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Abstract—Today Location-Based Services (LBS) are used
by millions of users all over the world. These services widely
use multimedia sensory data such as GPS location. LBS
provides enormous convenience to the users, but at the expense
of continuously tracking their location. This raises severe
privacy concerns. The distance computation using users’ GPS
coordinates is a crucial component in many LBS, such as the
fitness tracker app and understanding driving habits. In this
paper, we propose a method, called GeoSecure-R, to calculate
the distance without revealing the users’ exact location. The
proposed method ensures users’ privacy with region anonymity
while maintaining utility, i.e., it provides LBS that requires only
the traveled distance rather than the actual location of the user.
Experimental results on Microsoft’s GeoLife dataset show that
the proposed method calculates the distance metric very close
to what we get using the actual location of the user.

Index Terms—Trajectory compression, Trajectory privacy,
Haversine, Trajectory security, Location based services (LBS),
Delta compression, GPS sensor data.

I. INTRODUCTION

Location-Based Services (LBS) primarily use multimedia
sensory data, such as GPS location information. The LBS
providers often launch new services based on GPS data
without adequate privacy and security (confidentiality) consid-
erations which results in loss of users’ trust. GPS data can be
misused in several ways. GPS data can easily reveal the home
location, work location, places visited, routes taken by the
user, etc. Further, sensitive information like political, religious
affiliations, healthcare providers, banks, shopping patterns, etc.
can also be easily derived from the GPS trajectory. In more
severe cases such as continuously tracking a user, it can lead
to dangerous situations like illegal surveillance, stalking, or
other criminal activity. Often, users have to choose between
allowing tracking of their location and facing inconvenience
by not using the LBS. Therefore, while LBS enabled apps
and devices provide convenience in our everyday life, they
come at the expense of users’ privacy. LBS providers often
use cloud service providers (CSP) to host their applications.
There is often a risk of a data breach at CSP. Further, CSP
or LBS providers can itself act as a semi-malicious adversary,
meaning that it provides the intended LBS but can use or
misuse the data for other purposes as well. Hence, protecting
GPS data is an immediate need.

When the users’ GPS trajectory data is stored on the
CSPs, the following four factors are considered: (1) security
or confidentiality of the data (2) users’ privacy (3) storage
cost (compression) (4) utility of the data. Users are usually
concerned about the security and privacy, but they still want
to use the LBS, whereas the primary goal of the CSP or
LBS providers is to reduce the storage cost and provide
utility, though the security and privacy could also be their
secondary goals. Users can achieve the goal of security and
privacy by employing encryption before sending data to the
CSP or LBS providers; however, in this case, the utility is
severely affected. The encrypted data is typically useless for
CSP or LBS providers, barring a set of limited operations
accomplished by using homomorphic schemes. Further, if the
users’ actual (unencrypted) data is available to the CSP or LBS
providers, they not only can compress it to reduce the storage
space requirement but can also use it to any extent. CSP or
LBS providers may also encrypt the data to avoid access to
outside attackers; however, it doesn’t restrict them to decrypt
and access the data. Given that CSP or LBS providers could
be semi-malicious adversary, this option does not guarantee
security and privacy. In summary, it is hard to come up with a
single approach that can ensure security, privacy, compression,
and utility all together.

There are many LBS that require only distance between two
GPS coordinates, for instance, travel model detection, Fitbit
tracker, etc. We envision that such LBS can be performed
without knowing the actual GPS coordinates of the users. Our
previous work [1] leverages on this phenomenon, where we in-
troduced a method called, GeoSecure, to compute the distance
between two GPS coordinates without revealing users’ actual
location. GeoSecure method provides reasonable accuracy in
many cases; however, its limitation lies in assigning a fixed
value of 1 to the cosine product term (referred as β) in the
haversine formula (Eq. 3). In some instances where the value
of β is very different from 1, the distance computation error
can exceed the acceptable threshold. In another work [2], we
presented GeoSecure-O method which used an optimization
technique, to find the optimal value of β in the haversine
formula dynamically. However, we need to perform few oper-
ations on the client-side, and although the error in the distance
calculation is significantly lower than GeoSecure, we need to
reduce it further.



