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Abstract

The outsourcing of multimedia content such as audio and speech data

to Cloud Data Centers (CDCs) for storage and computation is becoming in-

creasingly common due to their high storage and computational needs. Com-

panies constrained in resources tend to benefit from the storage, high-end

processing, elasticity, scalability and cost effectiveness of CDCs. However,

the use of third party servers such as CDCs raises security concerns due to

the sensitive nature of audio and speech data. Data encryption is commonly

practiced to improve security. However, to process the data at CDCs, data

must often be decrypted, which also raises issues in security. Thus, there is

a need to protect the security of audio and speech records for storage and

computation at CDCs, such that the CDC cannot learn anything from the

confidential data. We propose secure methods based on (K,N) Shamir’s Se-

cret Sharing (SSS) method for audio/speech storage and computation (audio

reverberation and speech noise reduction) over cloud. Our secure compu-

tation techniques are based on digital convolution reverberation and digital

filtering (low pass filter, comb filter and high pass filter) for the addition of

reverberation effect to an audio file and speech noise reduction, respectively.

We show that our proposed schemes for storage and computation are infor-

mation theoretically secure and meet the security requirements of efficiency,

iv



accuracy and checkability for both semi-honest and malicious adversarial

models. Experimental results for our proposed computation schemes (au-

dio reverberation and speech noise reduction) in Encrypted Domain (ED)

produce similar results as compared to their Plaintext Domain (PD) im-

plementation versions whilst maintaining security and privacy with minimal

overheads.
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Chapter 1

Introduction

1.1 Motivation

Multimedia applications such as call centers, surveillance applications, telecom-

munication systems and emergency calling systems (911 emergency calls)

produce a large amount of audio/speech content on a daily basis, most of

which contains sensitive information such as names, addresses, social secu-

rity numbers, credit card numbers, evidence to be used in a court of law by

a jury, information with national security implications, etc.

Most of this data is outsourced to CDC for storage and high-end com-

puting. Over the years, cloud computing has provided a framework of elastic

and scalable services for data storage, high-end computing and online access

to computer resources, and companies, governments and individuals are uti-

lizing this to save costs on operations and to avoid investment in on-premise

IT infrastructure, expertise and resources. Since CDCs are physically located

in a different jurisdiction, and are managed by external third parties, data
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security and privacy is a growing concern. For instance, a rogue or malicious

employee within the CDC may use this confidential information to their own

benefit.

In real world scenarios, companies generally encrypt sensitive multime-

dia content before uploading it to a CDC in order to protect privacy and

confidentiality. In such cases, encryption schemes like Advanced Encryp-

tion Standard (AES) are used, which suffers from single point vulnerability,

meaning that the security of the method lies in securing the encryption keys,

which are usually entrusted to the sender and receiver. Thus, an adversary

with access to the encryption key can obtain the confidential data.

Apart from storage services provided by CDCs, most clients also make

use of computing services. Most importantly, when the need arises for some

processing to be done on this encrypted data, the third-party server will first

have to decrypt the cipher text, which will expose the confidential infor-

mation. This makes the confidential data vulnerable to exploitation by an

adversary. Hence, secure storage and processing of such confidential data is

of utmost importance.

1.2 Thesis Goal, Challenges and Contribu-

tion

The goal of this thesis is to investigate how to protect the privacy, security

and confidentiality of audio/speech records outsourced to a cloud environ-

ment for storage and processing (reverberation and noise reduction). For
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this purpose we employ Signal Processing in Encrypted Domain (SPED),

which is the application of cryptographic primitives and signal processing

techniques to perform operations directly on encrypted signals. This way

the untrusted CDC performs operations on the encrypted signal and returns

the encrypted computation results to the client without having access to the

sensitive information. Our proposed schemes achieve the following goals:

• Minimal computational overhead on client: The main purpose of out-

sourcing to a CDC is to relieve a client who is constrained in storage

capacity and high-end processing capability. That is, data storage and

majority of the computation should be performed on the CDC. We

have shown that the efficiency requirement of our schemes delegates

most of the computation to the CDC.

