

Dr. James Truchard President, CEO, and Cofounder

James Truchard, president and CEO, cofounded National Instruments in 1976 and has pioneered the way scientists and engineers solve the world's grand engineering challenges

National Instruments now has presence in over 50 countries and annual revenues of \$1.2 billion. Dr. Truchard is an IEEE Fellow, a member of the National Academy of Engineering, a member of the Royal Swedish Academy of Engineering Sciences.

Truchard holds a doctorate in electrical engineering, as well as a master's degree and bachelor's degree in physics, all from the University of Texas at Austin

COTS Platform-Based Design For Spectrum Monitoring & Signal Intelligence

> Dr. James Truchard President, CEO, and Cofounder National Instruments

Long-Term Track Record of Growth

Revenue (in millions)

revenue

The Role of a Platform

Are you wearing a watch?

A Platform Revolutionizes Your Approach to Solutions

Why Do Ecosystems Win?

- 1.25 Million Apps
- 1,000 new/day

Platform-Based Design for Communications Systems

A. Sangiovanni-Vincentelli, UC Berkeley. Defining Platform Based Design. EEDesign, Feb 2002

Three Pillars of Differentiation

Differentiation of our Software and Hardware Platform

Leveraging Moore's Law

Growth of the Ecosystem

Ecosystem

- User Community
- NI Support
- NI Channel
- Partners
- 3rd Party HW & SW
- NI Services

Moore's Law & Commercial Technology Investments Driving Platform Value

RF Components

Continuous investment in our Platform

30 Years ~ 20,000 Man-Years

Platform Based Design for 5G

Platform Based Design – Beyond Math

Algorithm Design + Prototyping

Algorithm Engineering

Combination of a Turing Complete Dataflow Language with Synchronous Dataflow

The Hybrid Approach Combined Graphical / Textual Programming

Parallel Programming with LabVIEW

Platform Enabled Design Flow

LabVIEW Communications System Design Suite

The Revolution in Rapid Prototyping

Technologies for Time and Concurrency

One Common Underlying Architecture

Microwave Product Suite - Software

Driver Software

RFSA, RFSG & RFmx Toolkits Software Ease of Use Fast Measurements

FPGA Extensions

Real-Time Spectrum Analysis Streaming and Synchronization

Spectrum Analyzer Software Debug features RF Measurements

	Di Devis Di	4					
	BET REMENTS	Casta (1404) 1.000 00	-* 10 000 GHa	be to the top to the top	Caller Freq		Sector Percent
			-			Augel Bur Small Selatar Sugar	See Real Exert
					1000	na ha ga	Refer Frid. Marine Seatch Frid.
And Andrew Service Ser	terheg 1.0000 K 394 K 396-38 Re: Trough	00.04 Avgs 10.0 dec 1.000 97.040, 24 Peep, 2nd	Spen V Sweg Hallowick Progr ed Pre-S	25.00000949 y Sove 24 os e Narra Wotor Ant In Signal Path		2 8 8 8 8 8	
the second	Generation of the second secon	Linead Tower Societilia Linead and the Societilia Linead Anti-	and (2) 11 dis 15 dis (44 1) dis)	5x3.585.0 ろこまた(4/2か)	-	121	

NI USRP RIO Driver Software (Host + FPGA)

Typical Design Flows

Elements of a Spectrum Monitoring System

Spectrum Monitoring System Considerations

Receiver Performance

- Scan Rate
- Preselection & Dynamic Range
- Linearity (SHI and TOI)
- Noise Figure / Sensitivity

Signal Processing

- Modulation/Signal Recognition
- Digital downconversion/channelization
- Filtering and windowing functions

System Completion

- Transportable (SWAP)
- Graphical display
- Data storage and playback
- Multi-channel and multi-system synchronization and GPS time stamping