In this paper, we present a novel approach called
GeoSecure-R. The GeoSecure-R method is an extension of our
previously published works GeoSecure [1] and GeoSecure-O
[2], and it significantly reduces the error in distance calculation
and improves the accuracy as compared to our previous
works. The core idea behind the GeoSecure-R approach is to
exploit the fact that any pair of GPS points will have almost
the same haversine distance if the difference between their
corresponding latitude and longitude is the same, provided
both pair of points are located in the same geographical region
such as a city. In this method, only the geographical region
of the user is known to the LBS provider; the exact GPS
location is not known though. The LBS provider uses the
GPS coordinate of a known point in the region along with
the differences in latitude and longitude of the consecutive
GPS points from the users’ trajectory to calculate the distance
traveled by the user.

The main contribution in this paper is a novel approach
to calculate distance without revealing users’ exact location,
which has the following features:

1) The privacy of the users’ location is ensured.
2) The error between the actual distance and the distance

calculated using the proposed method is very small (high
accuracy).

3) The accuracy of the derived quantities such as velocity
and acceleration is also consistent with the distance
accuracy; hence, it can be used for more applications.

Rest of the paper is organized as follows, Section II presents
related work; the proposed work is explained in Section
III; experimental results are presented in Section IV; and
conclusion is provided in Section V.

II. RELATED WORK

Several approaches are proposed in the literature to solve
problems of GPS trajectory data compression, privacy, and
security [3]. In this section, we will provide a brief overview
of related work.

A. Existing Work on GPS Data Privacy

Generally, privacy of GPS data can be viewed in two ways:
identity privacy and location privacy. In identity privacy, the
focus is on delinking identity of the users from their GPS
trajectory data; while in location privacy, the goal is to obscure
the GPS location of users even though their identity is known.

There are a number of works that have focused on identity
privacy in GPS data domain [9], [10], [11], [12], [6]. In
[13], Sweeney introduced k-anonymity, which is a widely
popular approach that ensures privacy in data sets by decou-
pling unique identifiers from a specific user. In anonymity
approaches, often a Trusted Third Party (TTP) server is utilized
for data anonymization between the user and the service
provider. However, privacy attacks, such as linkage attacks can
still de-anonymize the data. Additionally, l-diversity [14] and
t-closeness [15] address limitations of k-anonymity and are
also very widely used. In [16], Abul et al. proposed another
improvement to k-anonymity called as (k, δ)-anonymity. In

[4], Gao et al. demonstrated the application of k-anonymity
to transform a GPS trajectory dataset unidentifiable. In [17],
Xiong et al. elaborated more limitations of k-anonymity ap-
proach. The anonymity based approaches in which a TTP
server is used, the TTP can also be a semi-malicious or curious
adversary, and the risk of data theft from the TTP server is also
present. In some approaches, the area is divided into cloaking
regions, and the user is considered to be anonymous within
that region.

Differential privacy is another popular approach to
anonymize the data. Differential privacy based techniques add
noise to the location using Laplace distribution; hence the
exact location is not revealed. Although this is a popular
method for anonymization, it is designed for aggregate data
queries. In [18], Andres et al. explained how differential
privacy can be used in the context of LBS.

To protect location privacy, the approaches include obfus-
cation and masking techniques such as displacement masks,
affine transforms and donut masking [6], [17], [19]. These
techniques are used extensively for hiding user location in
the healthcare/disease datasets to reduce identification risk.
Health or disease datasets often have patient’s location as
one of the parameters along with other data. Hence, the
masking techniques add random noise or shift the location
of each of these records to reduce identification risk. In [8],
Armstrong et al. discussed various masking techniques for
location data in the context of protecting the user’ location.
They also mention that the translation and rotation masks
preserve the actual distance between the pair of GPS points.
Also, in [20], Grushter proposed a technique to provide privacy
using co-ordinate transformation, which uses translation and
rotation operations. Subsequently, in [21], Di Pietro et al.
used obfuscation function and Merkel trees to provide LBS
without tracking the location of the user. Also, Although these
obfuscation and masking techniques provide privacy, the major
difference between them and the proposed method is that the
proposed method compresses the data using delta compression,
hence the resultant size of the data is reduced. On the other
hand, the obfuscation and masking techniques do not compress
the data. Also, in the proposed method, we do not have to
define a specific function for masking or transformation.

B. Existing Work on GPS Data Compression

The LBS providers can save huge money on storage and
data transfer cost if the data is compressed. Lossy [22], [23]
and lossless [24], [25] are two approaches to compress GPS
data.