• Minimal transmission overhead between client and CDC: Homomor-

phic encryptions such as Shamir’s Secret Sharing (SSS), Paillier, etc.

cause data expansion in the cipher space due to the dynamic nature of

multimedia content. For instance, the Paillier cryptosystem uses very

large primes and exponentiation operations, which result in large mes-

sage space (e.g. 1024 bits), whereas SSS can use any prime greater than

the maximum sample of a signal. This is one of the reasons we choose

SSS as our cryptosystem over others such as Paillier. Our proposed

schemes yield minimal transmission overhead, which is bounded by the

modular prime used by SSS.

• Minimal loss in accuracy: Our schemes have been shown to yield min-

imal loss (near zero) between ED and PD processing. That is, the

3



error incurred as a result of preprocessing and round-offs of real-valued

signals to integers should be minimal.

• Information theoretic security: SSS is information theoretically secure,

which means that an adversary with unlimited computational power

cannot obtain the secret information. Our schemes leverage this feature

to provide data security. We have shown that preprocessing prior to

encryption has no effect on the information theoretic security of our

schemes.

Contribution of this thesis is in three-fold:

• We propose a secure cloud-based storage method for audio records us-

ing SSS. Previous Audio Secret Sharing (ASS) techniques have at least

one of these limitations: 1) It does not extend to the (K,N) thresh-

old scheme, 2) Information theoretic security is not proven and 3) It

has the limitations of Human Auditory System (HAS) decryption, as

will be discussed in Chapter 2 . To the best of our knowledge, this is

the first ASS scheme based on SSS which addresses all three limita-

tions mentioned above, i.e. (K,N) threshold, information theoretically

secure and computationally efficient decryption.

• We propose a secure implementation of convolution reverberation to

artificially add reverberation effects to an encrypted audio secret over

cloud. As far as we know, this is the first work to propose the ap-

plication of audio effects (reverberation effect) to an audio signal in

ED.

4



• We propose secure noise reduction schemes for speech secrets contami-

nated with white noise, humming noise and wind noise over cloud. To

our knowledge this is the first work on speech noise reduction in ED.

1.3 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we present

literature review on previous work in audio secret sharing for secure storage

and processing of audio/speech records in ED, and background knowledge

on SPED and the cryptosystem, (K,N) SSS, that we have chosen for this

thesis. We present our proposed work for secure audio storage over cloud in

Chapter 3. In Chapter 4, the work to securely add reverberation effects to an

audio secret outsourced to cloud for storage and computation is presented.

The data storage technique for this work is based on the proposed storage

method in Chapter 3. In Chapter 5, we extend our proposed cloud storage

technique to propose secure noise reduction schemes (low pass filtering, comb

filtering and high pass filtering) to enhance the quality of speech records

(contaminated with white noise, humming noise and wind noise) outsourced

to cloud for storage and computation. Finally, the conclusion and future

work is presented in Chapter 6.

5



Chapter 2

Literature Review and

Background Knowledge

This chapter reviews previous work in secure audio storage with secret shar-

ing techniques and processing of audio/speech records in ED. We also discuss

the limitations of these works and how our proposed methods address them.

The organization of this chapter is as follows. Section 2.1 provides a review

of the previous secure audio sharing techniques and their drawbacks, followed

by a review of ED processing of audio/speech data in Section 2.2. Section 2.3

and Section 2.4 discuss the cryptosystem that we use for this thesis and the

security model, respectively. Finally, the chapter is summarized in Section

2.5.
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2.1 Secure Audio Storage

Audio data is typically encrypted prior to storage or transmission in order

to protect it from an adversary due to the fact that it might contain sensi-

tive information. Several cryptographic techniques used to secure audio data

in real world scenarios include both private key and public key cryptosys-

tems. One of the most widely used methods is to encrypt the data is using

AES. However, AES suffers from single point vulnerability meaning that the

security of the method lies in securing the encryption key which is usually

entrusted to the sender and receiver. This problem can be overcome by em-

ploying a secret sharing scheme to divide the audio secret into a number of

shares and distribute them among a number of participants such that only

more than a certain number of participants can reconstruct the secret by

putting their shares together; individual shares are of no use on their own.

