
On Security of Key Derivation Functions in
Password-based Cryptography

Gaurav Kodwani
Department of Computer Science

University at Albany, SUNY
Albany, NY, USA

gaurav.j.kodwani@gmail.com

Shashank Arora
Department of Computer Science

University at Albany, SUNY
Albany, NY, USA
sarora3@albany.edu

Pradeep K. Atrey
Department of Computer Science

University at Albany, SUNY
Albany, NY, USA
patrey@albany.edu

Abstract—Most common user authentication methods use some
form of password or a combination of passwords. However, en-
cryption schemes are generally not directly compatible with user
passwords and thus, Password-Based Key Derivation Functions
(PBKDFs) are used to convert user passwords into cryptographic
keys. In this paper, we analyze the theoretical security of PBKDF2
and present two vulnerabilities, γ-collision and δ-collision. Using
AES-128 as our exemplar, we show that due to γ-collision, text
encrypted with one user password can be decrypted with γ − 1
different passwords. We also provide a proof that finding a
collision in the derived key for AES-128 requires δ lesser calls
to PBKDF2 than the known Birthday attack. Due to this, it is
possible to break password-based AES-128 in O(264) calls, which
is equivalent to brute-forcing DES.

Index Terms—PBKDF, Password-based Cryptography, Secu-
rity

I. INTRODUCTION

Commonly used and popular symmetric key encryption
scheme, AES-128 requires a random key of 128 bits. There
are many AES-based applications in which users typically
provide a password rather than a 128 bit random key. Due to
low entropy and poor randomness, such passwords can not be
considered adequately secure [3] [5]. Moreover, passwords are
generally selected from a relatively small character set that can
lead to a dictionary attack [5] [15] [6]. To avoid this, family
of Password-based Key Derivation Functions (PBKDFs) was
introduced in RFC 8018 [14].

PBKDFs make use of user provided passwords with a
randomly generated salt and iteration count to derive cryp-
tographic keys for use in encryption systems. The goal of
these key derivation functions is to mitigate the need for
managing large cryptographic keys. This helps users in bet-
ter key management. The specifications of key derivation
functions, PBKDF1 and PBKDF2 are listed in RFC 8018
[14]. According to the specifications, both functions require a
pseudo-random function (PRF) to generate a pseudo-random,
or seemingly random, bit-string from a seed. The user provided
password acts as a seed to the PRF. RFC 8018 has various
recommendations of popular cryptographic functions to use
as PRFs. One of the recommendations is Hash based Message
Authentication Code (HMAC) with variation of the Secure

Hash Algorithm (SHA) for generating pseudo-random bit
string [14].

Implementation specifications given in RFC 8018 say
“password-based key derivation is a function of password,
salt and iteration count, where the latter two parameters need
not be kept secret” [14]. Salt is a randomly generated value
with the motivation of increasing the search space to avoid a
dictionary attack. Iteration count specifies the number of times
the underlying PRF needs to be executed in order to generate
the key. Intention for this is to add CPU-intensive operations,
so that it is infeasible for an attacker to do an exhaustive
search.

NIST [5] and RFC 8018 [14] recommend the use of
PBKDF2 in new application development. Also, they recom-
mended the use of minimum 128-bit randomly-generated salt
and minimum iteration count of 1000. Many libraries have
been developed in different programming languages based on
these recommendations and the implementation details speci-
fied in these documents. As a result, the PBKDF2 is widely
used in different systems such as Wi-Fi Protected Access
(WPA and WPA2) [7], Apple’s iOS mobile operating system
[2], and Firefox Sync for client-side password stretching [1].
Unfortunately, the specified way of deriving a cryptographic
key from PBKDF2 using hashing algorithms as PRF has
security vulnerabilities.