In Delta encoding, we consider differences between succes-
sive points to represent the series of data, and this approach
has been extensively used for the GSP data compression.
In [26], Cudre-Mauroux et al. used delta encoding in the
context of storing, trajectory comparison, and querying GPS
trajectories. They also used fixed-point arithmetic, in which
they multiply each latitude and longitude value with a fixed
number so that the resultant difference is in the natural number.
Although their approach results in a good compression ratio,



TABLE I: A comparison of proposed work with the existing techniques

Work Approach Privacy? Security*? Compression? Utility for
aggregate data?

Utility for
individual user?

Gao et al. [4] k-anonymity Yes No No Yes No

Marias et al. [5] Secret Sharing
Based Yes No No Yes Yes

Seidl et al. [6] Obfuscation and
masking Yes No No Yes

(limited)
Yes

(limited)

Šedenka and Gasti [7] Homomorphic
encryption Yes Yes No Yes Yes

Armstrong et al. [8] Masking/
Obfuscation Yes Yes No Yes Yes

Patil et al. [1] GeoSecure Yes Yes Yes Yes Yes
Patil et al. [2] GeoSecure-O Yes Yes Yes Yes Yes
Proposed GeoSecure-R Yes Yes Yes Yes Yes

∗ Security refers to protection of data from semi-malicious CSP/TTP or LBS providers.

they do not focus on the security, privacy, or utility of the GPS
data. The proposed method also uses delta compression, fixed
point arithmetic, as mentioned in [26], but since we do not
store the first point, it not only provides security and privacy
but also maintains the utility of the resulting data. In [27],
Nibali and He proposed an enhancement to the [26] by adding
predictor function to the delta compression, resulting in better
compression ratio.

C. Existing Work on GPS Data Security

To maintain the confidentiality of the data, various ap-
proaches such as encryption are proposed. However, to per-
form the operations on encrypted data, we must first decrypt
it. The only exception to this is homomorphic encryption,
in which operations can be performed directly on the en-
crypted data. For instance, in [28], Liu et al. used the Paillier
cryptosystem to find similarities in encrypted trajectory data.
Although homomorphic encryption provides a way of working
directly on encrypted data, it only supports limited operations.
In [5], Marias et al. introduced a secret sharing based approach
to provide privacy in LBS. Their approach is based on dividing
the location and user identifier into multiple shares using secret
sharing algorithms and only the intended recipients will be
able to combine the shares to know the information. Although
this approach can provide security against the external adver-
sary, the semi-malicious/curious LBS provider can still access
it. In [29], Hu and Zhu described a novel way to for proximity
testing using homomorphic encryption and spatial cloaking.
In [30], Li and Dai explored a secure two-party protocol for
calculating Euclidean distance between two points and other
geometric computations.

In [31] and [32], several techniques related to the LBS
security and privacy in Wireless Sensor Networks (WSN)
domain have been reviewed at length. In [33], Gruteser and
Grunwald proposed an anonymizer framework, which relies on
the trusted central server for anonymization. In [34], Ghinita et
al. proposed encryption based method to securely provide LBS
without revealing the user’ location for the nearest neighbor
(NN) queries.

In [35], Narayanan et al. proposed three protocols for
proximity detection using cryptographic techniques. In [7],
Šedenka and Gasti introduced a novel method for securely
computing haversine and Euclidean distance between two
GPS coordinates using homomorphic encryption. The main
difference between their work and the proposed method is that
they do not focus on compression, and because of encryption,
the computational overhead is high. In [36], Hallgren et al.
introduced a method for privacy ensured ride sharing based on
secured multi-party computation and Shamir’s secret sharing.
The secured distance calculation methods are also used in
determining trajectory similarity and proximity testing. In [37],
Pesara et al. have reviewed these techniques. Data cleaning
is also an essential part of LBS. In our previous work,
GeoSClean [38], we explored secured trajectory data cleaning
based on the GeoSecure approach.

Table I summarizes the comparison of the existing work
with the proposed method. Note that although the GeoSecure
method [1] and GeoSecure-O [2] are designed to fulfill all four
criteria (i.e., privacy, confidentiality, compression, and utility),
the proposed method, GeoSecure-R, provides the improved
accuracy and utility.

