) patterns, and
Z is a sparse encoding matrix. Here, Zij represents the
sparse coding coefficient for the outer product of the i-th
atom in Φ and j-th atom in H (ΦT

i Hj). The function f()
promotes sparsity for Z. Existing solvers for 2D sparse coding
adopt either greedy approaches [16] or convex relaxation [34],
including imposing low-rank on the encoding matrix Z [17].

V. PROBLEM AND METHODOLOGY

A. Problem Formulation

Adopting existing signal reconstruction solvers for Eq. (2)
to perform transmitter detection according to the model in 1
would i) require non-trivial post-processing (thresholding to
convert the reconstruction model into detected transmitters)
and ii) ignore prior knowledge about the “shape” of transmit-
ters consisting of intermittent bursts in the same contiguous
frequency band. Instead, we “extract” transmitters in X one at
a time while representing the signal in each transmitter via a
rank-1 multi-dictionary encoding. We also design appropriate
analytical dictionaries to represent sequences of contiguous

bursts. Mathematically, we model a transmitter Ti as an outer
product of left and right dictionary encoding vectors:

Ti ≈ (Φwi)(Hsi)
T , (3)

where si is a sparse encoding vector that selects the transmit-
ter’s occupied frequency band via a dictionary H and wi is
an analogous vector defining its temporal pattern as a linear
combination of atoms in Φ. Additionally, enforcing sparsity for
both wi and si would ensure “simple” frequency occupancy
and temporal behavior. This sparse coding model for a single
transmitter naturally extends to multiple transmitters as:

X =

b∑
i=1

Ti + ϵ ≈
b∑

i=1

Φwi(Hsi)
T + ϵ (4)

In other words, the spectrum scan be modeled as a sum
of sparse multi-dictionary encodings. Following this, SCAN
relies on two key components to identify transmitters: Hsi
identifies a single frequency band of a transmitter’s oper-
ation and Φwi models the time-steps where the associated
transmissions occur. We require that learned coefficient atom
pairs directly map to transmitter locations and their power.
Thus, we design custom dictionaries and corresponding solvers
for the frequency and temporal modes. We start with the
design of a frequency band dictionary H . We note that since
a (non-frequency hopping) transmitter occupies a contiguous
spectrum band, we can express its bandwidth of operation via
a single atom in H , as long as H ∈ Rf×p is a dictionary
of all possible p = f(f+1)

2 frequency sub-bands that span
the observation scan X as shown in Fig. 5 (right). In other
words, each atom (column) of H is a binary vector with 1s in
the frequency bins of the corresponding band. Given that each
atom maps to single possible transmission band, a transmitter’s
encoding vector si needs to select a single atom: ||si||0 = 1.

Having determined the frequency band of a transmitter Ti

we next learn its temporal activity (i.e. the temporal intervals
of the transmissions Bij). The temporal activity can similarly
be expressed as a sparse encoding Φwi via an appropriate
temporal dictionary Φ through a sparse vector of coefficients
wi. The temporal domain of a transmission does not have the
clear structure found in the frequency domain and can vary
widely across transmitter types. Therefore, it is not feasible
to construct a Φ in a similar manner as H . However, we
do expect transmissions to follow some high-level patterns



such as on/off or potentially periodic behavior. Thus, we can
employ appropriate analytical dictionaries such as wavelets,
Ramanujan periodic filter banks [36] and others. To encourage
sparsity in wi we adopt a widely used L1 regularization.

Our overall formulation of transmitter detection as an
optimization problem is as follows:

min
w,s

||X −
b∑

i=1

Φwis
T
i H

T ||2F + λ

b∑
i=1

||wi||1

s.t. ||si||0 = 1, 1 ≤ i ≤ b

where λ is a regularization parameter controlling the sparsity
of temporal transmitter encodings wi.