In this paper, we present two different but inter-related vul-
nerabilities in the family of PBKDFs that reduce the security
of key generated for password based AES-128 equivalent to
brute-forcing Data Encryption Standard (DES). The first of the
discovered vulnerabilities has its roots in the Birthday attack
[12], which has been traditionally used to find collisions in
cryptographic hash functions. We have furthered this analysis
and used the principles of Birthday attack to find security
weakness in password-based encryption irrespective of bit-
size of password or salt. According to our findings, it is
possible to find multiple user provided passwords, such that
text encrypted using one can be decrypted using the another
password. Moreover, there exist entire set of user provided
passwords that can be used interchangeably to encrypt and
decrypt the same text. The exact number depends on the length
of cryptographic key being derived and the hash function being
used as the PRF. We call this vulnerability as γ-collision,978-1-7281-5684-2/20/$31.00 ©2021 IEEE

Fig. 1: Working of PBKDF2

where γ represents the number of different passwords that
can be used to decrypt a text which is encrypted using a given
user password. For instance, for a 128-bit cryptographic key
derived using HMAC-SHA-1 that yields 160-bit output, the
value of γ is 232. The size of such set of passwords is greater
if HMAC-SHA-256 or HMAC-SHA-512 is used instead.

The second vulnerability, called δ-cutback, relates to a pair
of passwords that lead to the same cryptographic key. We posit
that such pair of passwords can be found by making reduced
number of calls to PBKDF2. Here, δ represents the reduction
in the number of calls. Note that the more the number of
calls, the more the computational security it possesses. Our
analysis of generating key for AES-128 suggests that finding
such a pair is computationally as feasible as brute-forcing DES
algorithm, therefore questioning the security of AES when
used with PBKDF2.

The rest of the paper is organized as follows. In Section II,
we not only present the background of PBKDF2 and Birthday
attack, but also discuss the existing work that have analyzed
the security of PBKDFs when associated with AES. Next
in Section III, we present the two identified vulnerabilities
with the detailed analysis and proofs. Further in Section IV,
implications of these vulnerabilities are discussed. Finally, the
paper is concluded in Section V.

II. BACKGROUND AND RELATED WORK

A. Background

1) PBKDF2: PBKDF2 is a key-stretching algorithm [14]
that converts password P (a user provided password or
passphrase) into derived key K (a cryptographic key derived
from password P). It takes in four input arguments: password
P, salt S, iteration count C, and dkLen (length of K), and
outputs derived key K by repeatedly applying a pseudo-
random function (PRF) for C times. From the input arguments,
only P needs to be kept secret by an authentic user [14].

PBKDF2 supports the use of HMAC with SHA-1, SHA-
224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-
512/256 as the PRF [14]. Although, there is no limitation in
the length of the derived key K in PBKDF2, it is limited by the
hash function used as PRF. The length of derived key dkLen,
must be less than (232 − 1)× hLen, where hLen is the output
length of the PRF.

In this paper, we present our analysis with HMAC-SHA-1
as the choice of PRF. A separate analysis is provided later
in the paper if HMAC-SHA-256 is used instead. The steps
followed for key derivation in PBKDF2 are as follows.

Let l be the number of hLen sized blocks required to derive
K and r be the number of bits required from the last block.
We calculate l and r by using the following two equations.

l = ddkLen/hLene (1)

r = dkLen− (l − 1)× hLen (2)

Each block of the derived key is computed by function F
using password P , salt S, iteration count C, and the index of
the blocks i.

T1 = F (P, S,C, 1)

T2 = F (P, S,C, 2)

. . .

Tl = F (P, S,C, l)

As depicted in Figure 1, function F is an exclusive-or sum
of C iterations of the PRF. Inputs for the PRF are: password
P and the concatenation of salt S and the index value of the
block i.

F (P, S,C, i) = (U1 ⊕ U2 ⊕ ..⊕ UC) (3)

where,

U1 = PRF (P, S||int(i)) 1st iteration

U2 = PRF (P,U1) 2nd iteration
. . .

UC = PRF (P,UC−1) Cth iteration

Here, int(i) stands for 32-bit integer value of i. Finally, the
derived key is computed by concatenating T1 though Tl. From
the last block Tl, first r bits are picked, depending on the length
of derived key, dkLen.

K = T1||T2||...||Tl < 0...(r − 1) > (4)

TABLE I: Number of calls required to find a collision in
PBKDF2 with different probability values

Probability N

0.50 1.177 × 2n/2

0.75 1.665 × 2n/2

0.90 2.145 × 2n/2

0.95 2.448 × 2n/2

0.9999 4.292 × 2n/2

2) Birthday Attack: Birthday attack is a cryptanalytic tech-
nique to find collisions in hash functions using birthday
paradox in probability theory [12]. This attack helps us to
calculate the number of computations required to find two
input values that lead to generation of the same output (known
as Collision) of a hash function, with a certain probability. A
hash function f maps inputs of arbitrary length with fix sized
output of n bits. The function f can generate H unique values
where H = 2n.

