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Abstract—Mobile wireless networks revolutionize our lives
and livelihoods. Yet, rural areas, characterized with sparse
populations and rugged terrain, consistently lag behind in mobile
connectivity compared to their urban counterparts. As a result,
community-owned networks realized through fixed wireless tech-
nologies, have become an increasingly viable Internet option for
otherwise disconnected areas. Fixed wireless, however, is inher-
ently designed for residential/stationary access and is not readily
applicable for the use of mobile agents that might travel through
a rural community. In this paper we explore the extension of
fixed wireless networks for mobile access. A key factor for
continuous mobile access is efficient rate adaptation. To that end,
we develop WideRate— a reinforcement learning framework
that employs signal strength measurements for optimal rate
adaptation. We showcase WideRate in the context of wide-area
Television White Space networks, whereby we design a vehicular
mobile unit and carry out an extensive measurement campaign
in a real community network. We use the collected traces to
motivate the need for rate adaptation and implement a realistic
network simulator that aids in our evaluation. We demonstrate
that WideRate significantly outperforms counterparts from the
literature including a reinforcement learning model.

Index Terms—Rate adaptation, reinforcement learning.

I. INTRODUCTION

While mobile Internet access has evolved substantially in
both ubiquity and capabilities, rural areas still significantly
lag behind in mobile network availability. Based on a 2022
ITU report, 24% of rural residents, and 87% of low-income
rural residents, do not have 4G coverage [1]. As a result,
some underserved communities have taken charge of their
technological progress by deploying and managing their own
networks [2] [3] [4]. Fixed wireless technologies, such as
Ubiquity Mesh [5] [6] and Television White Spaces [7] [8] are
particularly applicable due to their lower infrastructure require-
ments and relative ease of deployment. While fixed wireless
caters to stationary/residential Internet access, it leaves behind
essential civic services, such as emergency response, that rely
on mobile broadband for efficient operation.

In this paper we explore the applicability of fixed wireless
to deliver mobile Internet access using community networks.
Commercial omnidirectional technologies such as Television
White Spaces (TVWS) are particularly applicable to our
problem setting. A key challenge to extend fixed wireless
networks for mobile access is their lack of efficient rate
adaptation (RA). Because fixed wireless channels maintain a
relatively stationary signal, they use manually assigned fixed
rates. However, client mobility and rugged terrain compound

Fig. 1: Optimal downlink modulations at different locations
on the two main roads in the deployment TVWS community.

to high dynamicity of the wireless channel, which in turn calls
for adaptive rate selection. This is motivated in Fig. 1, which
presents results from a driving campaign in a community
TVWS network. Outlined in different colors are the best
allowable rates that maximize the achieved throughput with
low bit error rate. The optimal rate changes substantially across
adjacent locations, which calls for an efficient RA approach.

RA in vehicular networks has been heavily researched [9]–
[13]. These methods use historical observations of packet
loss or signal strength to select an operational rate. However,
in vehicular environments the channel history may quickly
become irrelevant due to rapidly changing channel conditions,
making rate prediction inaccurate. Reinforcement learning
(RL) strategies that incorporate rewards based on decision
outcomes can equip RA to better adapt to dynamic channel
conditions. RL learns an optimal behavior through interac-
tions with the environment and observations of actions taken,
making it particularly applicable to rate adaptation, where
supervision is not practical. RL rate adaptation has thus far
been considered in several works [14]–[18]. However, the
focus of these works has been on low-range technologies such
as 802.11af with fairly predictable channel dynamics, which
makes them inapplicable to wide-area community networks.

To address these problems, we propose WideRate, a
reinforcement learning rate adaptation framework for wide-
area mobile wireless networks. WideRate learns from sig-
nal strength measurements to dynamically tune the link
rate and maximize the throughput in uplink and downlink.
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WideRate outperforms model- [19] and learning-based [18]
counterparts from the literature. WideRate quickly adapts
to rapidly changing channel conditions and maintains perfor-
mance across increasing vehicle speeds.

To evaluate and test WideRate, we design a data mule
unit (DMU) used for data collection in a real-world wide-area
TVWS deployment. The DMU is carried by vehicles travel-
ing in community TVWS networks. The DMU architecture
consists of a TVWS Customer Premise Equipment (CPE),
connected via Ethernet to a WiFI access point (AP). Using the
CPE, our DMU connects to the wireless backhaul for Internet
access. The DMU can be used to transmit and receive data
while driving in areas with TVWS coverage.

