
SecureCSearch: Secure Searching in PDF over Untrusted Cloud Servers

Meet D. Shah
GlobalFoundries
Malta, NY, USA

Email: meetshah51245@gmail.com

Manoranjan Mohanty
University of Auckland
Auckland, New Zealand

Email: m.mohanty@auckland.ac.nz

Pradeep K. Atrey
University at Albany, SUNY

Albany, NY, USA
Email: patrey@albany.edu

Abstract—The usage of cloud for data storage has become
ubiquitous. To prevent data leakage and hacks, it is common
to encrypt the data (e.g. PDF files) before sending it to a cloud.
However, this limits the search for specific files containing
certain keywords over an encrypted cloud data. The traditional
method is to take down all files from a cloud, store them
locally, decrypt and then search over them, defeating the
purpose of using a cloud. In this paper, we propose a method,
called SecureCSearch, to perform keyword search operations
on the encrypted PDF files over cloud in an efficient manner.
The proposed method makes use of Shamir’s Secret Sharing
scheme in a novel way to create encrypted shares of the PDF
file and the keyword to search. We show that the proposed
method maintains the security of the data and incurs minimal
computation cost.

Keywords-PDF; Security; Searching; Cloud; Shamir’s Secret
Sharing; Encrypted Domain

I. INTRODUCTION

Portable Document Format (PDF) files are very com-
monly stored and accessed over the cloud. On the PDF
documents, certain operations, such as text searching and
highlighting, are very common. Often, PDF files contain
confidential information. One way to protect such informa-
tion is to encrypt the PDF files before sending them to the
cloud. However, a major challenge here is performing text
searching and highlighting operations on the encrypted PDF
files in a secure and efficient manner. This paper deals with
this challenge.

In order to solve this problem, this paper presents a
method called SecureCSearch that uses the (k, n) Shamir’s
Secret Sharing (SSS) scheme [7] for encrypting PDF files. A
significant advantage of the SSS scheme is that it possesses
information theoretic security, meaning that an adversary
cannot get any information about the secret PDF file until
all the k shares are known. However, when applied on
text, the SSS scheme is prone to frequency analysis attack
[1]. To counter this attack, we propose necessary changes
in the deployment of the SSS scheme as follows. In the
traditional (k, n) SSS scheme, k−1 coefficients from a finite
field defined over Zq (where q is a prime) are required. In
the modified scheme, we build a set of l = (k − 1) × r
coefficients (r being a parameter that can be tuned as per
requirement), from which different k − 1 coefficients are
randomly chosen for different occurrences of a word in

a PDF file. This way we get different share values (or
ciphertext) for different occurrences of a word in a PDF,
which effectively reduces the Index of Coincidence (IC) and
hence counters the frequency analysis attack.

We chose the SSS scheme over the conventional symmet-
ric encryption schemes, such as the Advanced Encryption
Standard (AES), because AES (similar argument for other
schemes) requires a block of 128 bits to be encrypted at
a time, which may usually contain more than one word,
nullifying the possibility of searching individual words.
Alternately, if we use entire 128 bits for each word (by
adding a fixed pad if the length of the word is less than
128 bits, which is mostly the case), it would significantly
increase the data overhead. On the contrary, the SSS scheme
does not result in such data overhead.

There have been various attempts for searching keywords
on encrypted data, database or files, on a server. Song et
al. [9] was one of the first group of researchers to work
on searchable encryption. Using two layered encryption,
they provided a practical solution for searching functionality
without losing data confidentiality. Wang et al. [12] intro-
duced secure keyword search on encrypted cloud data. The
authors focused on the usability of the privacy-preserving
data hosting services and introduced a ranked searchable
symmetric encryption method using Order-Preserving Sym-
metric Encryption (OPSE). In another work, Curtmola et
al. [3] considered a multi-user setting in the searchable
symmetric encryption where more than one user can send
search queries. Furthermore, using public key encryption,
Boneh et al. [2] provided a method to search on encrypted
data. Later, Tseng et al. [10] introduced iPEKS, which is an
interactive keyword search system over the cloud.