Birthday attack says that “It is possible to find a collision
in 1.18×

√
2n computations of a hash function, with 2n being

the classical pre-image resistance security with approximately
50% probability”. It is important to note that in this attack,
only the final output value of the algorithm is observed. Now,
by the definition of Birthday attack, the number of hash values
that need to be computed to encounter a collision with a
probability of p is given as follows:

N(p;H) ≈
√
2H × ln 1

1− p
Now, if the probability p = 0.5 and H = 2n, minimum number
of hash values need to be calculated are as follows:

N(0.5; 2n) ≈
√
2× 2n × ln 1

1− 0.5

≈
√
2× 2n × 0.693

≈
√
2n × 1.386

≈ 1.177
√
2n

≈ 1.77× 2n/2

The value N is known as Birthday Bound for n-bit generating
hash function f . Table I shows values of N for different p
values.

B. Related Work

Authors in [17], [6] [14] discussed the importance of
and provided recommendations for length of salt (S) and
iteration count (C). We, however, show later in this paper that
increasing the length of S or C does not subvert the discovered
vulnerability of PBKDFs. In [13], the authors proposed the
use of a larger character set for user passwords to increase
the security of PBKDFs. On the contrary, our analysis proves
that the number of passwords that can decrypt a ciphertext
and the number of calls to PBKDFs to find such a password
is independent of the input character set. In [9] and [18]
Zhou et al. suggested the use of user passwords longer than 6
characters to make PBKDFs practically safe to use. According

to our analysis, the length of user password does not impact
the vulnerability in PBKDFs that use HMAC as PRF. In
[10], the authors proposed a modified PBKDF scheme. While
the scheme works better against GPU accelerated attacks, it
however suffers from the same vulnerabilities presented in this
paper.

III. VULNERABILITIES IN PBKDFS

In this section, we discuss the two vulnerabilities, γ-
collision and δ-cutback, which we discovered in the
PBKDF2. Our analysis is based on the following assumptions:

1) There is no structural problem in the Hash function
(SHA) used in PBKDFs i.e. the best possible cryptana-
lytic attack on SHA family is Birthday attack.

2) The value of iteration count C is known to the attacker.
This value is constant and specified in the implementa-
tion [13].

A. Vulnerability 1: γ-collision

When using password based cryptography with PBKDFs,
there exist γ passwords that lead to the same derived crypto-
graphic key K. This vulnerability enables an attacker to find
multiple potential user passwords, such that text encrypted
using one user password can be decrypted using another
password. Additionally, it is not just two, but the entire sets
of user passwords exist that can be used interchangeably to
encrypt and decrypt the same text.

The value of γ depends on the difference of the output
length of PRF and the number of bits in the last block that
are included in the derived key K i.e. γ = 2hLen−r. For a
128-bit cryptographic key (like in AES-128), deriving the key
using HMAC-SHA-1 as the PRF, the value of γ is 232. The
proof is as follows.

Theorem 1. For a cryptographic key of dkLen size, deriving
the key using the PRF of hLen hash output, the value of γ is
2hLen−r.

Proof. We begin by calculating the l and r using equations
(1) and (2).

Let password P1, salt S1 and iteration count C1 be the
inputs to PBKDF2 to derive the key K1 of dkLen bits. Using
equation (4), K1 is calculated as follows:

K1 = T 1
1 ||T 1

2 ||...||T 1
l < 0...(r − 1) >

Now in the final step, the concatenation of all T 1 blocks with
the first r bits of T 1

l form the derived key K1 and the last
hLen−r bits from the T 1

l th block are truncated. The truncated
string Trunc1 from the K1 is determined as follows.

Trunc1 = T 1
l < r...(hLen− 1) >

Similarly, we can calculate K2 and Trunc2 by passing pass-
word P2 (P1 6= P2), salt S2 (S1 6= S2) and iteration count C1

as input arguments to PBKDF2.

K2 = T 2
1 ||T 2

2 ||...||T 2
l < 0...(r − 1) >

Trunc2 = T 2
l < r..(hLen− 1) >

Let us assume that K1 = K2 and Trunc1 6= Trunc2.
Since PBKDF2 uses HMAC-SHAs as the PRF and the input
passwords and salts are different, it results in T 1

l 6= T 2
l .