B. Optimization approach for SCAN

Our formalization of transmitter detection is an instance
of a 2-dictionary sparse coding problem: given the fixed
dictionaries Φ and H the goal is to estimate all transmitters’
coding vectors (wi, si). Existing greedy [16] (2D-OMP) and
convex relaxation [17] (TGSD) solutions are not appropriate
for our specific formulation as they cannot incorporate domain
constraints. 2D-OMP generalizes traditional (1D) OMP by
computing 2D (outer-product) atoms from all possible pairs of
left and right dictionary atoms, while TGSD employs Alternat-
ing Direction Method of Multipliers (ADMM) to solve an L1-
regularized objective for both modes. Neither solver is capable
of ensuring the critical constraint of transmitters occupying
contiguous frequency bands (i.e., the requirement of using only
a single atom of H), without which the learned coefficients
cannot be directly mapped to transmitters. Moreover, both 2D-
OMP and TGSD cannot scale to an exhaustive dictionary such
as H , as it will produce a cubic number (O(tf2)) of 2D atoms
in 2D-OMP and would require the inversion of a large over-
complete dictionary in the case of TGSD.

Thus, instead of enforcing a single approach — greedy
OMP or convex relaxation — for both the frequency and
the temporal dimension, we use a separate detector for each,
catering to the unique properties of transmitters’ time and fre-
quency behaviors. Specifically, we detect one transmitter at a
time starting with those of highest power. For each transmitter
we detect its bandwidth using greedy atom selection and then
represent its temporal behavior using a convex relaxation for
the aggregate time series within the selected band.

SCAN is presented in Algorithm 1. At a high level SCAN’s
transmitter detection consists of four steps which are repeated
for each transmitter: (1) row-wise mask-aware centering (Steps
5-7) to ensure robustness to varying noise and signal power
levels; (2) greedy frequency band selection (Steps 8-10); (3)
temporal transmitter activity detection (Steps 11-14); and (4)
bookkeeping (Steps 15-21), which checks if a stopping criteria
is met, and if not, adds the most recent detection Ti to the
list of detected transmitters, and updates the “do-not-detect”
mask Ω. Ω is used in subsequent iterations to prevent repeated
detection of the same transmitter. Our stopping criteria is
adaptive and uses statistical properties of the scan. Specifically,
if a detection Ti has power density similar to the average of

Algorithm 1 SCAN
Require: Input X ∈ Rt×f , quantile threshold q, temporal

dictionary Φ
Ensure: A set of transmitters T

1: Initialize mask Ω as all-ones of the same size as X
2: All possible frequency bands H ∈ Rf×p

3: n ∈ Rp is a vector of atom lengths
4: for i=1 to b do
5: // (1) Masked row-wise centering
6: µX = [(X ⊙ Ω)1]⊘ (Ω1)
7: Z = (X − µX1)⊙ Ω
8: // (2) Greedy alignment-based frequency selection
9: s = max-index(1ZH ⊘ n)

10: hs = H(:, s)
11: // (3) Temporal transmitter activity detection
12: y = Zhs

13: w is the solution for: argminw ||y − Φw||2 + λ||w||1
14: Let g be a 0-1 vector with 1s corresponding to the

highest component of GMM(Φw, 2)
15: // (4) Book-keeping and check stopping criterion
16: Compute 0-1 mask transmitter locations Ti = ghT

s

17: if X(Ti) not in top q-quantile of random transmission
windows in X then

18: Break
19: end if
20: Update detection mask Ω = max(Ω− Ti, 0)
21: T = T ∪ Ti

22: end for

randomly sampled rectangles in the original scan X (i.e., likely
similar power to background noise), it is not added to the set
of transmitters and the detection process stops. Next we detail
the individual steps of Algorithm 1.

SCAN takes as an input a spectrum trace X , a temporal
dictionary Φ and a quantile threshold q used in the stopping
condition (described in more details later), and produces a
set of transmitter locations T = {Ti} as binary matrix with
1s denoting the time-frequency bins occupied by individual
transmitters. Before the main detection loop we perform
necessary initialization (Steps 1-3). In Step 1 we initialize a
detection mask Ω of the same size as X to all 1s. This mask
will be updated after each transmitter detection by placing 0s
in time-frequency bins occupied by detected transmitters (Step
20). In practice this allows us to disregard regions already
allocated to transmitters. In Step 2 we generate the exhaustive
frequency dictionary H , where atoms are contiguous runs of
1 for the corresponding frequency band and a value of 0s
elsewhere (see Fig.5). Because of this clear mapping between
atoms and frequency location, H allows for explicit frequency
band detection. In Step 3 we store the atom “lengths” for
all atoms in H in a size-p vector n. This vector will help
us normalize the alignment scores (described next) so that
frequency bands of different width are treated equally.