III. PROPOSED WORK

A. Overview

The proposed method is illustrated in Fig.1. In the proposed
method, we define a specific geographical region R where the
user is present. This region can be a metropolitan area such as
New York City or a smaller state. Similar to GeoSecure [1],
we store the first point of the trajectory at the users’ device
and calculate the difference between consecutive points, which
is sent to the CSP or LBS provider.

The LBS provider prefers to perform as many operations as
possible on the cloud since the processing power of the users’
device, storage is limited, and the battery will be drained faster.
Further, it is less expensive to perform these operations, such
as distance calculation in the cloud. Since distance calculation
can be used for several applications that are also hosted on the
cloud, performing this operation at the cloud makes it more
efficient.



Fig. 1: GeoSecure-R workflow

B. Definitions

We present the definitions of Trajectory Point, Trajectory
Privacy and Trajectory Utility as follows,

Definition 1. (Trajectory Point) A trajectory point Pi is
characterized by the following three attributes: lati (latitude),
longi (longitude), and timei (timestamp).

Definition 2. (Trajectory Privacy) A trajectory is said to
possess k-anonymity privacy if an attacker/adversary is unable
to find the exact location of the user within k different
points. Assuming that the privacy loss, φT,S , with the original
trajectory T for a LBS S, is 1 (i.e. full privacy loss), with
the transformed trajectory T ′, it will be φT ′,S = 1

k using
k-anonymity phenomenon. Therefore, the Trajectory Privacy
PT ′,S ∈ [0, 1] with the transformed trajectory T ′ for LBS S
is given as:

PT ′,S = 1− φT ′,S

φT,S
(1)

Definition 3. (Trajectory Utility) Let OT,S and O′T ′,S be the
outcome of a given LBS S using the original trajectory T and
the transformed trajectory T ′. The Trajectory Utility UT ′,S of
the transformed trajectory T ′ for a given LBS S is calculated
as:

UT ′,S = 1−
|OT,S −O′T ′,S |

OT ′,S
(2)

C. System and Threat Model

We consider the user as honest, and the users’ device is
assumed to be secure. The CSP and the LBS provider are
considered as semi-malicious/curious, i.e., they will provide
the service but might be interested in knowing the users’ data.
Any other party is considered an adversary.

Generally, users trust certain LBS providers such as naviga-
tion or ride-sharing services, etc. However, many times, users
prefer to hide the location from other LBS providers such as
fitness trackers, which it may not trust. The proposed method is
focused on protecting users’ location from the LBS providers
which it does not trust.

In this threat model, we make the following assumptions:
(A1) The connection between the users’ device and the CSP
or LBS provider is considered to be secure. (A2) The users do
not reveal their location voluntarily via other sources such as
social media. (A3) The LBS providers do not collude with the
other LBS providers which has access to the users’ location.

D. Haversine Distance

There are several approaches to calculate the distance
between two points on the surface of the earth, such as
Euclidean distance, haversine distance, etc. Euclidean distance
is calculated by considering the earth’s surface as flat and 2D
Euclidean space. This is a simple way of calculating distances
but introduces large errors. Haversine distance considers the
earth as a sphere, and it calculates distance on any two
points on the surface of the earth. The haversine distance is
intended to be used with latitude and longitude as compared
to the Euclidean distance designed for generic Cartesian co-
ordinates. Distances calculated using the haversine formula are
pretty accurate and widely used in many applications.

The haversine distance has been used in navigation, astron-
omy, and many other applications [39]. Haversine formula
[40], [1] to calculate distance can be described as follows.

For any two given points Pi and Pj , the distance between
them can be calculated as follows

dlongi,j = longj − longi

dlati,j = latj − lati

a = (sin(
dlati,j

2
))2+cos(lati)×cos(latj)×(sin(

dlongi,j
2

))2

c = 2× atan2(
√
a,
√
1− a)

di,j = R× c (3)

where R is the radius of the earth (mean radius = 6,371 km),
di,j is the distance between Pi and Pj , and longi, longj , lati,
lati are longitude and latitude of point Pi and Pj respectively.

E. Approximated Haversine Formula

In the GeoSecure method, the LBS provider only has differ-
ences between consecutive points and do not have actual lati-
tudes of the points. Hence, to calculate the distance using the
haversine formula, the LBS provider will have to approximate
the term cos(lati)× cos(latj). One option is to approximate
this term to a constant value and calculate the distance. In
our previous work (GeoSecure [1]), we approximated it to
1. The value of this constant can be chosen based on the
geographical area or other considerations for the best results.
Although it introduces error in the approximated distance and
actual distance, the resulting error is limited.