Other works specifically focusing on search operations
on an encrypted relational database include CryptoDB [6]
and MONOMI [11]. In these works, SQL operations are
performed over the encrypted data using the OPSE scheme.
The limitation of these methods is that data owners must
store the ordering information with the encrypted data. Also,
in recent years, Li et al. [5] and Demertzis et al. [4] proposed
techniques to perform the range queries over untrusted
encrypted database servers using an indexing approach.

Compared to the existing work, there are three key ad-
vantages of the proposed SSS-based approach. Firstly, the



Figure 1: System model

proposed scheme has significantly less storage overhead than
the searchable block-based symmetric encryption schemes,
such as AES, and less computation overhead than the public-
key searchable encryption methods. Secondly, it provides in-
formation theoretic security. Finally, it offers fault-tolerance
in the sense that even if a few (i.e. up to n − k) servers
are non-functional or unavailable, the search functionality
can still be supported. The only limitation in using the SSS
scheme is the assumption that multiple (i.e. k or more) cloud
servers do not collude; however, a recent work [13] shows
that this limitation can be overcome.

The SSS-based approach has been used by Sharma et
al. [8] to merge two or more PDF files in encrypted form
over third party web servers. To the best of our knowledge,
this is the first work in which the SSS-based approach with
necessary adaption is used for searching in the encrypted
domain.

We divide the rest of the paper as follows. In Section II,
we discuss the system model under which the proposed ap-
proach works. Section III, presents the approach. In Section
IV, we provide a security analysis and in Section V, we
provide experiments and analysis. Finally, we conclude the
paper in Section VI.

II. SYSTEM MODEL

In this work, we consider that an individual or an orga-
nization stores encrypted PDF files on a cloud. The cloud
is responsible for storing the encrypted files, searching a
keyword in the stored file, and returning a file with all
occurrences of the keyword highlighted, as needed. In our
system, we have the following entities (Figure 1):

• Data Owner: This entity is an individual, an organiza-
tion or a computer application that uploads PDF files
to cloud servers. This entity is an authorized entity,
and when uploading, it must ensure that the file is not
disclosed to adversaries. To hide the content of the files
from the cloud servers, the data owner must encrypt
the files before sending them to the servers. The data
owner can search keywords in the encrypted files over
the cloud and download them as needed.

• Cloud Server: A cloud server stores the encrypted
PDF files and provides to the data searcher an option

of keyword searching in the stored files. The cloud
servers must have enough storage and processing power
to store and process a large number of files. These
entities must ensure that the keyword searcher (i.e.,
the data owner or the data searcher), if authorized,
can download only those PDF files which contain the
keyword. All the occurrences of the keyword must
have been highlighted (i.e. by changing the background
color) on the downloaded files. Our approach requires
n cloud servers to store n shares of the files.

• Data Searcher: This entity is an individual or a
computer application that searches a keyword on the
encrypted PDF files stored over the cloud servers. This
entity can or cannot download the PDF files containing
the searched keywords (where the keywords are high-
lighted), depending upon whether it has required autho-
rization. For example, an organization can store PDF
files (e.g., technical specifications of a product) which
will later be fetched by its clients where they could
be authorized to download the files. In an alternate
scenario, a security agency may be allowed to screen
through the encrypted PDF documents for certain key-
words, but they may not be allowed to download and
decrypt until they receive proper authorization.

• External Attacker: This entity is an individual or a
computer application that attempts to access (upload,
search, or download) the encrypted PDF files without
authorization. For example, an external attacker can try
to hack the cloud servers to obtain the files.

Threat Model: We assume that the data owner is a
trusted entity. The trusted entity is authorized to access only
those files which contain the searched keyword. On the other
hand, the data searcher can be a trusted or an honest-but-
curious entity. The honest-but-curious entity is allowed to
perform keyword searches on the encrypted files, but it is
not allowed to download and decrypt any file until they get
special permission to do so and their status is changed to
trusted entity. A cloud server is assumed to be a honest-but-
curious entity. In other words, it is assumed that the cloud
server performs the assigned tasks honestly (e.g., storing,
searching, etc.) but is curious to know the content of the file
(for which it has no authorization). The external attacker is
a non-trusted entity.