Steps 4-22 extract one transmitter per loop iteration until
all transmitters are detected per the stopping condition. In the



centering phase, we compute the row-wise mean µX for the
data X by excluding masked time-frequency bins marked as
0 in Ω (Step 6). Here ⊙ denotes element-wise multiplication,
while ⊘ denotes element-wise division. Intuitively, the µX

column vector of size t holds the empirical mean power of
each row Xt of the input, excluding time-frequency bins
marked as 0 in the mask Ω. Next, each row (or time slice)
is centered in Step 7, while retaining detected transmissions
at 0 based on the mask Ω. We perform the masked row-wise
centering of the data in Steps 5-7 to boost transmissions in
time steps in which they occur and retain near 0 value in time
points without transmissions akin to masked regions.

In Steps 8-10 we greedily select the atom in H with the
largest alignment to all time steps of the centered data in an
OMP-like fashion. Specifically, in Step 9 we compute H’s
atom alignments with centered rows as inner products ZH
and then aggregate the alignments per atom 1ZH . Aggregated
atom alignments are normalized by the length of the atoms via
an element-wise division by vector n to avoid giving advantage
to atoms corresponding to wider bands. The produced index
s ∈ [1, p] is that of the atom of best average alignment hs.
A visual representation of this selection process is shown in
Fig. 5, where the transmitter band in ZT spans bins 3 − 4
corresponding best-aligned atom is marked in red in H . Step
10 stores the column with index s in hs.

Steps 11-14 identify the temporal (on/off) activity g of the
transmitter within the selected band hs. We first aggregate the
centered power density within the detected frequency band hs

to form an activity time series y in Step 12. Next, we obtain a
sparse coding w of the temporal activity via the atoms in the
temporal dictionary Φ (Step 13). This problem is a classical
convex relaxation for sparse coding and produces a denoised
and smoothed representation Φw. This representation of the
temporal activity is biased by the shape of the dictionary
Φ. In our experiments, we use Haar wavelets, which with
their rectangular shape are well-suited to approximate on/off
activity. Finally, the smoothed representation Φw is partitioned
using a Gaussian Mixture Model (GMM) and the largest
magnitude component (strongest transmitter) is extracted as a
0/1 vector g in Step 14. The GMM separation step is critical
as multiple transmitters of varying power levels may reside in
the same band and our goal is to extract the one of highest
power first and leave the remaining for subsequent iterations.

The frequency hs and temporal g activity vectors are
multiplied (outer product) to produce a mask for the detection
Ti in step 18. In Steps 17-19 we check if the current detection
Ti is noise (according to the stopping criterion described next)
and if so, the main detection loop is terminated. If Ti is
determined as a transmitter, the detection mask Ω is updated
in Step 20 to exclude it by subtracting Ti element-wise and
ensuring non-negative values using a max operation. In Step
21, Ti is added to the result set T . This process continues
iteratively until the stopping criterion is satisfied.
Stopping criterion. In Steps 17-19 we make a decision
of whether to stop detecting more transmitters based on
the average power of frequency-time bins in the current

detection X(Ti). Intuitively, if the average power in the
current “strongest” signal component Ti is similar to that of
background noise, we must have detected all transmitters in
previous iterations. The challenge is that we do not have a
reliable statistical characterization of the background noise
for an arbitrary input scan X . Thus, we estimate a scan’s
background noise via random sampling. Specifically, we esti-
mate a background noise distribution once in the initialization
phase (steps not shown for simplicity) for randomly sampled
rectangular windows of fixed size (5 × 5 bins). Using the
sampled data, we form a noise distribution. If the average
power of a transmitter detection X(Ti) falls in the top q-
quantile of the noise distribution, the detection is considered
a transmitter and otherwise it is considered noise. In our
experiments we use q = 5 which resulted in reliable and
accurate detection and terminations at the correct number of
transmitters for all experimental traces.
Algorithmic complexity. The complexity of each iteration
in SCAN is dominated by the projection of the compressed
signal (1Z) ∈ R1×f on the over-complete basis H ∈ Rf×p.
Because the number of atoms p = f(f +1)/2 in H is O(f2),
the overall complexity of the matrix multiplication is O(f3).
This has to be preformed once for each transmitter detection
resulting in a total complexity O(bf3). Note, however, that
there are opportunities to speed up the execution by i) sub-
sampling the data X in time and/or frequency, by ii) pre-
selecting atoms in H based on their alignment to the average
time slice and iii) by employing domain knowledge about
target transmitter properties (e.g. allowable bandwidth). Data
sub-selection is effective for high resolution over-the-air scans.
For example, if the shortest lasting transmission is sampled at
high temporal resolution consisting of at least m time steps, we
can drop every m−1 time steps and still detect the transmitter
effectively. Since we only select top aligned atoms of H we
can also work with a reduced size H by pre-selecting atoms
of high alignment with the average row in the data X .