Considering the value of the term β = cos(lati)×cos(latj)
as 1, we get the following approximation in Eq.3,

a′ = (sin(
dlati,j

2
))2 + β × (sin(

dlongi,j
2

))2



c′ = 2× atan2(
√
a′,
√
1− a′)

d′i,j = R× c′ (4)

F. Improvement over GeoSecure [1] and GeoSecure-O [2]

In Geosecure [1], we described the method to send GPS tra-
jectory data in the form of differences (dlati,i+1, dlongi,i+1)
in successive points to the LBS provider and maintaining the
first point in the trajectory at the users’ device. The users’
device saves the first point of trajectory T as key K and com-
putes differences between successive points. These differences
are then sent to the LBS provider which uses approximated
haversine formula (Eq. 4), to calculate the distance between
two successive points. In this way, we can maintain security,
privacy, and compress the data. In many applications, this
method can be used efficiently. However, this results in error
ε = |di,j − d′i,j |. Some applications or LBS need even higher
accuracy. Hence, we proposed an improved version called
GeoSecure-O [2].

In our previous work, GeoSecure-O [2], we used optimiza-
tion technique to dynamically find the value of the cosine
product term β by minimizing the mean square error (MSE)
between the actual and calculated haversine distance. The
GeoSecure-O method involves calculating the actual distance
between the first two points on the users’ device and sending
the actual distance, (dlat1,2, dlong1,2) to the LBS provider.
The LBS provider then iteratively calculates MSE for all
values of β from 0.001 to 1.0. The value of β, which provides
the least MSE is called as βo and used for distance calcu-
lation for the rest of the trajectory. The difference between
GeoSecure-O and the proposed GeoSecure-R method is that
we do not have to perform any calculation on the client-side,
and there is no costly optimization involved at the server-
side. Also, the proposed method provides higher distance
calculation accuracy as compared to GeoSecure-O. The only
limitation of the proposed method over the GeoSecure-O is
that we have to provide the geographical region to the LBS
provider which is not required in the GeoSecure-O method.
However, the accuracy is higher for the proposed method.

G. GeoSecure-R Method

In the proposed method, we declare the region (e.g., city)
in which the user is present and take its well-known location,
e.g., a center point and refer it as the origin (Pk). Then we only
take differences in latitude and longitudes between consecutive
points and send it to the server. The server calculates the
corresponding point (Pl) by adding these differences to the
origin point (Pk) calculated earlier. Now the distance between
the consecutive points sent by the user and the origin and
corresponding point at the server will be very close since all
of them belong to the same region.

In the following, first we describe the proposition on which
the method is based, and subsequently we describe the steps
in the proposed method.

Proposition 1. The haversine distance between any two points
Pi, Pj separated by dlati,j and dlongi,j is nearly equal to

the distance between any two points Pm, Pn which are also
separated by the same dlati,j and dlongi,j (such that dlati,j =
dlatm,n and dlongi,j = dlongm,n), provided they belong to
same geographical region R.

Proof. Consider a geographical region R (latE , latW , longN ,
longS), where latE , latW , longN , longS represent the eastern
and western latitudes, northern and southern longitudes respec-
tively. The error in the distance between Pi, Pj and Pm, Pn

can be represented as follows:

ε = di,j − dm,n

ε = [(sin(
dlati,j

2
))2 + cos(lati)× cos(latj)

×(sin(dlongi,j
2

))2]

−[(sin(dlatm,n

2
))2 + cos(latm)× cos(latn)

×(sin(dlongm,n

2
))2]

ε = (cos(lati)× cos(latj))− (cos(latm)× cos(latn))

If (lati, latj) ∼ (latm, latn) i.e. are very close to each other
(same geographical region) then their latitudes will be closer
to each other i.e. few hundred meter change in actual location
is also a small change in terms of latitude values.

The cosine value of the latitudes will be much closer. Since
the product of cosines of these points will further reduce their
difference, the error between them will be close to 0.

Hence, as long as the latitudes of the points are located in
the same geographical region and not substantially distant like
a few hundred miles, the resultant error will be minimal.