Now, since T 1
1 to T 1

l are generated by iterating and
XORing the PRF outputs C1 times, the total number of
unique input and output pairs are 2hLen. However, the key
is derived by selecting first dkLen bits out of hLen bits of
the concatenated string T1||T2||...||Tl, which means every time
the last r bits are truncated when deriving the key.

Therefore, 2hLen−r different values of T 1
l derive the same

key. Alternatively, we can say 2hLen−r different passwords
lead to the same derived key.

Example: To derive a key of 128 bits for AES-128 using
PBKDF2 and PRF as HMAC-SHA-1. The output size of
HMAC-SHA-1 is 160 bits.

Here, the size of the derived key is less than the output
block size. Therefore, the value of l is 1. We have to select r
bits from the last block, which can be calculated as follows:

l = ddkLen/hLene = d128/160e = 1

r = (dkLen− (l − 1)× hLen)
r = (128− (1− 1)× 160) = 128

Let password P1, salt S1 and iteration count C1 be the inputs
to PBKDF2 to derive the key K1 of 128 bits. Calculations are
as follows:

U1
1 = HMAC − SHA− 1(P1, S1 || int(1)) 160 bits

U1
2 = HMAC − SHA− 1(P1, U1) 160 bits

. . .

U1
C1

= HMAC − SHA− 1(P1, UC1−1) 160 bits

F 1(P1, S1, C1, 1) = (U1 ⊕ U2 ⊕ ..⊕ UC1
) 160 bits

T 1
1 = F 1(P1, S1, C1, 1) 160 bits

Now in the final step, first r bits of T 1
1 form the derived key K1

and the last hLen−r bits (32 bits for AES-128) are truncated.

K1 = T 1
1 < 0..(r − 1) >

K1 = T 1
1 < 0..127 >

Trunc1 = T 1
1 < r..(hLen− 1) >

Trunc1 = T 1
1 < 128..159 >

Similarly,

K2 = T 2
1 < 0..127 >

Trunc2 = T 2
1 < 128..159 >

where,

T 2
1 = F (P2, S2, C1, 1)

Now, an assumption that K1 = K2 and Trunc1 6= Trunc2,
leads to T 1

1 6= T 2
1 .

In this case, the total number of unique input and output
pairs are 2160. However, the key is derived by selecting first

TABLE II: The values of γ and δ for different dkLen values

dkLen γ δ
128 232 216

192 2128 264

256 264 232

128 bits out of 160 bits of T 1
1 , which means every time the

last 32 bits are irrelevant when deriving the key. Therefore,
each derived key would have 232 different values of T 1

1 .
Table II shows the γ values for different dkLen. For

dkLen = 128, γ = 232; for dkLen = 192, γ = 2128 and
for dkLen = 256, γ = 264, computed using Theorem 1. It
can be observed that generating keys for AES-192 and AES-
256 using PBKDF2 with HMAC-SHA-1 results in an even
higher γ value as compared to AES-128.

B. Vulnerability 2: δ-cutback

A pair of passwords that lead to the same cryptographic key
can be found by making δ lesser calls to PBKDFs than the
Birthday attack on PBKDFs. This reduction in number of calls
is the δ-cutback. The vulnerability has its roots in the Birthday
attack [12]. The Birthday attack has been traditionally used to
find collisions in cryptographic hash functions. We use the
principles of this attack to find the vulnerability in password
based cryptography. The proof is given as follows.

Theorem 2. A pair of passwords that lead to the same
cryptographic key can be found in O(2(l×hLen−dkLen)/2)
lesser calls to PBKDF2 than the Birthday attack on PBKDF2,
thus resulting in O(2(l×hLen−dkLen)/2)-cutback.

Proof. The class of PBKDFs are composed of a hash function
and bit manipulation for several iterations to produce a fixed
length output. Thus, PBKDFs can also be considered as a
hash function in itself. Due to this, they are susceptible to the
Birthday attack.

PBKDF2 can generate an output of maximum l×hLen bits,
as shown in equation (4). Therefore, according to Birthday
attack, O(2(l×hLen)/2) calls to PBKDFs would lead to a
collision.