VI. EVALUATION

We now showcase SCAN across various transmitter co-
occurrence scenarios, noise regimes and with realistic data,
and in comparison with counterparts from the literature.

A. Experimental setup

Data. We evaluate SCAN on synthetic data and controlled
over-the-air traces. Our synthetic dataset, generated as a 2D
matrix of PSD values from N + 1 normal distributions
Gi(x|µi, σi), allows us to control the SNR, variance, and co-
occurrence of transmitters where i ∈ (1, N) is the number
of transmitters we are looking to generate. The GN+1-th dis-
tribution generates noise with a mean and standard deviation
of −109 dBm and 3.94, based on empirical measurements
from a USRP B210-based spectrum sensor. The transmitter
distributions are detailed in individual experiments.

For our controlled over-the-air traces, we use two types of
traces: (i) some from a testbed we built with two transmitters
and a sensor, and (ii) some from two recent papers [14],



[27], which comprise over-the-air traces of WiFi, ZigBee,
Bluetooth, LoRa, LTE and CBRS Radar-LTE . For our testbed,
the transmitters are USRP B210 radios with LP0410 Log
Periodic PCB directional antennas, connected to laptops with
Intel i7-5600 CPU. The sensor is a RTL-SDR with a wide-
band multi-polarized antenna, connected to a PC with an Intel
i7-4770 CPU. All hosts run Ubuntu 16 with GNURadio 3.7.
Both transmitters and the sensor are realized with GNURadio
scripts. The collected traces are IQ samples converted to PSD
for analysis. Further detail about the transmitters and sensor
configurations is provided in § VI-C1. To determine the ground
truth binary matrix G for each transmitter, we compute the
time/frequency activity blocks as follows: ∆f = Bw×fft

fs
,

∆t = Tburst×fs
fft , ∆T =

Tsleep×fs
fft , ∆i = ∆t+∆T . Where Bw

is the bandwidth in Hz, fs is the sampling rate, Tburst is the
burst duration, Tsleep is the sleep time between transmissions.
Baselines. We compare SCAN with three baselines:
AirVIEW [8], TxMiner [7] and STS [27] selecting the most
suitable method(s) based on the dataset. AirVIEW is applied
to synthetic traces with a single transmitter, as it is specifically
designed for single-transmitter characterization in low-SNR
scenarios. TxMiner is used for both single and multiple
transmitter traces as it can detect and characterize multiple
transmitters. STS requires IQ input, so we apply it to over-
the-air traces, since synthetic traces consist of PSD values.
Metrics. We aim to identify all time-frequency regions a
transmitter occupies. Thus, we measure SCAN’s accuracy
using the Jaccard similarity (J) between ground truth (G) and
detection (Ti), where J = |Ti∩G|

|Ti∪G| . This 2D Jaccard similarity
inherently includes TPR and FPR, thus providing a better
performance metric with respect to ground truth. Results are
averaged over 100 realizations.

B. SCAN with controlled synthetic data

We begin our evaluation on synthetic data with tight control
on transmitter count, properties, and co-occurrence scenarios.
We use TxMiner and AirVIEW as baselines.

1) Effects of signal strength and variance: Our first goal
is to evaluate SCAN’s performance in low-SNR/high-noise
regimes compared to baselines. We use traces of a single
transmitter with increasing signal power and variance. The
generated transmitter occupies 120 frequency bins and 10
time steps per burst. Fig. 6(left) shows that SCAN’s accuracy
remains nearly perfect and outperforms baselines across all
regimes, even at −106 dBm transmitter power with SNR only
3 dB above the noise floor. In contrast, AirVIEW and TxMiner
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Figure 6. Effects of signal strength and variance on performance. Accuracy
vs. mean signal power (left), Accuracy vs. signal power variance (middle),
and Accuracy vs mean signal power (right) for a two transmitter scenario.

deteriorate at low signal power. Fig. 6(middle) shows SCAN’s
accuracy as the signal variance increases. The traces contain
a single transmitter with a mean power of −102 dBm. SCAN
performs near optimally until the variance reaches 20, then
slightly decreases. TxMiner consistently scores around 0.7, as
it confuses the transmitter and noise. AirVIEW’s performance
substantially declines with increasing signal variance.