Scalable Platform for RF and Wireless Communication

Common LabVIEW Graphical System Design Software

Price

Spectrum Monitoring / SIGINT Product Portfolio

	esen à		TOTOTOM + 1			
	E310	USRP-RIO	FlexRIO	VST	PXIe-5668R	Bee7
Signal Processing (TMACs)	0.276	2.8	2.8	1.2 (native) Expandable to 41.0	2.8 (native) Expandable to 31.3	21.3 (native) Expandable to 127.8
Maximum SFDR	66 dB	80 dB	106 dB	110 dB	120 dB	58 dB
Analog Bandwidth	56 MHz	120 MHz	200 MHz	200 MHz	765 MHz	2 GHz (IF BW)
Specification Type	Characteristic	Characteristic	Characteristic	Guaranteed	Guaranteed	Characteristic
Shock & Vibration		30 g peak shock 0.3 g _{rms} vibration	30 g peak shock 0.3 g _{rms} vibration	30 g peak shock 0.3 g _{rms} vibration	30 g peak shock 0.3 g _{rms} vibration	
Volume	239 cm ³	2,365 cm ³	1,349 cm ³	40,743 cm ³ (18 slot chassis)	40,743 cm ³ (18 slot chassis)	122,379 cm ³ (14 slot chchassis)
Channels per System	2 Rx per module	2 Rx per module	1 per module	5 per chassis	3 per chassis	1 (2 GHz BW)
Example Applications	Spectrum recording	RTSA and Multi- channel DDC	RTSA and Multi- channel DDC	4x4 Digital channel emulator	Blind detection and real-time demod	Prototype eNB with full protocol stack
				LabVIEW		

GNU Radio

8+9 P

Ultra High Performance Computing For Real-Time Streaming Applications

50µs Cycle Time

High Performance Real-Time Spectral Analysis Using LabVIEW FPGA

Channelizer DDC

- Pipelined Frequency Transform (PFT) based
- Up to 512 independent channels
- Variable bandwidths and center frequencies
- Total channelization bandwidth 100 MHz

Real-Time Spectrum Analyzer

- Persistence & Spectrogram Display
- Custom Mask Trigger
- Integrated record to disk capability
- < 1.5 us POI (5668R)

Angle of Arrival Detection: MUSIC Algorithm

Testing MUSIC direction finding algorithm

- Rapid prototyping in LabVIEW with MathScript RT
- Synchronized up to12 USRP devices
- Reference provides continuous phase alignment compensation

Marc Willerton, Imperial College London, Communications and Signal Processing Group

Radio Monitoring System

- Frequency Coverage: 20MHz 7GHz
- Real Time Bandwidth: 300MHz
- RF Scanning at 100GHz/s
- RF Analysis using **512 channelizer**, **RTSA and Automatic Modulation Classification**
- RF record & playback @ 300MHz
- RF Localization with 5 channel RF channels using correlative interferometry / MUSIC algorithm with accuracy of <1 degree

PXI 5G Implementation

mmWave Cellular

NOKIA

döcomo

Platform Capability:

Up to 2 Antennas 2 GHz BW Up to 110 GHz Frequency >10 Gbps Throughput

Implemented Today:

Up to 2 Antennas 2 GHz BW 72 GHz Frequency 10 Gbps Throughput

Massive MIMO

Platform Capability:

Up to 256 Antennas Up to 160 MHz BW Up to 6GHz Frequency >10 Gbps Aggregate Throughput

Implemented Today:

100 Antennas 20 MHz BW Up to 6GHz Frequency 1 Gbps Aggregate Throughput

Dense Networks/ New Waveforms

Platform Capability:

Up to 2 Antennas Up to 160 MHz BW Up to 6GHz Frequency >1 Gbps Throughput

Implemented Today:

2 Antennas 20 MHz BW Up to 6GHz Frequency >1 Gbps Throughput

LTE, 802.11 and Massive MIMO Application Frameworks

Real-time wireless system implementation

Ready to run PHY and basic MAC Communicate between devices or in loop-back mode

Open and Modular Source Code

~50% of FPGA resources available for customization Replace existing blocks with your own waveform designs

Fastest path from algorithm to prototype

Single language for host and FPGA design in LabVIEW Documented for ease of use and understanding

Applications

- Customize LTE and 802.11
- LTE/802.11 coexistence
- New 5G waveforms
- Massive MIMO

mmWave Prototyping

NOKIA

"It took about 1 calendar year, less than half the time it would have taken with other tools"

Dr. Amitava Ghosh, Head of Broadband Wireless Innovation, Nokia Networks

Nokia Timeline w/ NI Platform

INSTRUMENTS

			SG mmWave radio
	Brooklyn 5G Summit 2014	NIWeek 2015	MWC 2016
Frequency	73 GHz	73 GHz	73 GHz
Bandwidth	1 GHz	2 GHz	2 GHz
Streams	1x1	2x2	2x2
Modulation	16 QAM	16 QAM	64 QAM
Peak rate	2.3 Gbps	>10 Gbps	>14.5 Gbps