Further, we assume that k or more cloud servers (where
k ≤ n) never collude. The Internet connections between
data owner and cloud server and between cloud server and
data searcher are assumed to be secure (e.g., using network
security measures such as SSL and IPSec).

III. THE SECURECSEARCH METHOD

A. Preliminaries: SSS Scheme

Initially presented by Adi Shamir in 1979, the SSS
algorithm [7] grew to importance in the cryptography field



soon after. The main idea behind the algorithm is to compute
n shares from a secret S. The shares are arbitrary data and no
information about the secret is revealed until and unless k or
more shares are brought together to reconstruct the secret,
where 2 ≤ k ≤ n. That means, no information is leaked
with k − 1 or fewer shares contributing to the secret. This
algorithm is also referred as (k, n)-SSS or (k, n) threshold
scheme.

When dividing the shares of secret S between n par-
ticipants, a polynomial function f(x) of degree k − 1 is
employed. This requires the use of k−1 random coefficients
a1, a2, . . . , ak−1 from a finite field GF (q). The function
f(x) is given by:

f(x) = (a0 + a1x+ a2x
2 + · · ·+ ak−1x

k−1) mod q (1)

Here, a0 is the secret S and q is a prime number greater
than a0.

The secret is reconstructed by inputting any k shares to the
Lagrange equation and by calculating f(0). The popularity
of this algorithm arises from the fact that when encrypting
or decrypting a secret, no key is required.

B. Proposed Approach

In our approach, the data owner creates n shares of a
given PDF file using the SSS scheme. We call these shares as
file-shares here on. Note that the n file-shares are encrypted
files and stored on n different cloud servers (with each cloud
server storing one file-share). For each PDF file, the share
creation and distribution are one-time operations, which can
be performed off-line. Later (which can be run-time), the
data searcher searches for a keyword over the file-shares
stored on the cloud servers by creating n shares of the
keyword; we call the shares of the keyword as keyword-
shares. Note that the keyword sharing must be done with the
same coefficients that are used in the file sharing. Also, if the
ith cloud server has the ith file-share, it must be provided
the ith keyword-share. During a particular search operation,
a cloud server fetches only those file-shares which contain
the keyword-shares. The locations of the keyword-shares
on the fetched file-shares are also noted (for highlighting
purpose). The fetched file-shares and the locations of the
keyword-shares are then sent to the data searcher. By
receiving at least k file-shares, the data searcher, having
necessary authorization, can reconstruct the PDF file. In the
reconstructed file, the searched keywords are marked using
the PDF’s highlighting function.

The following sections explain the process of share cre-
ation, keyword searching, and secret reconstruction.

1) Creating file-shares: A PDF file is shared using the
(k, n)-SSS scheme. The shares are created for each page
of the file independently by sharing the PDF objects in
the page (similar to Sharma et al. [8]). The objects are
then identified as text objects and image objects. Each type
of object contains meta information. For example, the text

objects contain font size, text layout and text location, and
image objects contain image width, image height, and the
location. The extracted text objects are then processed to get
words using delimiters. The shares of a word (called word-
shares) are created by sharing each character in the word.
Here, we assume that the characters are ASCII characters
having values less than 128. Thus, in the share creation
process, the value of q (in Equation (1)) is taken as 127. The
shares of an image object (called image-shares) are created
by sharing the color components of each pixel. Each word-
share and image-share are then drawn to the PDF file-share
using their location and layout information.

2) Selecting coefficients for SSS polynomial: The se-
lection of polynomial coefficients in Equation 1 is one
of the most important aspects of the SSS scheme. The
coefficients should be selected randomly and must be kept
secret (or destroyed). This requirement, however, is an issue
for encrypted-domain keyword searching since the text in
the file and the searched keyword must have been shared
using the same polynomials. This is because the ith shares
of a word that have been created using two different set of
polynomials will be different. In the context of sharing (or
encrypting) the text, the frequency analysis attack is another
issue. For example, if a file is shared using only one set of
coefficients, then it can be exposed to the frequency analysis
attack (as the occurrence of a secret letter, say A, will be
known from its shares). We address the frequency analysis
attack by using a set of l = r× (k − 1) random coefficients.
For sharing a word, k− 1 coefficients are randomly chosen
from the l coefficients, and then, each character of the
keyword is shared using these k−1 coefficients. For sharing
another word, another set of coefficients is chosen. This way,
different words are shared using different sets of coefficients,
so that the frequency analysis attack is countered (security
proof is provided in Section IV). Also, different characters of
a word are shared using a single set of coefficients, so that
efficient keyword searching can be done in the encrypted
domain.