Thus, a group of participants collectively protect and control access to the

secret. This technique is called an Audio Secret Sharing (ASS) scheme.

Some of the existing ASS schemes [33], [11] are designed to encrypt text

secrets. In these schemes, a binary representation of the text secret is em-

bedded into an audio cover and shares of the cover signal are created. This

approach combines cryptography to encrypt the plaintext and steganogra-

phy to hide the existence of the ciphertext. Such schemes only had a (2, N)

threshold and never extended to the general (K,N) threshold. The cipher-

text was decrypted by the Human Auditory System (HAS) by simultaneously

playing authorized shares, which is analogous to the Visual Cryptographic

System (VCS) where the human visual system is used for decryption in image

7



secret sharing. There is no computational cost to decrypt with HAS, however

it has the following limitations: 1) People with hearing impairments cannot

participate in the decryption process, 2) It requires manpower to decrypt the

secret and also overburdens the human ear with increasing numbers of shares

required to reconstruct the secret [11]. While the schemes proposed in [33],

[11] encrypt a binary secret message, the schemes in [12], [68], [62] encrypt an

audio secret. However, decryption still requires the human auditory system.

The scheme proposed in [12] is (K,N) threshold secret sharing scheme,

where K out of N generated secret shares are required to reconstruct the

secret audio. The security of this scheme is not proven from an information

theoretic point of view and is highlighted in [68], [62]. The authors in [68],

[62] propose schemes whose security is evaluated in terms of the mutual in-

formation between the secret and the shares from an information theoretic

perspective. The scheme in [62] is an improvement to [68], where the encryp-

tion function uses normal distribution over a bounded domain in order to

create bounded shares. However, both schemes do not extend to the (K,N)

threshold.

In practical applications of secret sharing schemes to an audio secret and

to address the limitations of HAS decryption, there are instances where de-

cryption must be performed on a computer. The scheme in [19] achieved

decryption computationally, but it is limited to binary audio and does not

extend to the general (K,N) threshold scheme. Moreover, the security of

this scheme is not proven from an information theoretic point of view. In

summary, each one of the previous schemes has at least one of these limita-

tions: 1) It does not extend to the (K,N) threshold scheme, 2) Information

8



Table 2.1: A comparison of the proposed scheme with previous schemes

Scheme Threshold
Information
theoretic security

Decryption

Desmedt et al. [11] (2, N) Yes HAS
Lin et al. [33] (2, N) Yes HAS
Nishimura et al. [19] (N,N) Not proven Computer
Ehdaie et al. [12] (K,N) Not proven HAS
Yoshida and Watanabe [68] (N,N) Yes HAS
Washio and Watanabe [62] (N,N) Yes HAS
Proposed scheme [65] (K,N) Yes Computer

theoretic security is not proven and 3) It has the limitations of HAS decryp-

tion.

In this thesis, we propose a method to protect audio secrets using Shamir’s

secret sharing (SSS) scheme to address the above limitations. To the best

of our knowledge, this is the first ASS scheme based on SSS which is (K,N)

threshold, is information theoretically secure and offers a computationally

efficient decryption. SSS in general does not have the above limitations

described in points 1 and 2. Because of the proven security properties of

the SSS scheme, many researchers have applied it to protect secret text,

images, video, digital signatures and encryption/decryption keys [1]. Another

work [7] uses SSS to protect an image and PDF secret by creating shares

and applying steganography to hide each share in an MP3 cover. Such an

approach is different from our method since we are protecting an audio secret.

Table 2.1 compares the limitations of previous techniques and highlights that

the proposed scheme for secure audio storage does not have such limitations.
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2.2 Audio and Speech Processing in ED

Multimedia data processing in ED has employed fields in signal processing

and cryptography to make computation on encrypted signals possible. This

merger of signal processing and cryptography techniques is a totally new in-

terdisciplinary framework called SPED [22]. Work done so far is this area has

applied cryptographic primitives - Secure Multiparty Computation1 (SMC)

[66], Commitment Schemes [10], [18], Zero-knowledge Protocols (ZKP) [49],

Private Information Retrieval [8] and homormophic encryption [46], [14] to

develop schemes based on the security requirements of the application sce-

nario to make secure signal processing possible. SPED has been applied in

applications such as secure processing of medical data (MRI, ECG, DNA)

[4], secure digital watermarking [48], Data mining on private databases [36],

[39], Protecting Privacy in video surveillance systems [54]. etc.