We partner with the Town of Thurman in upstate NY to
explore the off-the-shelf TVWS network technology with CPE
mobility. Thurman is a typical rural community, challenged by
the lack of commercial mobile and broadband access. The
town took charge of their own technological progress and
worked as a community to set up a 5-sector TVWS network
[20]. During a four month driving campaign, we collect geo-
tagged field traces that we incorporate into WideRate’s
motivation and evaluation.

The contributions of this work are as follows:
• We develop WideRate for rate adaptation in wide-area
vehicular networks. The framework can be used to predict up-
and down-link rates and is direction agnostic.
• We design a DMU that can be carried by a vehicle while
traveling through a TVWS community network. The DMU can
be used to transmit data in both uplink and downlink directions
using the CPE supported rates.
• We collect in-situ traces from a real-world community
TVWS network and develop a realistic simulator do demon-
strate WideRate’s performance.

II. RELATED WORK

RA for IEEE 802.11-based wireless networks has been
widely researched using many different design methodologies.
[19], [21]–[24] design RA algorithms based on packet loss.
Others employ physical layer metrics such as Signal-to-Noise
Ratio (SNR) to adjust transmission rates based on the perceived
channel quality [22], [25], [26]. [27] develops a channel-aware
RA algorithm that predicts current channel state based on
past observations. All these mechanisms were designed for
stationary indoor wireless networks with considerably lower
channel variation than that in wide area vehicular settings. In
a mobile environment where channel condition are changing
constantly, dynamic models are required because they can
adapt better to fluctuating channel conditions. While these
stationary mechanisms work well in traditional 802.11 indoor
networks, they fall short in vehicular networks, which are
characterized with high channel dynamicity.

RA in vehicular networks has a long line of research.
[9] designs a custom layer RA framework that implements
a combination of loss-triggered and SNR-triggered protocols
for urban and vehicular environments. The paper found that
the loss-triggered mechanisms are unable to adapt to the

changing channel conditions in mobile environments. The
SNR-triggered protocols are susceptible to over-selection from
the ideal rate when the coherence time is low (fast fading).
[10] proposes a protocol for vehicular networks that estimates
the link quality according to the context information (i.e.,
vehicle speed and distance from neighbor) and past history.
[11] implements an SNR-based RA algorithm which only
considers short history to make selection rate decisions. [12],
[13] use historical packet loss rate to estimate the channel
quality. In vehicular access networks, the constantly changing
wireless channel conditions make the channel history quickly
irrelevant, and thus feedback from previous transmissions may
not accurately predict the channel. Our approach falls within
the stream of dynamic models which can be a more effective
tool for adapting to changing environments.

In recent years, machine learning methods have been em-
ployed in both fixed and mobile wireless networks. A few
recent works consider reinforcement learning for link adap-
tation [14], [15], RA [16] in 802.11ac, and RA in vehicular
networks [17], [18]. [17] investigates a rate adaptation scheme
for vehicular TVWS access (802.11af) using deep learning
classification. Deep learning classification is supervised and
requires significant training data. Such models do not adapt
and are hard to transfer across environments or vendors.
Reinforcement learning, in turn, incorporates rewards based
decision outcomes and learns the environment by exploring.
[18] proposes a reinforcement learning-based design technique
for RA for Internet of Vehicles (IoV) using a WiFi Access
Point (802.11ac). This work provides solutions for short range
technology, whereas our approach focuses on wide-area net-
works where the channel dynamics are unpredictable.

III. METHODOLOGY

We now present the methodology behind WideRate. We
utilize real-world performance data from a 5-sector TVWS
network serving a rural community. We collect geo-tagged
field traces and employ them to train and validate WideRate.
We begin by outlining the data collection campaign followed
by a detailed description of the WideRate algorithm.

A. The Data Mule Unit (DMU).

The DMU is a mobile TVWS client we designed to under-
stand current limitations of mobile TVWS networks and eval-
uate WideRate. We mount a directional antenna on top of a
vehicle that connects via coaxial cable to a CPE [20], as shown
in Fig. 2b. The CPE is powered using a Power over Ethernet
(PoE) device and connects to a client host laptop with an Eth-
ernet cable, as shown in Fig. 2c. With DMU mobility, the CPE
will dynamically associate with the various community TVWS
base stations to acquire Internet connectivity (Fig. 2a). The
CPE-supported rates are BPSK 3/4, QPSK 1/2, QPSK
3/4, 16-QAM 1/2, 16-QAM 3/4, 16-QAM full.