We consider a trajectory T consisting of point P1, . . . , Pn,
where n is the length of the trajectory. The application on the
users’ device is expected to declare a geographical region R
where the user will be using the service. This R will be passed
to the server in the first step, and after that, only the differential
data without the first point is sent to the LBS provider e.g.,
if Pi and Pi+1 are two points of a trajectory in the region R
then the users’ device sends

dlati,i+1 = lati+1 − lati
dlongi,i+1 = longi+1 − longi

The LBS provider then retrieves a point Pk which lies in
the region R by querying a lookup table. Using the point Pk

and the difference between the given two points dlati,i+1 and
dlongi,i+1, the server calculates the point Pl such that

latl = latk + dlati,i+1

longl = longk + dlongi,i+1

Then the LBS provider calculates the distance between Pk

and Pl which is close to the distance between Pi and Pi+1

using the actual haversine formula.



The following example explains the steps described above:
The steps for the proposed algorithm are divided into two
parts region declaration and data processing. Steps 2 to 7 are
common for GeoSecure[1] and GeoSecure-R.

Step 1 Declare a region R e.g. Beijing. (which is used in
the GeoLife dataset) and send it to the LBS provider.

Step 2 The LBS provider then calculates a point Pk ∈ R
from the lookup table. In this case, we just took the point from
Wikipedia as the center of the Beijing city. Hence,

(latk, longk) = (39.913818, 116.363625)

Step 3 Let’s assume trajectory T at the users’ device as
26.898747 112.591398 2009− 10− 02 06 : 02 : 28
26.898631 112.591448 2009− 10− 02 06 : 02 : 30
26.89874 112.591413 2009− 10− 02 06 : 02 : 31

...
...

...
...


Step 4 Multiply latitude and longitude of all the points by
106 as per fixed point arithmetic as mentioned in [26], so that
we get integer numbers and their difference will be in integer
numbers.

26898747 112591398 2009− 10− 02 06 : 02 : 28
26898631 112591448 2009− 10− 02 06 : 02 : 30
26898740 112591413 2009− 10− 02 06 : 02 : 31

...
...

...
...


Step 5 Find the difference between consecutive points of
the trajectory by subtracting every point from its predecessor
point, starting from the second point.

26898747 112591398 2009− 10− 02 06 : 02 : 28
−116 50 0 2
109 −35 0 1

...
...

...
...


Step 6 Name the first point of the trajectory as key K and
the differences as D.

K =
(
26898747 112591398 2009− 10− 02 06 : 02 : 28

)
D =

−116 50 0 2
109 −35 0 1

...
...

...
...


Step 7 Keep the first point key K on the users’ device and

send the difference to the LBS provider.

D =
(
−116 50 0 2

)
The key K can be used to transform the differences back

into original trajectory.
Step 8 LBS provider calculates the corresponding point Pl

by adding these differences in latitude and longitude to the
point Pk calculated in the second step. Hence,

Pl = Pk + (dlati,i+1, dlongi,i+1)

Pl = (latk, longk) + (dlati,i+1, dlongi,i+1)

(latl, longl) = (39.913818, 116.363625)

+ (dlati,i+1, dlongi,i+1)

The (dlati,i+1, dlongi,i+1) is (-115, 50), so after dividing
by 106 the equation becomes

(latl, longl) = (latk, longk) + (−0.000116, 0.000050)
= (39.913818, 116.363625)

+ (−0.000116, 0.000050)
= (39.913702, 116.363675)

Hence, we get the corresponding point Pl with

(latl, longl) = (39.913702, 116.363675)

Step 9 The LBS provider then calculates the distance
between Pk and Pl using the actual haversine formula, which
will be very close to the given points in trajectory T .

These steps will be repeated for the rest of the points
of the trajectory T . The LBS provider can also keep track
of erroneous points such as same timestamp for multiple
successive points, and also stop points (where the latitude and
longitude is the same for a few consecutive points) and ignore
them accordingly.

IV. EXPERIMENTAL RESULTS

A. Data Set

To evaluate the proposed method, we tested it using Mi-
crosoft’s GeoLife dataset [41], [42]. Microsoft’s GeoLife
dataset [41], [42], is collected in Beijing, China, by 182 users
over three years. The trajectories are in the ’plt’ format, which
contains descriptions in the first six lines and descriptive fields
for each point of the trajectory. We only selected the latitude,
longitude, and timestamp (converted date and time fields to
a single field). After this, we stored the first point as Key
and multiplied latitude and longitude of all the remaining
points of the trajectory by 106 in order to get the differences
in the integer number. Then we calculated the differences in
consecutive points. To calculate the actual distances in the
trajectories, we used the haversine formula (Eq. 3).