In our literature review, we found that SPED research has been focused

mainly on image and video data, yet audio and speech data have been ex-

plored far less. Research on speech processing in ED has been limited to

speech classification tasks. Work in [28] and [3] proposed techniques for

speaker recognition and verification over encrypted voice over IP (VoIP) con-

versations. Both works were based on speaker dependent packet-length in-

formation extracted from encrypted VoIP signals to build models for speaker

identification and verification. Encoding of VoIP traffic to narrow band prior

to encryption is a common practice to save transmission bandwidth. Encod-

1Protocols that allow multiple parties to jointly compute a public function over their
inputs in a secure way such that their inputs are kept private. Secret sharing, Yao’s proto-
col, secure-two-party computation and Oblivious Transfer (OT) are examples of primitives
of SMC
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ing techniques such as variable bit rate (VBR) and voice activity detection

(VAD) used in real life scenarios results in variable length VoIP packets.

There is a relationship between this length and a speaker’s identity which

remains unchanged even after encryption with secure real time transport

protocol (SRTP) based on AES. The basic idea behind the works [28] and

[3] stems from observing the relationship between the speaker’s identity and

the length of the packet carrying their VoIP speech contents. Hence, by uti-

lizing discrete hidden Markov models (HMMs) and GMM to create models

for each speaker based on the sequence of the packet-length extracted from

encrypted VoIP conversations, speaker identification and verification from

encrypted VoIP packets can be achieved. Work [28] utilized VBR, while [3]

employed VAD.

Works [47] and [53] also present a framework for speaker verification/

identification and sound recognition/classification respectively using Gaus-

sian Mixture Models (GMM) and likelihood ratio test in ED. Both meth-

ods are based on SMC and homomorphic encryption (Paillier and Boneh-

Goh-Nissim (BGN) cryptosystem), which enables computation and classifi-

cation to be performed in secure way. Work [47] proposes a client-server two

party setting where the client has a speech sample and the server stores the

encrypted model (GMM parameters of the speech) after the training pro-

2Knowledge of the ciphertext (and length) of some unknown message does not reveal
any additional information about the message that can be feasibly extracted [63].

3The cryptosystem is unbreakable even when the adversary is computationally un-
bounded. This means that a ciphertext reveals nothing about the underlying plaintext,
and thus an adversary who intercepts a ciphertext learns nothing about the plaintext that
was encrypted [27]. While Information theoretically secure means that the ciphertext
does not reveal any information about the plaintext, semantic security implies that any
information revealed cannot be feasibly extracted.
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Table 2.2: Comparison of work on audio and speech processing in ED

Scheme Task in ED
Cryptographic
primitive

Techniques
used

Security achieved

[28]

speaker identification
and verification over
encrypted voice over IP
(VoIP) conversations

AES VBR and
HMM

Security lies in protecting
the private keys (one key
for encryption and decryp-
tion which when not pro-
tected leads to single point
vulnerability)

[3]

speaker identification
and verification over
encrypted voice over IP
(VoIP) conversations

AES VAD Same as [28]

[47] speaker verification and
identification

SMC (Yao’s
protocols) and
homomorphic
encryption
(Paillier cryp-
tosystem)

GMM

Security lies in:
(1)The difficulty in solving
very complicated and com-
plex mathematics with large
primes. This is mostly com-
putationally expensive to en-
crypt and decrypt data which
means more overhead for re-
source constrained clients.
(2)protecting the private keys
(3)Semantically secure 2

[53] sound recognition and
classification

SMC (secure
two-party) and
homomorphic
encryption
based on [21]

GMM Same as [47]