B. Real-World Data Collection

We investigate the performance of off-the-shelf TVWS
networks with mobility using the DMU. We set up a driving
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(a) Base Station (b) Antenna (c) CPE

Fig. 2: A deployed TVWS base station in Thurman, NY
(a), directional antenna mounted on vehicle (b), and a CPE
connected to a client laptop via a PoE (c).

campaign to collect field traces including GPS coordinates,
current transmission rate, SNR, and achieved throughput. We
use iPerf1 to inject UDP traffic in the TVWS network. We
setup a client on the laptop connected to the DMU and a server
on a workstation in our lab. As the DMU moves, the client
injects a bi-directional 1 Mbps flow. We limit the amount
of data generated to 1 Mbps so that our tests are minimally
disruptive to residents’ Internet service. We use tshark2 to
capture packet traces (PCAP) on both the client and server,
and log GPS coordinates every second. For each modulation
rate, we performed four driving campaigns for a duration of
45-60 minutes each during 10/2020 – 1/2021.

We organize our data as tuples: D = {(li, ti, si, ri, tri)},
where i is the sample index, li is the sample location (latitude,
longitude), ti is the timestamp, si is the measured SNR, ri is
the employed modulation rate and tri is the achieved transmis-
sion rate (TR). There is an important distinction between TR
and throughput. As our 1Mbps client session was insufficient
to saturate the TVWS link, there were quiet periods within
each second in which no packets were transmitted. Thus, the
achieved throughput, which is a measure of how much data
is received per second, is a less informative measure of link
capability than the TR. Intuitively, TR is the achieved rate
during periods in which data is actively traveling on the link.
Using the PCAP traces, we examine each second interval in
small steps (10 ms). For each step, we calculate the number
of transmitted bytes and divide by 10 ms to get the TR trb.
Given the set of TRs for each 10 ms occupied interval, the
achieved TR in each second is tri=(1/|TR|)

∑
j trbj .

Empirical SNR measurements si are collected from the
individual base stations in the TVWS community network
at a granularity of 120 seconds. To unify the data D, we
need additional SNR measurements at regular one second
intervals which our empirical measurements did not provide.
We interpolate the unknown data points between the empirical
SNR measurements using a cubic spline interpolation. This
method gives an interpolating polynomial that is smoother and
has smaller error than some other interpolating polynomials.

C. Real-World TVWS Connectivity Simulator

Our goal is to design and evaluate approaches for rate adap-
tation specifically for mobile TVWS clients. A comprehensive
evaluation requires observations of varying channel states
(SNR) and varying achievable throughput given the network

1https://iperf.fr/
2https://www.wireshark.org/

and spatio-temporal context (e.g., terrain, weather, network
saturation, etc.). While our driving campaign produced traces
with lots of the above characteristics (a total of |D| = 105, 783
tuples amounting to over 6GB), it does not capture all possible
combinations of conditions and driving trajectories. More
importantly, we would also like to quantify the ability of
our proposed rate adaptation schemes to adjust to significant
changes in the network. To address these experimental goals,
we employ our real-world traces for a spatio-temporal net-
work state simulator capable of generating arbitrary traces
by sampling realistic SNR and achieved transmission rates.
Beyond our evaluation, the simulator will be a useful resource
for further research into rate adaptation.

A key assumption in our simulator is that the network
state (SNR and TR) is normally distributed in a given spatio-
temporal context (time of the day and location). Hence,
to sample realistic network states, we estimate locally the
mean and variance of observations from our driving data.
Specifically, a spatial-temporal context for location l at time
of the day t Dl,t ∈ D is a subset of samples Dj whose
locations lj and time tj fall within a spatio-temporal radius
ρ, i.e. |lj − l| ≤ ρl and |tj − t| ≤ ρt. In our experiments
we adopt a spatial radius of ρl = 50m and a temporal radius
of ρt = 1h as these parameters ensured sufficient samples in
most locations in our simulation area. For sparsely sampled
locations, we progressively increase the radius until at least
20 samples fall in the spatio-temporal context. To generate
realistic driving traces we transition between random start and
end points and sample SNR and transmission rates for a given
modulation at regular intervals.