As shown in equation (4), the last r bits of block Tl are
truncated and play no part in derived key K. This reduces the
effective length of the output of PBKDFs to dkLen bits. As
we consider PBKDFs to be hash function in itself. Therefore,
we can say that the collision can be found in O(2dkLen/2)
calls to PBKDF2, according to the Birthday attack. Thus, δ
can be determined as follows:

δ =
O(2(l×hLen)/2)

O(2dkLen/2)

= O(2(l×hLen)/2−dkLen/2)

= O(2(l×hLen−dkLen)/2)

Thus, PBKDF2 suffers from O(2(l×hLen−dkLen)/2-cutback.

Example: Let us consider an example of deriving a key of
128 bits for AES-128 using PBKDF2 and PRF as HMAC-
SHA-1. The output bits size of HMAC-SHA-1 is 160 bits.

First, we consider PBKDF2 as a hash function and apply
Birthday attack on it. The size of the derived key is lesser
than the output block size. Therefore, the value of l is 1. The
output size of HMAC-SHA-1, hLen, is 160 bits and it can
generate 2160 unique hash values. Without any further analysis,
by the definition of Birthday attack, a collision can be found
in 1.18 × 280 calls of PBKDF2 with 50% probability (Table
I). Now, using the results from Table I, we can find pair of
user provided passwords with 0.9999 probability that lead to
the same key in 4.292× 280 calls of PBKDF2. This requires
lesser effort than the best known attack for AES-128, Biclique
[8].

Second, according to Theorem 2, we know that when
deriving key for AES-128 using PBKDF2 with HMAC-SHA-
1, the algorithm can generate 2128 unique values. So, by using
the results of Table I, to find a pair of user provided passwords
that lead to the same 128-bit key with 0.9999 probability
would require 4.292 × 264 calls to PBKDF2 as opposed to
4.292 × 280. This leads to a O(2(160−128)/2) = O(216)-
cutback. That means collision can be found in 216 lesser calls
than the Birthday attack.

As shown in Table II, the value of δ is higher for dkLen
lower and higher than 128 bits when using PBKDF2 with
HMAC-SHA-1. Additionally, an increase in hLen results
in a significant increase in δ, as shown in Table III. For
dkLen = 64, δ = 248; for dkLen = 192, δ = 264 and for
dkLen = 256, δ = 232, resulting in an even higher cutback.
Moreover, for AES-128, when using PBKDF2 with HMAC-
SHA-1, we require O(264) calls to PBKDFs to find a collision,
which is computationally equivalent to brute-forcing the DES
algorithm.

IV. IMPLICATIONS AND DISCUSSION

Due to the aforementioned vulnerabilities in PBKDFs, it
is safe to assume that they are not as secure as previously
considered. In this section, we explore the implications on γ-
collision and δ-cutback to potential solutions for increasing
the security of PBKDFs. We explore two such potential
solutions and argue that they are inadequate.

A. Using Alternative Hash Functions in PBKDFs

After looking at the vulnerabilities for PBKDFs discussed
in Section III, one of the most trivial solutions could be to use
more secure hash function like HMAC-SHA-256 or HMAC-
SHA-512 as the PRF. The expectation by this change would
be the probability of finding a collision will decrease as the
hash function output size increases. However, since the output
size of PBKDFs will remain the same, it will provide the
same level of security as HMAC-SHA-1. We discuss it with
an example below.
Example. Let us analyze the security of PBKDF2 using
HMAC-SHA-1 and HMAC-SHA-512 as the PRF to derive

TABLE III: The values of γ and δ for different hLen values

hLen γ δ
160 232 216

256 2128 264

512 2384 2192

the key for AES-128. The output size of HMAC-SHA-
1 and HMAC-SHA-512 is 160 bits and 512 bits, respec-
tively. Using the values of hLen from the results in The-
orem 2, security of PBKDF2 using HMAC-SHA-1 can be
determined by reducing δ calls from the calls required for
Birthday attack, i.e. 2160/2/2(1×160−128)/2 = 264. Similarly,
for the security of HMAC-SHA-512, this number would be
2512/2/2(1×512−128)/2 = 264, which is same as HMAC-
SHA-1. Thus, using HMAC-SHA-256 and HMAC-SHA-512
increases the number of hash values that can lead to the same
derived key K.