Proposed
scheme [64]

addition of reverb effect
to an audio file

homomorphic
encryption
(SSS)

digital
convo-
lution
reverb

Security lies in:
(1)The uniqueness of each
polynomial used to compute
a ciphertext and does not rely
on solving very complicated
mathematics as with asym-
metric cryptosystems (Pallier
etc.). It is lightweight for en-
cryption and decryption, and
resource constrained clients
will require less computation
overhead.
(2)Collective control and it is
not vulnerable to single point
failure as with AES
(3)Information theoretically
secure 3

Proposed
scheme

speech noise reduction
homomorphic
encryption
(SSS)

Digital
linear
filters

Same as [64]

cess. For secure speaker recognition/verification to be performed, the client

sends the encrypted feature vectors (mel frequency cepstral coefficient) of

the speech sample to the server which then computes the inner products be-

tween the encrypted feature vectors and the encrypted GMM models using
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the homomorphic properties of the Paillier and BGN cryptosystem to obtain

a score. The score is then compared with a threshold in order to make a

decision as to whether there is a match or not. The authors utilize secure

comparison protocols (secure maximum index protocol and Yao millionaire

protocol) for the matching process. Work [53] applies the same approach for

secure classification of sound.

The security of previous work on audio and speech processing in ED

lies in protecting the encryption and decryption keys, which means that an

adversary with access to the keys can obtain the plaintext data. Moreover,

these methods are computationally expensive as a result of the large message

space (1024 bits) and exponentiation operation of the Paillier cryptosystem.

Our proposed work for secure audio reverberation and secure speech noise

reduction over cloud based on (K,N) SSS is light-weight in terms of the

modular prime, gives collective control to decryption and is not vulnerable

to single point failure. These are the main reasons why we choose (K,N)

SSS as our cryptosystem over others such as Paillier and BGN homomorphic

cryptosystems.

2.3 The Cryptosystem

2.3.1 SSS scheme

Shamir introduced his scheme in 1979 [52]. His scheme is based on polynomial

interpolation. The goal of this scheme is to divide data into N shares such

that:
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1. Any K or more shares can reconstruct the secret.

2. K − 1 or fewer shares cannot reconstruct the secret.

Such a scheme is called a (K,N) threshold scheme where 2 ≤ K ≤ N , N

is the number of shares and K is the least number of shares required to

reconstruct the secret.

To share secret data among N participants, a polynomial function f(x) is

constructed with a degree of K−1 using K random coefficients a1, a2 . . . ak−1

in a finite field GF (q) where a0 is the secret, and q is a prime number > a0.

f(x) = (a0 + a1x+ · · ·+ aK−1x
K−1)mod q (2.1)

Any K out of N shares can reconstruct the secret using Lagrange interpola-

tion to reconstruct the polynomial f(x); the secret can be obtained at f(0)

i.e. f(0) = a0

f(x) =
K
∑

j=1

(

yj

K
∏

i=1,i 6=j

(

x− xi

xj − xi

)

)

mod q (2.2)

2.3.2 Homomorphic encryption

A cryptosystem is homomorphic if computation on its ciphertext yields an

encrypted result, which when decrypted, will match the result of some com-

putation on its plaintext. Homomorphic encryption is expected to play an

important part in cloud computing, allowing companies to store encrypted

data in a public cloud and take advantage of the cloud provider’s analytic

services. As depicted in Figure 2.1, let m1 and m2 belong to the plaintext
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space of some cryptosystem, and E(.) and D(.) denote the encryption and

decryption functions respectively. If ⊘P and ⊘E denote operations in PD

and ED respectively, then the cryptosystem is homomorphic on the operator

⊘P if it satisfies:

E(m1)⊘E E(m2) = E(m1 ⊘P m2) (2.3)

Figure 2.1: Homomorphism

The cryptosystem is additive homomorphic if ⊘P is the addition operator

(+) and multiplicative homomorphic if ⊘P is the multiplication operator (×).

SSS scheme is homomorphic on addition and multiplication, meaning that

addition and multiplication operations can be implemented in ED. However,

subtraction and division operations are not possible unless some intelligent

preprocessing techniques are done before encryption.