Algorithm 1 Sample SNR and TR

Require: Location l, time of day t, rate r and samples D
Ensure: Sampled SNR si or transmission rate (TR) tri

1: Compute context Dlt = {Dj | |lj − l| ≤ ρl, |tj − t| ≤ ρt}
2: if SNR sampling then
3: Estimate µ

(SNR)
lt and σ

(SNR)
lt from Dlt

4: Return s ∼ N (µ
(SNR)
lt , σ

(SNR)
lt )

5: else if TR sampling then
6: Compute rate-specific context Dlt|r = {Dlt | rj = r}
7: Estimate µ

(TR)
lt|r and σ

(TR)
lt|r from Dlt|r

8: Return tr ∼ N (µ
(TR)
lt|r , σ

(TR)
lt|r )

9: end if

The procedures for SNR and TR sampling are both outlined
in Alg. 1. The input is a current location l, time of day t,
desired (modulation) rate r and real-world samples D. We
first compute the context Dlt by filtering the data based on the
context radius ρ (Step 1). If sampling an SNR we fit a normal
distribution N (µ

(SNR)
lt , σ

(SNR)
lt ) from context SNR tuples and

sample a random channel state s (Steps 3,4). When sampling
an achieved transmission rate (Steps 5-9), we first subset the
context Dlt|r to only tuples with the desired modulation r
(Step 6) and then sample from a normal distribution of achieve
rates estimated from samples (Steps 7,8). Note that if we do
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not have any sample in the context for the desired modulation
r, we use a default TR value from Table I.

TABLE I: CPE Supported Rates

Modulation Code SNR (dB) Rate (Mbps)
BPSK 3/4 5 2

QPSK 1/2 7 5
3/4 9 6

16-QAM
1/2 11 8
3/4 15 12
Full 17 14

D. WideRate: Reinforcement Learning for Rate Adaptation

Reinforcement learning (RL) methodologies, adapt their
behaviour based on prior decision outcomes and are a natural
fit for RA in dynamic channel conditions like our setting.
We design an RL framework where an agent at time ti in
a location li observes the environment si (SNR) and takes an
action ai: transmitting data using a selected modulation. The
agent receives a reward ri based on the outcome (achieved
transmission rate tri) and moves to a new state si+1. The
transition from si to si+1 with action ai and reward ri is
stored as an event ei = (si, ai, ri, si+1) and used for re-
training/adapting the model.
State and Action Spaces. The state space S characterizes
the channel condition, where the state Si at a given time i
is a time series of the last τ measured SNR values Si =
(si−τ , si−τ+1, . . . si). The action space A are the six supported
modulations to choose from (Table I).
Reward Function. The achieved TR is the reward in the
model, where action results are three types: optimal rate (the
highest achievable rate for a given Si), sub-optimal rate (any
valid rate that is worse than the optimal), and an invalid rate
(selected by the model but not supported at the current Si). The
reward ri for action ai at state Si is defined as: rj = P × tri,
where P is a penalty factor with values 1, −1, or 0 for optimal,
sub-optimal and invalid results, and tri is the achieved TR.
RL Model. Our RL approach, WideRate, is based on the Q-
learning algorithm [28] and is implemented using a Deep Q-
Network (DQN) [29]. A Q-learning approach determines the
optimal action based on its current state Si, where the DQN
architecture is comprised of a Q-network and a target network.
We experiment with several architectures (details in §IV-A)
and employ a long short-term (LSTM) neural network (NN)
which performs best in experiments due to its ability to model
both short and long-term dependencies in sequential data such
as our time series of SNR states Si. The Q-network takes
the current state Si and action ai from each data sample and
predicts the Q-value for that particular action (predicted Q-
value). The target network takes the next state Si+1 from each
data sample and predicts the best Q-value out of all actions
that can be taken from that state (target Q-value). The model
stores each data transition (Si, ai, ri, Si+1) and takes a random
batch of these samples to (re-)train the Q-network. After a pre-
configured number of time steps, the learned weights from
the Q-network are copied over to the target network, which
ensures stability of the remaining Q-values.

