NSF Workshop on Spectrum Measurement Infrastructure

Meeting Objectives & Spectrum Measurement Requirements Survey

(Available on http://www.cs.albany.edu/~mariya/nsf_smsmw/

Thyaga Nandagopal National Science Foundation

Meeting Objectives

- Great interest in spectrum utilization and efficiency
 Spectrum Sharing and beyond
- Initial efforts towards large-scale measurements
- Measurements need to support multiple objectives
 - But, cost has to be affordable
- Design space is not well explored
- Goal of this workshop take the first steps
- Explore Infrastructure options in RF, data, analytics
 - Not an exploration of policy
- Post Workshop:
 - Meeting Report
 - Guide research investments and policy decisions

Spectrum Measurement Requirements Survey Outcomes

- Application Area, Deployment Area, Types of Signals to be Measured, Measurement System Capabilities and Fe atures, System Costs
 - □ Thanks to Mark McHenry (Shared Spectrum Inc)
 - □ Around 40 responses from attendees

Survey Aggregate Responses will be posted on website

- □ Will also be incorporated in workshop report
 - Please complete the survey, if you have not done so.

Application Area

□ Agreement that measurement systems should help:

- Process of validating analytical methods and assumptions
- Entrants and incumbents of availability to make real-time decisions
- The enforcement process in case of unauthorized use
- Perform many functions simultaneously
- □ Mild support for:
 - Identification of anomalous propagation loss phenomena

Deployment Area

□ Mixed opinions on rural coverage

□ Not strong disagreement

□ More support for urban coverage

Everyone agrees on the need for near continuous spatial coverage

Types of Signals to be Measured (1)

- Strong support for measuring ground mobile and fixed terrestrial transmitters
- Not much support for airborne transmitter measure ments
- Mild-to-strong support for intermittent transmitters or those with directional antennas
 Perhaps reflecting the challenges involved?

Very mild support for measurement of spurious em issions and unintended signals

Types of Signals to be Measured (2)

Strong support for measuring bands from 100 MHz to 6 GHz

Mixed-to-little support for higher bands

Measurement System Capability & Features

Agreement on

- Need not be time-synchronized as long as alignment is post-facto
- Ability to determine emission type of signals
- Localization with 100 meter accuracy
- Localization accuracy should depend on signal being measured
- Need to have high dynamic range in measurement system
- Need to react to events within seconds (e.g. 30 seconds)
- □ Ability to provide log files, I/Q history and detailed reports

No agreement on

- Calibration levels
- Need to have tight time synchronization goals across units
- Low/high localization accuracies (10 meters, 1 km, 10km)
- Limiting I/Q data collection (for privacy)

Moderate support for high detection sensitivity

System Costs

□ Key issue for a city-scale infrastructure

- □ \$1 M to install and \$0.5M per year to operate
- □ \$10 M to install and \$1 M per year to operate
- Less than \$1M to install and \$250 K per year to operate

□ No agreement

- Reflects more of the uncertain nature of architecture
- Let's work on this, so we can get better at figuring out the cost