End-to-end Real-time LTE-like Wireless HD Video Link

- Prototype completed in 4 weeks
- MPEG-4 720p video streaming and playback over UDP at 1.5 Mbps
- 7.68MS/s IQ Rate, modeled after LTE framing
- Tx/Rx physical layer in LabVIEW FPGA with FlexRIO and 5791 RF Transceiver
- DSP prototyping in LABVIEW DSP Design Module with high-performance IP development in LabVIEW FPGA IP Builder

"Impressive productivity in a very short amount of time"

Predrag Spanovic, Rutgers

Citizens Broadband Radio Service (CBRS)

- April 2015: FCC (US) adopted three-tiered spectrum sharing architecture for the "fast-track" band at (3550-3700 MHz)
- According to sharing rules, Tier 2 and Tier 3 devices can only use spectrum when it is "clear"
- Environmental Sensing Capability (ESC) monitors spectrum and communicates with a central Spectrum Access System (SAS) which manages interference protection

Intel CRAN-Massive MIMO at MWC 2016

- 3.5GHz
- 64 antennas
- 5 UEs
- 20 MHz real-time bandwidth
- Full uplink and downlink TDD
- Processing split between Intel Xeon servers and NI FPGAs

Bristol University Achieves 1.5 Gbps in 20 MHz

- 3.5GHz, 128 antenna system
- 10 UEs
- > 1.5 Gbps in 20 MHz spectrum
- MMSE, precoding in FPGA
- Pilot optimization
- LabVIEW, NI USRP RIOs

Prof Mark Beach

Paul Harris

Cognitive Radio and Whitespace Detection

Dr. Paulo Marques & Dr. Gerhard Fettweis

LabVIEW Graphical System Design

- Spectral sensing with blind detection
- GPS geographic localization
- Adaptive spectrum utilization

"LabVIEW software and the NI USRP hardware are key components of this research project, allowing the team to rapidly prototype and successfully deploy the first cognitive radio test bed of this kind"

Dr. Paulo Marques

High-Resolution Software Defined Radar System for Target Detection

Flexible Radar Prototyping

- Rapidly switch between synthetic-aperture radar (SAR), Radar Meteo, Doppler, etc.
- Easy implementation of new radar signal processing algorithms.
- · Low overall system cost with wide frequency coverage

Sandra Costanzo, Università della Calabria

Passive RADAR Design on PXI

- Digital beam forming to determine the direction of arrival of signals
- Adaptive filtering to cancel any unwanted direct signal returns
- Cross-correlation of the reference channel with the surveillance channels

"We chose NI products is because of the user-friendly environment to develop the software"

> Dr. Riccardo Mancinelli, Selex Sistemi Integrati

RF-DNA Fingerprinting Prototype System

Device identification based upon unique characteristics of EM/RF emissions

Authorized User 1

Intruder posing as Authorized User 1

- Both nodes transmit identical signals
- The intruder attempts to access the network by assuming the identity of Authorized User 1

Access Point enabled with RF-DNA Fingerprinting

- Using RF-DNA fingerprinting, the AP can discern the differences in RF signature of the two identical signals
- Authorized User 1 is granted access while the intruder is blocked and marked for location

Developing an Open Multiconstellation GNSS Receiver

Multiconstellation Position Tracking

- Track multiple global navigation satellite constellations concurrently, recording, processing, and visualizing the results
- Acquisition performed by ORUS (open software receiver developed by M3)
- Current coverage for both GPS (United States) and Galileo (Europe) constellations

Olivier Desenfans, M3 Systems

SDR Integrators Ecosystem

Commercial LTE basestation

X-series USRP for GPS record, playback and simulation.

NAVIGATION LABORATORIES

(Leaders in GPS Simulators)

GPS Simulators using FPGAs

SCA Compliant SDR systems

GPS Simulators

RedHawk: An ecosystem for mil/gov SDR applications

PXI Integrators Ecosystem

- COMINT for critical communications
- Arbitrary narrow—band
- Channels
- High Throughput
- Fast Scanning and Triggering

- 2D Geo-Location
- 8-channel Spectrum Environment Emulation
- Post-capture analysis
- Cross-Platform
 integration

- NC10 Channelizer
- Continuous Sample Mode
- Configurable Channels
- Programmability

COTS Platform-Based Design For Spectrum Monitoring & Signal Intelligence

> Dr. James Truchard President, CEO, and Cofounder National Instruments