Algorithm 2 WideRate: RL Rate Selection and Adaptation

Require: Exploration rate ϵ, Discount factor γ, Q LSTMQ

and target LSTM’ neural networks
1: Measure si and form the state Si = (si−τ , . . . , si)
2: if rand ∼ U(0, 1) > ϵ then
3: aj = argmaxa LSTMQ(Si, a)
4: else
5: aj = random action
6: end if
7: Measure (or sample) tri by transmitting with ai
8: Reward ri = P × tri
9: Measure (or sample) si+1 and form the state Si+1

10: Store transition (Si, ai, ri, Si+1) in training set M
11: if Enough transitions in M then
12: Sample a batch of N transitions from M
13: for Each transition (Si, ai, ri, Si+1) in batch do
14: yi = ri + γmaxLSTM ′(Si+1, ai)
15: end for
16: Compute loss L =

∑
i(yi − LSTMQ(Si, ai)))

2

17: Update LSTMQ by back propagation based on L
18: Every C steps LSTM ′ = LSTMQ

19: end if

Alg. 2 lists the steps of WideRate including selecting the
current action and performing the necessary updates to the
NNs. The input is an exploration rate ϵ, learning rate gamma
and the current state of the Q and target NNs whose parameters
are initially randomly initialized. Importantly, the exploration
rate ϵ decays exponentially as the networks learn (we omit
this from the notation for simplicity). The current state Si is
first formed by appending the current SNR si to the last τ −1
measurements (Step 1). Next we “exploit” the action predicted
by the currently trained Q network with probability ϵ or take a
random exploratory action (Steps 2-6). We then transmit with
the selected rate ai (Step 7), compute the reward ri (Step
8) and form the next state Si+1 (Step 9). State-action-reward
transitions are stored in a training set M (Step 10). When
sufficient transitions are accumulated, we sample a batch of
N transitions and calculate the expected return (Steps 12-15)
as the expected reward ri we get from taking action ai in state
Si, plus the maximum expected return that can be achieved
by taking action ai+1 in state si+1 discounted by a factor γ ∈
[0, 1]). We next calculate the loss L and update the LSTMQ

based on it (Steps 16-17). Every C steps, we copy the weights
from LSTMQ to those of LSTM’ to ensure that the Q-values
in the latter remain stable (18).

IV. EXPERIMENTAL EVALUATION

We now evaluate WideRate. We show that WideRate
outperforms counterparts from the literature in terms of op-
timal rate selection. We demonstrate WideRate’s ability to
maintain consistent and high throughput link in wide area rural
mountainous terrains and with increasing vehicle speed.
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A. Experimental Setup

Data. We evaluate WideRate using trajectories created with
our simulator. We initialize the simulator with a start location
lj (set of GPS coordinates) and the desired duration (seconds)
of the trajectory. For this paper, we generate 10 trajectories that
represent a mix of stable to challenging channel conditions to
test our model. In these experiments, we select a single trajec-
tory that represents a challenging channel condition where the
SNR fluctuates across the full range of values as outlined in
Table I. All trajectories contain 2000 spatial-temporal samples.

TABLE II: NN RL Models & Hyperparameters

Model Structure & Hyperparameters
LSTM Input, LSTM Layer (20 hidden), Linear Layer, Argmax

ATTN Input, Linear Layer,
Multihead Layer (10 heads, 20 hidden), Linear Layer, Argmax

WideRate implementation and initialization. We evaluate
WideRate with two NN architectures: a multi-head attention
(ATTN) and a long short-term memory (LSTM). While ATTN
learns long-term trends in the data, LSTM captures temporal
dependencies in sequential data points, which are particularly
important for rate adaptation based on perceived channel
conditions. Additionally, we explore two learning strategies:
a non-decaying epsilon-greedy approach with ϵ = 0.1, and
a decaying epsilon-greedy approach with ϵ = 1 decaying
exponentially over time. Our structure and hyperparameters
are outlined in Table II. Input to our model is a sequence of
the 10 most recent SNR values. We set the learning rate (lr)
to 0.01, the discount factor (γ) to 0.9, and the exploration rate
(ϵ) to 1 with a decay factor of 0.01. We set the number of
transitions N to 128 that we select from memory M of size
10000 and set C, which is the number of steps to update the
target network, to 400.
Evaluation Metric. We report Transmission Rate Ratio
(TRR), defined as the ratio of achieved to optimal TR for a
given channel condition. We determine the optimal TR using
Table I where each rate has a minimum SNR requirement.
Baselines. We compare against two counterparts from the
literature: AARF [19], and an RL model from a prior paper
(PP) [18]. We implement PP using the structure described
in [18] and the learning strategies outlined above. We also
compare to random modulation selection.

B. Performance Across RA Schemes

We evaluate WideRate across the counterpart NN ar-
chitectures, learning strategies and in comparison with the
two baselines. Our results are presented in Fig. 3. First, we
observe that WideRate with LSTM-Decay outperforms all
other counterparts, reaching 80% TRR after 250 observations,
whereas the other two RL models remain below 70%. Random
achieves an average of 60% TRR across all observations while
AARF performs at 40% average. AARF’s poor performance
is due to continuous packet loss that results from changing
channel conditions, which triggers it to fall back to the lowest
available modulation.