The value of r determines the security against the fre-
quency analysis attack. In the ideal case, r must be greater
than or equal to the occurrences of the highest-frequency
character. However, obtaining the occurrences of the highest-
frequency character from all the pages can be computation-
ally expensive and impractical, as the whole document must
be processed to find it. Therefore, we experimentally choose
the value of r such that the IC is below the acceptable
threshold.

As explained above, all the l coefficients, however, must
be securely sent to the data searcher. Using these coeffi-
cients, the data searcher creates shares of the keyword. We
fulfill this requirement by creating shares of the coefficients
using a different set of coefficients, and then sending shares
of the coefficients to the cloud servers (along with the file-
shares), as depicted in Figure 2. Essentially, the ith share of



Figure 2: Share creation procedure

the coefficients are sent to the ith cloud server as header
information of the ith file-share. Note that the new set
of coefficients that is used to create the shares of these
coefficients is destroyed. Therefore, no information about
the coefficients and the file are known from less than k file-
shares.

3) Searching keywords: The keyword searching process
is shown in Figure 3. As mentioned before, the keyword
searching is done in encrypted domain over the cloud
servers, i.e, each ith cloud server searches the ith share
of the keyword in the ith file-share.

The data searcher creates the shares of the keyword and
sends them to the respective cloud servers. However, the
shares of the keywords must be created using the coefficients
which were used to create the shares of the corresponding
word in the file. As discussed in previous sections, the
shares of the coefficients that are used to create the file-
shares are stored over the cloud servers as metadata of
the file-shares. Using this metadata, the data searcher first
reconstructs the coefficients from at least k shares. Then, the
data searcher generates the shares of the keyword for all
possible combinations of the coefficients. With that,

(
l

k−1

)
shares of the keyword are created. Each keyword-share is
then sent to its corresponding cloud server.

The cloud servers perform the keyword searching opera-
tion by matching every possible word in the file-share with
all keyword-shares. Once the cloud server has found a match
in the PDF, it returns the file name, location of the keyword
(i.e. the page number and the coordinates of the keyword
on the page), and the total number of occurrences of the
keyword in the PDF.

4) Reconstructing files containing the keyword: The PDF
files are reconstructed using the file-shares (which contain
the keyword) obtained from at least k cloud servers, as
shown in Figure 4. Only the data owner (who can be the
data searcher) is allowed to download the PDF files from
the cloud servers. In the file, each text object and image
object is reconstructed by using the reconstruction module
of the SSS scheme.

Figure 3: Keyword searching procedure

Figure 4: Secret reconstruction procedure

IV. SECURITY ANALYSIS

The security of the proposed method is leveraged by the
information theoretic security of the SSS scheme. The only
security concern with the proposed method is its resistance
against frequency analysis attack. Below, we provide a
lemma to prove the security of the proposed method against
frequency analysis attack.

Lemma 1. The SecureCSearch method is secure against
frequency analysis attack with a probability (1− 1

r ), where
r ≥ 2.

Proof: In the SecureCSearch method, for the SSS
scheme we choose the l = (k − 1) × r coefficients which
are used for creating the shares of each character in the
PDF. Clearly, if r = 1, the SSS scheme works like a
monoalphabetic cipher, which is known to be prone to
frequency analysis attack. With the (k, n)-SSS scheme, let
us assume that for any given character m in the document,
the corresponding shares are ci, 1 ≤ i ≤ n. For r = 1,
m always maps to ci, 1 ≤ i ≤ n, with a fixed mapping,
resulting in a high chance of frequency analysis attack.