Table III shows the relationship between hLen and γ.
Earlier, we showed that for HMAC-SHA-1 the output size
of T1 was 160. Also, the number of T1 values that derives
the same key is given by 2hLen−r. So, in case of HMAC-
SHA-256 and HMAC-SHA-512, used with AES-128 will have
γ = 2256−128 = 2128 and 2512−128 = 2384 different values of
T1 resulting in the same cryptographic key. The reason behind
this is the many-to-one mapping between the hash values and
the derived key. Therefore, by replacing the hash function with
a greater output length hash function for the PRF ends up being
more vulnerable. To find collision in any hash function, the
number of function calls required depends upon the message
digest (output size), not on the internal process or operations.

However, effort required to find a collision remains the same
i.e. 4.292 × 264. This is because the length of final output
(dkLen) is same as before and the effort required to find a
collision is solely dependant upon the size of the final output
of PBKDFs. Thus, as it stands the use of any hashing function
as PRF in PBKDFs results in the above vulnerabilities.

B. Increasing Iteration Count

By now, it is clear that there is no way to increase the
efforts required to find key pairs by using different hash
functions as PRF. In [16], the authors corroborate our analysis
that cascading hash functions does not lead to an increase in
security. Mathematically, an iteration count of C increases the
security strength of a password by log2(C) bits against trial-
based attacks like brute-force or dictionary attacks [14] by
increasing the execution time of PBKDFs. So, another solution
that presents itself is increasing the number of times the PRF
is called, i.e. increasing C.

Now the question is that is it be possible to make iteration
count C large enough to make it infeasible for attacker to
brute-force 264 input values? Yes, it seems so. We can set the
value of iteration count C to a large enough number to avoid
brute-forcing the input values to find collision.

Let us assume that new iteration count is C
′
. Theorem 3

shows the relationship between the strength of the derived key
with iteration count C and new iteration count C

′
.

Theorem 3. Relationship between the new iteration count C
′

and the old iteration count C is C
′

= δ × C.

Proof. As mentioned in Theorem 2, applying Birthday attack
on PBKDF2, once with and then without taking δ-cutback
into account, reduces the number of iterations required to find
a pair of passwords that lead to the same derived key K in the
former case.

Also, as mentioned above, iteration count increases the
security strength of a password by log2(C) bits. We thus estab-
lish the following relationship between C and C

′
: 2log2(C

′
)×

Birthday attack with δ-cutback = 2log2(C)× Birthday attack
without δ-cutback. We argue it as follows:

2log2(C
′
) × 4.292× 2dkLen/2 = 2log2(C) × 4.292× 2(l×hLen)/2

2log2(C
′
) × 2dkLen/2 =

2log2(C) × 4.292× 2(l×hLen)/2

4.292

2log2(C
′
) × 2dkLen/2 = 2log2(C) × 2(l×hLen)/2

log2(C
′
) +

dkLen

2
= log2(C) +

l × hLen
2

log2(C
′
)− log2(C) =

l × hLen
2

− dkLen

2

log2
C

′

C
=
l × hLen− dkLen

2
C

′

C
= 2(l×hLen−dkLen)/2

C
′
= 2(l×hLen−dkLen)/2 × C

C
′
= δ × C

The minimum value of iteration count, as recommended
by RFC 8018 [14] and NIST [5] is 1000. Using the results
from Theorem 3, new recommendation for minimum iteration
count should be 1000 × δ. In case of password based AES-
128 when used with PBKDF2 and HMAC-SHA-1, δ = 216,
making the new recommended iteration count 1000 × δ =
1000× 216 (≈ 226). This new iteration count will provide the
required security, but it will be infeasible for many practical
applications because this will greatly increase the execution
time of PBKDFs.

Furthermore, increasing the iteration count is a temporary
solution. In [4], the authors were able to evaluate 250, 000
passwords per second using multiple FPGAs with an iteration
count of 2000, and in [11], performance of 356, 352 passwords
per second was achieved for 1000 iterations. With GPUs and
FPGAs becoming increasingly powerful, the execution time
per iteration of PBKDFs is cut down significantly. Moreover,
with the advent of Infrastructure as a Service (IaaS), it is be-
coming easier for an adversary to procure hardware powerful
enough to counteract the execution time increase induced by
increasing C. Thus, it is only a matter of time before the
iteration count becomes insignificant.