500 1000 1500 2000

Number of Observations

0

0.2

0.4

0.6

0.8

1

T
R

R

ATTN Const

ATTN Decay

PP Const

PP Decay

LSTM Const

LSTM Decay

Random

AARF

Fig. 3: Performance compari-
son across RA schemes.
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Fig. 4: WideRate with in-
creasing vehicle speed.
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Fig. 5: Adapting to changing
channel conditions.
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R
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WideRate-LSTM
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Fig. 6: WideRate in a real-
world network traversal.

C. Effects of Mobility

We next evaluate the performance of our model with
increasing vehicle speed. We compare across the three RL
models using the epsilon-greedy decay strategy. We evaluate
TRR while increasing the base speed by a factor of 1.5 and
then by a factor of 2. Our base speed during the driving
campaign averaged 35 mph. We simulate the increase of speed
by modifying the input to the models; for x1.5 increase in
speed, we skip every third SNR observation whereas for x2
speed we skip and every other observation. Our results are
shown in Fig. 4 where we evaluate TRR after 400 observations.
We observe that LSTM outperforms the other two models
by 8% for ATTN and by 14% for PP. Additionally, LSTM
maintains 88% TRR across all velocities, whereas ATTN
slightly degrades across all velocities (78% to 76%). PP
degrades the most from 75% to 71%. LSTM is able to maintain
high and consistent performance despite the increase in speed.

D. Adapting to Dynamic Channel Conditions

We next evaluate WideRate’s adaptability to rapidly
changing channel conditions. We modify a trajectory by in-
jecting 100 SNR values (σ=18.32) after 900 observations.
Fig. 5 presents our results indicating that TRR deteriorates
rapidly across all models after 1000 observations. LSTM
adapts quicker by taking 100 observations to achieve 75%
TRR while ATTN takes 300 observations to achieve 74.5%
and PP takes 400 observations to achieve 74.34%. Long-term
LSTM outperforms all other models with 95% TRR overall.

E. WideRate performance in TVWS networks

We next explore WideRate’s benefits over the currently
employed fixed modulation scheme in our partner’s TVWS
network. We select a trajectory, from our driving campaign,
that used a fixed rate of 16-QAM 1/2 and we input this into
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Fig. 7: WideRate with training on uplink and testing on
downlink data (left) and vice versa (right).

our model. Fig. 6 presents achieved TRR for the duration of
the trip. By selecting a fixed rate, TRR never approaches the
optimal rate of 1 and results in a zero TRR where the SNR
is low. LSTM achieves 90% TRR after 500 observations and
95% overall. LSTM is able to maintain high and consistent
TRR across all observations. This demonstrates that our model
is able to effectively adapt to a realistic changing channel.

F. Applicability to up- and down-link adaptation

Lastly, we investigate whether a single model is applicable
for both up-link (UP) and down-link (DOWN) rate adaptation.
We evaluate the performance when training on UP and testing
on DOWN data and vice versa. For each combination we
report ∆TRR = TRRDAWA - TRRDA, where TRRDAWA

is direction-aware training (i.e., both training and testing are
performed in DOWN) whereas TRRDA is direction agnostic
training. Fig. 7 presents the results for training on UP and
testing on DOWN (left) and training on DOWN and testing
on UP (right). First, we observe that for both scenarios, ∆TRR
are extremely small, ranging from 0.01-0.05. We also observe
that ∆TRR for LSTM does not exceed 0.022 for training on
UP and testing on DOWN (left) and 0.0266 for training on
DOWN and testing on UP which outperforms both PP and
ATTN. These results show direction-agnostic training does not
significantly deteriorate the performance of our framework and
thus a single model can be used for both UP and DOWN RA.

V. CONCLUSION

We introduced WideRate, an RL RA framework that
employs signal strength measurements for optimal rate se-
lection. We showcased WideRate in the context of wide-
area TVWS networks, by designing a vehicular mobile unit
DMU to carry out an extensive measurement campaign in
a 5-sector real world community network. We use the geo-
tagged field traces collected to implement a real-world network
simulator to evaluate WideRate. We show that WideRate
significantly outperforms counterparts from the literature and
is able to maintain continuous connectivity. WideRate can
adapt quickly to changing channel conditions making it gen-
eralizable to unknown TVWS network topographies.
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