There are few erroneous points where the same timestamp
repeated for multiple consecutive points. Since they affect the
calculation of velocity, and acceleration, we have kept the first
point and removed the following successive points which had
the duplicate timestamp. We have also removed stop points,
i.e., successive points where the latitude and longitude are
the same but timestamps are different. This happens when
the user is stopped at the same place for a few minutes, e.g.,
waiting at a traffic signal. Similarly, we have kept the first point
and removed the following points with the same latitude and
longitude for different timestamps. We also ignored trajectories
with less than 5 points. In this way, we have cleaned the data.

B. Distance Computation

First, we calculated the actual distance using the real data
and the actual haversine formula and stored the distance as the
actual distance. For this experiment, we took the center of the
Beijing city as (39.913818, 116.363625) and stored it at the
LBS provider’s side. Then we preprocessed the trajectories by
only considering the latitude, longitude, and timestamp fields.
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Fig. 2: Comparison of the average percentage error (εTi
) in distance using (a) GeoSecure (b) GeoSecure-O and (c) GeoSecure-R

We then used the steps described in the algorithm section to
calculate the distance using the proposed method.

We also calculate the percentage error εPi
in the distance

between two points Pi and Pi+1 by

εPi
=
|di,i+1 − d′i,i+1|

di,i+1
× 100 (5)

and similarly for average velocity, and average acceleration.
We calculated the percentage error between actual distance

and the calculated distance using the proposed method for all
the points of the trajectory by using Eq. 5. Then for a trajectory
Ti we calculated the average percentage error as εTi

as follows:

εTi
=

1

n

n−1∑
i=1

εPi
(6)

where n is the total number of points in the trajectory T .
The mean percentage error for all the trajectories εmean in

the dataset is defined as follows

εmean =
1

n

n∑
i=1

εTi
(7)

where n is the total number of trajectories in the dataset.
To compare the current algorithm with the previous works,

GeoSecure [1] and GeoSecure-O [2], used the differences in
the consecutive points and calculated the secured distance, as
explained in the algorithms. Using this secured distance, we
also calculated the average velocity and average acceleration.
To compare the accuracy, we use the percentage error between
the actual distance and the secured distance calculated using
GeoSecure [1], GeoSecure-O [2], and GeoSecure-R.

In Fig. 2, we have plotted histograms of average percentage
error for the distance, as explained in Eq. 6, using GeoSecure,
GeoSecure-O, and GeoSecure-R methods respectively. We can
observe that for the GeoSecure method, for the majority of
the trajectories, the average percentage error lies between
0% and 35%, with a mean of 14%. For the GeoSecure-O
method, the for the majority of the trajectories, the average
percentage error is between 0% and 10%, the number of
trajectories after 10% is significantly lower as compared
to 0% and 10%. In the case of GeoSecure-R, the average
percentage error is close to 0. Hence, we can say that the

GeoSecure-R method provides the least average percentage
error for securely calculating the distance among GeoSecure,
GeoSecure-O, and GeoSecure-R. The mean of the average
percentage error (εmean) of all the trajectories in the dataset,
for distance calculation for GeoSecure(14.23%), GeoSecure-O
(2.6%), and GeoSecure-R (0.39%). We can observe that the
proposed method Geo-Secure-R reduces the percentage error
for distance significantly as compared to other methods.

The percentage errors in secured average velocity as well
as secured average acceleration have similar distribution as
the secured distance, since these quantities are derived from
the distance. Hence, we can say that the average percentage
error reduces significantly in GeoSecure-R as compared to
GeoSecure-O, and GeoSecure has the highest percentage error.

C. Trajectory Utility Analysis

For the service S for distance calculation, the outcome is
calculated distance. Hence, the equation for trajectory utility
(Def. 3) becomes

UT ′,S = 1−
|di,j − d′i,j |

di,j

Fig. 3 shows the utility of the service for distance calculation
in the form of a histogram for GeoSecure, GeoSecure-O, and
GeoSecure-R methods. We can observe that for GeoSecure-R,
the majority of the trajectories have the utility between 0.9 to
1.0 with most of the trajectories close to 1.0. On the other
hand, the majority of trajectories have utility between 0.7 and
1.0 for GeoSecure, and between 0.8 and 1.0 for GeoSecure-O.
Hence, we can say that the proposed method provides better
trajectory utility for the distance calculation service.