V. CONCLUSION

Due to the two vulnerabilities γ-collision and δ-cutback
in PBKDFs presented in this paper, the effective security of
password-based AES-128 is compromised, and is equivalent
to brute-forcing DES. The vulnerabilities exist due to the use
of hashing functions as PRF and the way the cryptographic
keys are derived from the output of the PRF. As it stands now,
a so-called computationally secure encryption scheme, such as
AES, may not have any known feasible attack but if used with
key derivation functions like PBKDFs are prone to attack.

REFERENCES

[1] Firefox sync’s new security model. URL: https://blog.mozilla.org/
services/2014/04/30/firefox-syncs-new-security-model/, accessed on
2021-05-15.

[2] iOS Security: iOS 12.3, May 2019. URL: https://www.apple.com.cn/
business/docs/site/iOS Security Guide.pdf, accessed on 2021-05-15.

[3] Martı́n Abadi and Bogdan Warinschi. Password-based encryption
analyzed. In International Colloquium on Automata, Languages, and
Programming, pages 664–676, Lisbon, Portugal, 2005. Springer.

[4] Ayman Abbas, Rian Voß, Lars Wienbrandt, and Manfred Schimmler. An
efficient implementation of PBKDF2 with RIPEMD-160 on multiple
FPGAs. In International Conference on Parallel and Distributed
Systems, pages 454–461, Hsinchu, Taiwan, 2014. IEEE.

[5] Elaine Barker and Allen Roginsky. Recommendation for cryptographic
key generation. NIST Special Publication, 800:133, 2012.

[6] Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. Multi-instance
security and its application to password-based cryptography. In Annual
Cryptology Conference, pages 312–329, Santa Barbara, CA, USA,, 2012.
Springer.

[7] Florent Bersani and Hannes Tschofenig. The EAP-PSK Protocol: A Pre-
Shared Key Extensible Authentication Protocol (EAP) Method. URL:
https://tools.ietf.org/html/rfc4764, accessed on 2021-05-15.

[8] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger.
Biclique cryptanalysis of the full AES. In International Conference
on the Theory and Application of Cryptology and Information Security,
pages 344–371, Seoul, South Korea, 2011. Springer.

[9] Jie Chen, Jun Zhou, Kun Pan, Shuqiang Lin, Cuicui Zhao, and Xiaochao
Li. The security of key derivation functions in WINRAR. JCP,
8(9):2262–2268, 2013.

[10] Xiurong Chen, Xiaochao Li, Yihui Chen, Pengtao Li, Jianli Xing, and
Lin Li. A modified PBKDF2-based MAC scheme XKDF. In IEEE
Region 10 International Conference TENCON, pages 1–6, 2015.

[11] Markus Dürmuth, Tim Güneysu, Markus Kasper, Christof Paar, Tolga
Yalcin, and Ralf Zimmermann. Evaluation of standardized password-
based key derivation against parallel processing platforms. In European
Symposium on Research in Computer Security, pages 716–733, Pisa,
Italy, 2012. Springer.

[12] Marc Girault, Robert Cohen, and Mireille Campana. A generalized
birthday attack. In Workshop on the Theory and Application of of
Cryptographic Techniques, pages 129–156, Davos, Switzerland, 1988.
Springer.

[13] Xiaochao Li, Cuicui Zhao, Kun Pan, Shuqiang Lin, Xiurong Chen,
Benbin Chen, Deguang Le, and Donghui Guo. On the security analysis
of PBKDF2 in OpenOffice. Journal of Software, 10(2):116–127, 2015.

[14] Kathleen Moriarty, Burt Kaliski, and Andreas Rusch. PKCS#5:
Password-based cryptography specification version 2.1. Technical report,
2017.

[15] Robert Morris and Ken Thompson. Password security: A case history.
Communications of the ACM, 22(11):594–597, 1979.

[16] Krzysztof Pietrzak. Non-trivial black-box combiners for collision-
resistant hash-functions don’t exist. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 23–
33, Barcelona, Spain, 2007. Springer.

[17] Meltem Sönmez Turan, Elaine Barker, William Burr, and Lily Chen.
Recommendation for password-based key derivation. NIST special
publication, 800:132, 2010.

[18] Jun Zhou, Jie Chen, Kun Pan, Cuicui Zhao, and Xiaochao Li. On the
security of key derivation functions in office. In Anti-counterfeiting,
Security, and Identification, pages 1–5, Taipei, Taiwan, 2012. IEEE.