For r ≥ 2, the given character m maps to r different
sets of ciphertext, i.e. ci,1, ci,2, . . . , ci,r, 1 ≤ i ≤ n. This
implies that any given share of m can assume a particular
value from the set of r values, with a probability of 1

r .
Therefore, the probability with which the character m would
have a different value of ciphertext is (1 − 1

r ); making it
a polyalphabetic cipher and reducing the probability of a
frequency analysis attack to (1− 1

r ).



Table I: Data set containing 6 PDF files with varying number
of pages and of different size (in KB)

Total Pages 1 5 10 20 50 100
Size (in KB) 115 450 1138 2260 4510 12560

V. EXPERIMENTS AND ANALYSIS

In order to test the feasibility of the proposed method,
we implemented it using C# on a 2.40GHz i7 CPU with
8GB RAM. The developed application can be run on cross-
platform such as Windows, Unix and Mac OS. To repre-
sent a realistic environment, we simulated the production
environment of the server on our local windows machine.
In practical scenarios, real servers can be used and the
choice of the number of servers to store shares of PDFs
is subjective to user preference. While performing tests, for
sake of simplicity, we have chosen n = 3 and k = 2. Also,
we varied value of r between 1 and 10.

The proposed method is tested on six PDF files of
different sizes in terms of KBs and number of pages. The
data set is provided in Table I. Experiments are performed
with the following two objectives: 1) analyzing the overhead
(i.e. computation and storage) associated with the proposed
method (Section V-A), and 2) examining the IC value
based on varying r indicating the resistance of the proposed
method against the frequency analysis attack (Section V-B).

A. Performance Analysis

1) Share creation and secret reconstruction time: In order
to measure the computation time, we analyzed the run-
time of the whole process. The computation time can be
affected by any task in the process, i.e. share creation
time (or encryption time), searching keywords or secret
reconstruction time (or decryption time) and thus, we did
analysis on all three components.

In terms of the variables affecting the computation cost,
following are the two major factors to consider: 1) the
number of pages, and 2) the size of the file. As shown
in Figure 5, when we upload a one-page PDF file of size
115 KB, the share creation time is 1.123 seconds and the
secret reconstruction time is 0.823 seconds. Also, the share
creation and secret reconstruction time are 113.890 seconds
and 91.158 seconds respectively for a PDF file of 100 pages
(of 12560 KB size). The data clearly suggests when we
gradually increase the file size, it also increases the share
creation and secret reconstruction time. Also, as shown in
Figure 5, the secret reconstruction time is less than the share
creation time because the latter includes the time to generate
a set of l coefficients, pick k − 1 coefficients randomly
from the this set, create their shares and store the shares of
coefficients in the header of the PDF as meta information.

2) Search time: The search time is also directly propor-
tional to the content length of the PDF (i.e. the number of
pages and the size of the PDF), since the proposed method

Figure 5: Computation time for share creation and secret
reconstruction for PDF files with varying number of pages,
with n = 3, k = 2 and r = 5.

Figure 6: Time to search a keyword in a one-page PDF file
for varying value of r.

is applied at the content level of the PDF. As can be seen in
Figure 6, the search time is 59.8 ms to find and highlight all
the occurrences of a keyword in the one page PDF, when the
value of r is 2. On the other hand, it takes 311 ms to perform
the same operation when the value of r is 10. The reason
behind the increase in search time is that with the higher
the value of r, the value of l gets higher as l is directly
proportional to r. Another factor that affects the search time
is the value of k as we search

(
l

k−1

)
encrypted keywords

to find all the occurrences of a keyword in the encrypted
file. So, as the value of k grows, the number of encrypted
keywords to search for decreases. That clearly states that the
search time is directly proportional to r×n

k .
Further, when generating the number of coefficients, l,

the value of r affects the share creation time, the secret
reconstruction time and the search time. The benefit of
choosing coefficients randomly is to cut the computational
cost while searching for a keyword in encrypted domain. For
example, if coefficients are chosen randomly for each word,
it generates