D. Security and Privacy Analysis

The proposed method preserves privacy and confidentiality
of the data. The following preposition explains this in detail.

Proposition 2. The privacy loss in GeoSecure-R method is
negligible (equal to 1

1012 ).

Proof. The GeoSecure-R method only sends the differences in
the consecutive points, and the exact location is never shared
with the service provider. For the privacy analysis, let us
consider a geographical region R separated by at least 1 degree
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Fig. 3: Comparison of utility of the distance calculation service using (a) GeoSecure (b) GeoSecure-O and (c) GeoSecure-R

TABLE II: A comparison of privacy loss

Method PT ′,S Location can be
GeoSecure 1− 1

181×360×1012
Anywhere on earth

GeoSecure-O 1− 1
360×106

Anywhere on longitude
GeoSecure-R 1− 1

1012
Anywhere in the region

latitude and 1 degree longitude. A GPS data point/location is
generally defined till the 6th decimal point of latitude and
longitude, e.g. (39.123456, 40.123456). Hence, for R, there
will be at least 106 × 106 total number of locations. Thus,
the probability that a random GPS point Px is precisely the
same as Py is 1

k , where k is the total number of possible GPS
points in R. As per the Eq. 2, the privacy loss for the actual
data φT,S is 1 and φT ′,S= 1

k . Hence, the trajectory privacy
becomes

PT ′,S = 1− φT ′,S

φT ′,S =
1

k

Hence PT ′,S = 1− 1

1012

Since the probability of identifying the starting point of the
trajectory in the given region R is very low, it is challenging
to identify the exact location. Therefore, the privacy loss is
negligible (equal to 1

1012 ). Therefore, we can say that the
trajectory privacy is preserved by the proposed method as
described in Definition 2.

In the GeoSecure method, the first point of the trajectory can
be anywhere on earth. Hence, adversary will have to choose a
point from k points, where k= 181×360×1012. Similarly, in
the GeoSecure-O method, the first point of the trajectory can
be anywhere on the latitude, hence the value of k = 360×106.

Table II, provides a comparison of trajectory privacy offered
by GeoSecure, GeoSecure-O, and GeoSecure-R methods. We
can observe that GeoSecure provides the maximum privacy,
but the percentage error in distance calculation is maximum
as compared to GeoSecure-R, which also provides reasonable
trajectory privacy (negligible privacy loss) as well as offers
better accuracy as compared to other two approaches.

TABLE III: A comparison with PP-HS protocol [7] for each
distance calculation operation between two points

PP-HS [7] GeoSecure-R
Operations 6× gmhr mod N 6 (4 multiplications of

106 and 2 subtractions)
Encryption Encrypt 6 terms NA
Decryption Decrypt 1 term NA
Number 10 encrypted terms 2 integers
of terms

The potential applications of the proposed method include
fitness trackers, travel mode detection [2], for understanding
users’ driving habits such as reckless driving, number of miles
driven every day, and over-speeding.

E. Comparison with PP-HS protocol [7]

The PP-HS protocol for haversine distance calculation in [7]
uses DGK homomorphic encryption scheme. This scheme pro-
duces smaller ciphertexts as compared to other homomorphic
schemes such as Pailier and ElGamal. As described in [7], the
computation overhead for encryption of message m is deter-
mined by [[m]] = gmhr mod N , where N = p.q, p and q are
k bit primes, the size of the modulus N is 1024 bits. On the
other hand, the proposed method requires only 6 computations
on client side, i.e., 4 multiplications by 106 and 2 subtractions
from the previous point for calculating the distance between
two points. We have summarized the comparison in Table
III. Hence, we can say that, the computational overhead is
significantly lower in the proposed method as compared to
PP-HS protocol [7].

V. CONCLUSION

The GeoSecure-R method calculates users’ traveled distance
without revealing their actual location with a small loss in
accuracy compared to using actual location. The proposed
method also reduces the percentage error significantly than
the other two methods, GeoSecure and GeoSecure-O. Future
work will explore adaptations of the proposed method to other
LBS, such as detecting real-time traffic congestion.
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