Next, we evaluate SCAN’s performance with two non-
overlapping, equi-power transmitters in low-SNR/high-noise
regimes, and compare it to TxMiner only, as AirVIEW is not
designed for multi-transmitter detection. The first transmitter
(T1) occupies 120 frequency bins and 10 time steps per burst,
while the second transmitter (T2) occupies 100 frequency bins
and 5 time steps per burst. Fig. 6(right) shows that SCAN
accurately detects and separates each transmitter even at low
signal power. In contrast, TxMiner combines the transmissions
due to their equal signal power into a single transmitter,
resulting in nearly zero accuracy for T2.

2) Performance with wide- and narrowband signals:
The detection of shortlived and narrowband transmitters, akin
radar pulses, is extremely challenging, especially in the face
of wideband interference [37]. Simultaneously, the reliable
detection of such signals is increasingly critical for emerg-
ing spectrum-sharing applications [38]. Thus, we showcase
SCAN’s applicability to such scenarios in both synthetic and
real-world traces. Here, we evaluate SCAN with two co-
occurring transmitters: a strong wideband, long-lived transmit-
ter (LL) and a weak narrowband, short-lived transmitter (SL).
We control the transmitters’ SNR and time-frequency activity.
The LL signal spans 100 frequency bins over 30 time steps,
while the SL signal’s bandwidth varies from 20% to 100% of
the LL signal, and a duration of 2 time steps.

We first evaluate the effects of frequency overlap on the
detection accuracy. Fig. 7(left) shows accuracy as a function of
the percent overlap between the LL (at −85 dBm) and SL (at
−95 dBm). SCAN accurately detects each transmitter, whereas
TxMiner fails to separate the SL transmitter from the LL,
detecting them as one due to the few samples representing SL.
This highlights SCAN’s robustness in detecting short-lived,
narrow-band transmitters even when they overlap in frequency.

Next, we explore the impact of SNR on LL-SL separa-
tion. With a 20% bandwidth overlap, we vary the signal
power of each transmitter as shown by the two x-axes of
Fig. 7(right). SCAN remains robust even at very low SNRs for
both transmitters. TxMiner, however, performs poorly even at
high SNRs, deteriorating further as noise increases due to its
inability to separate SL transmitters. These results demonstrate
SCAN’s ability to accurately detect narrow-band, short-lived
transmitters in low SNR regimes.

3) Performance with varying power difference between
transmitters: We evaluate the impact of the power differences
between co-occurring transmitters on SCAN. We generate
two non-overlapping transmitters with the following burst
dimensions: T1 with 120 frequency bins and 10 time steps;
and T2 with 100 bins and 5 time steps. Starting with both
transmitters at −80 dBm, we increase T2’s power to −60 dBm.
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power (right).
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Fig. 8 shows detection accuracy for each transmitter using
SCAN and TxMiner. SCAN maintains high accuracy even
when both transmitters have the same power level, whereas
TxMiner struggles to distinguish between them with power
differences of 10 dBm or less. This demonstrates SCAN’s
applicability to transmitters with similar power.

4) Performance with increasing number of transmitters:
We evaluate SCAN’s performance with an increasing number
of transmitters, considering up to 10. Each transmitter has a
random temporal pattern, occupies 100 frequency bins, and
generates periodic bursts of 10 time steps. Transmitter power
levels differ by at least 10 dBm.

First, we explore SCAN and TxMiner’s ability to detect the
number of transmitters in a trace. Fig. 9(left) shows that as
the transmitter count increases from 1 to 5, SCAN accurately
detects the expected number, while TxMiner underestimates
after 3 transmitters. Next, we examine individual transmitter
detection accuracy as the number of transmitters increases, as
shown in Fig. 9(right). The y-axis shows average accuracy,
calculated as the sum of individual transmitter detection accu-
racy divided by the expected number of transmitters. SCAN
not only detects the correct number of transmitters but does
so with high accuracy, significantly outperforming TxMiner.