(
N

k−1

)
encrypted keywords to perform the search



Table II: IC of the shares for different values of r
r IC (Share 1) IC (Share 2) IC (Share 3)
1 0.11362 0.15194 0.12148
2 0.05093 0.05078 0.05117
3 0.03344 0.03231 0.03098
4 0.02654 0.02963 0.02698
5 0.02592 0.02537 0.02269
6 0.02365 0.02237 0.02339
7 0.02247 0.02104 0.02197
8 0.02006 0.01945 0.02037
9 0.01935 0.02004 0.01933

10 0.01958 0.02027 0.01912

operation, N being the total number of words in the PDF file.
Whereas, if a pre-defined set of randomly chosen coefficients
is created, it only generates

(
l

k−1

)
encrypted keywords to

search for, which is significantly lower than the set of
encrypted keywords created using different coefficients for
all words assuming that l < N .

In a nutshell, the greater the value of r, the more com-
putation time it takes to create shares, reconstruct the secret
and search the keywords. Furthermore, it is important to note
that the share creation is only a one-time process. The search
and secret reconstruction time can be reiterated as much as
needed for different keywords.

B. IC Analysis
Given a text string, the IC is the probability of two

randomly selected letters being the same. In the context of
the proposed method, the IC is considered as an indicator
of how the share of a character is different for its different
occurrences. The lower the value of IC, the more different
the share is for the different occurrences of characters.
As shown in Table II, the IC value of three shares of a
given PDF file is in the range of 0.11 to 0.15. It reduces
significantly as the value of r increases (e.g. 0.50 for r = 2
and 0.33 for r = 3, and so on), reducing the probability of
frequency analysis attack.

VI. CONCLUSION

The proposed SecureCSearch method, which uses a mod-
ified SSS-based approach, is able to search the keywords in
the encrypted PDF documents over cloud servers. The Se-
cureCSearch method is not only secure against the frequency
analysis attack, but also efficient in terms of computation
time as well as storage overhead in comparison to the key-
based encryption schemes. Future work will be to extend
the method to facilitate additional functions provided by
PDF such as searching for a sequence of keywords and
image components, and scaling and cropping in multiple
PDF documents.

REFERENCES

[1] P. K. Atrey, K. Hildebrand, and S. Ramanna. An efficient
method for protection of text documents using secret sharing.
In Proceedings of the International Conference on Frontiers
of Computer Science (ICFocs), Bangalore, India.

[2] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. In Proceedings
of the Springer International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT),
pages 506–522, Interlaken, Switzerland, 2004.

[3] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient
constructions. Journal of Computer Security, 19(5):895–934,
2011.

[4] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligian-
nakis, M. Garofalakis, and C. Papamanthou. Practical private
range search in depth. ACM Transactions on Database
Systems, 43(1):2, 2018.

[5] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar. Fast
range query processing with strong privacy protection for
cloud computing. Proceedings of the VLDB Endowment
(VLDB), 7(14):1953–1964, 2014.

[6] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan.
CryptDB: Protecting confidentiality with encrypted query
processing. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), pages 85–100, Cascais,
Portugal, 2011.

[7] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[8] N. Sharma, P. Singh, and P. K. Atrey. SecureCMerge: Secure
PDF merging over untrusted servers. In Proceedings of the
IEEE International Conference on Multimedia Information
Processing and Retrieval (MIPR), Miami, FL, USA.

[9] D. X. Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), pages 44–55,
Berkeley, CA, USA, 2000.

[10] F.-K. Tseng, R.-J. Chen, and B.-S. P. Lin. ipeks: Fast and
secure cloud data retrieval from the public-key encryption
with keyword search. In Proceedings of the 12th IEEE
International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pages 452–458,
Melbourne, Australia, 2013.

[11] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Pro-
cessing analytical queries over encrypted data. In Proceedings
of the VLDB Endowment (VLDB), volume 6, pages 289–300,
Riva del Garda, Italy, 2013.

[12] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked
keyword search over encrypted cloud data. In Proceedings
of the 30th IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 253–262, Genoa, Italy,
2010.

[13] Z. Wang, Y. Luo, and S. Cheung. Efficient multi-party compu-
tation with collusion-deterred secret sharing. In Proceedings
of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7401–7405, Florence,
Italy, 2014.