C. SCAN with over-the-air data

Next, we explore SCAN’s applicability to real-world over-
the-air data using controlled traces collected in our lab, and
data from [27] and [14]. We compare SCAN to STS and
TxMiner. STS operates in two steps: first, semantic segmenta-
tion to isolate active regions in a scan, and then, classification
to assign these regions to one of five known candidates in a
supervised manner. Since SCAN is only concerned with seg-
mentation, and not transmitter classification, we only compare
with the STS’s segmentation, and skip classification.

1) Varying sensor/transmitter gain: We evaluate SCAN
with traces from the setup in § VI-A. T1 transmits 800
bytes/second at 0.25 MHz bandwidth and 572.1 MHz fre-
quency. T2 transmits 400 bytes/second at 0.25 MHz bandwidth
and 571.9 MHz frequency. The sensor, placed equidistant from
the transmitters with line of sight, has 0.5 MHz bandwidth, 6
sec dwell-delay, and 572 MHz center frequency.

First, we evaluate SCAN’s performance with transmitters at
65 dBm, while varying the sensor’s gain. Fig. 10(left) shows
SCAN maintains high accuracy across gains, slightly reducing
at 20 dBm where signal power is low, and outperforms
baselines. Next, we evaluate SCAN’s performance with a
fixed sensor gain of 60 dBm, while varying the transmitters’
gain. Fig. 10(right) shows SCAN maintains high accuracy
across different transmitter gains. STS performs well only at
60 and 65 dBm; its accuracy decreases below 60 dBm due
to low signal power and above 65 dBm due to noise and
hardware imperfections. TxMiner remains consistently low
and deteriorates further at 75 dBm due to high noise.

2) Qualitative evaluation with over-the-air traces: We next
evaluate SCAN on over-the-air signals of four commercial
technologies, collected in an uncontrolled RF environment as
described in [27]. Due to the lack of ground truth (i.e. a
transmitter/noise label for each PSD value), we use qualitative
evaluation, showing individual detection in different color.
Table I shows that SCAN accurately detects all transmitter
types, including LoRa, which is narrowband and frequency-
chirping. STS, on the other hand, incurs a large number of
false positive detections around the target signals.

3) SCAN’s applicability in CBRS: CBRS [15], a recent
shared spectrum technology, allows broadband communica-
tions in Navy radar bands when radar is absent. Radar pulses
are extremely short-lived, must be detected within 60 sec-
onds [38], [39] to avoid interference with defense applications.
This is challenging, especially in low-SNR regimes, as radar
pulses are hard to distinguish from surrounding noise.

We showcase SCAN’s practical applicability to CBRS
and beyond, by exploring an over-the-air trace of LTE and
radar [14], shown in Fig. 1 (left). The LTE bandwidth is 15
MHz, while the radar bandwidth is 2 MHz with a pulse width
of 0.5 µs and SINR of 19.26 dB. The radar activity signifi-
cantly overlaps with the LTE transmitter. As shown in Fig. 1
(right), SCAN successfully discerns the two transmitters and
characterizes all corresponding activity, including overlapping
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transmissions. SCAN processes this trace in 12 seconds on a
personal laptop using MATLAB, meeting the requirements for
CBRS users to vacate the spectrum.

VII. DISCUSSION AND CONCLUSION

Spectrum analysis is crucial for opportunistic spectrum
access but is challenging with noisy scans, coexisting trans-
mitters with partial time or frequency overlap, and interfering
narrow- and wideband transmitters. To address these issues
and enable robust, rapid detection of multiple transmitters, we
designed SCAN—a framework for unsupervised transmitter
detection and characterization. SCAN is an OMP-based algo-
rithm using sparse dictionary encoding to detect transmitters in
a spectrum scan and characterize their time-frequency activity.

We evaluate SCAN’s performance across various coexis-
tence scenarios in challenging SNR and noise regimes. SCAN
successfully detects narrow-band, short-lived, and low-SNR
transmitters, even with simultaneous time and frequency over-
laps. Further research into SCAN’s applicability to mobile and
frequency hopping transmitters such as BLE will be necessary,
as the H dictionary, is currently designed for transmitters
with contiguous frequency bands. Developing a custom H
dictionary for mobile transmitters is left for future research.
The authors have provided public access to their code at
https://doi.org/10.5281/zenodo.14618294
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