1. Subtraction- we add an additive constant to the plaintext prior to en-

cryption. This constant should be large enough to avoid negative num-

bers for all ciphertext within encrypted domain.
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2. Division- we scale the plaintext by the divisor (the divisor to be used

in ED) before encryption.

Thus, a linear system which can be decomposed into addition, multi-

plication, subtraction and division is feasible in ED. In this work, we take

advantage of the homomorphic property of SSS to do linear computation on

encrypted audio/speech data.

2.4 Security Model and Requirements

A security model outlines requirements in terms of confidentiality, integrity,

non-repudiation, authentication, efficiency, etc., that a system has to meet in

order to achieve security. These requirements are dependent on the security

needs of an application scenario. In our application scenario, a resource-

constrained client U wants to outsource storage and computation of an au-

dio/speech secret in a secure manner to a CDC such that the CDC learns

nothing about the secret. We formulate our security model in terms of (i)

data confidentiality- no information about the secret data is learned, (ii)

integrity checks- identification of tampered encrypted data and (iii) secret

recovery- recovering the secret without using tampered data. To achieve

this, we make assumptions that (1) the client is reliable (honest) and does

not upload tampered shares to the CDCs and (2) Any K ≤ N CDCs are

non-colluding meaning that they do not come together to reconstruct the

secret. When designing security models, it is important to take into account

the possible behavior of parties involved in the protocol. There are two com-

mon adversarial models used to categorize such behaviors, and our security
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model addresses them both:

1. Semi-honest (passive adversary): The CDC follows the computation

protocol semi-faithfully, meaning that it can be unintentionally faulty

in its computations, but most importantly it attempts to infer sensi-

tive/confidential information from its hosted share.

2. Malicious (active adversary): this behavior presents a more realistic

case where a CDC deviates from the protocol. Here the CDC can

dishonestly tamper with shares by injecting false data or returning

false computation results to the client.

Transmission security between the client and CDC is provided by Transport

Layer Security (TLS) and Secure Sockets Layer (SSL) protocol from Internet

protocol suite or IPSec if the client is using a VPN tunnel connection to the

CDC.

In addition to the above, our secure outsourcing scheme should satisfy

the following efficiency, checkability and accuracy requirements:

• α-efficiency [24]: A secure outsource computation model is efficient if

the server (CDC) relieves the client (U) of majority of its computational

load. That is, the computation performed locally by U should be sub-

stantially less than that performed at the CDCs. This is represented

by α which is the ratio of the total number of operations performed by

U to the total number of operations performed by CDC. α should be

as less as possible.

• β-checkability [24]: This requirement allows U to be able to check the
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faulty computations done by malicious CDCs with a probability no less

than β . The value of β should be non-negligible.

• γ-accuracy: Multimedia signal processing may involve floating point

(R) operations whereas homomorphic cryptographic techniques oper-

ate in some finite ring on integer values (Z). Quantization is often

performed to round or scale R to Z, which may introduce some loss in

accuracy. This requirement allows U to perform the operation securely

with at most γ % loss in accuracy. The value of γ should be negligible.

2.5 Chapter Summary

This chapter discussed previous work in the area of secure audio/speech stor-

age and processing in ED. It also provided a description of the homomorphic

properties of SSS and the requirements that our security model should meet

for outsourcing storage and computation to an untrusted CDC.

18



Chapter 3

Secure Cloud-based Audio

Storage Scheme

A client/customer who is constrained in storage wants to securely outsource

storage of a confidential audio data to a CDC. An important aspect of our

outsourcing model for storage is that the CDC does not learn any information

about the confidential audio data. We apply (K,N) SSS to encrypt the

audio secret into N shares that can be distributed among N CDCs (K ≤ N

non-colluding) such that K ≤ N number of shares can be retrieved by an

authorized user to reconstruct the secret; individual shares are of no use on

their own. The contribution of this chapter is to present how to apply (K,N)

SSS to protect the security of audio data over cloud in order to address the

drawbacks of previous ASS schemes as already discussed in Section 2.1.

The rest of this chapter is organized as follows. In Section 3.1, we present

the proposed method for secure audio storage, the data overhead and the

security analysis. Section 3.2 discusses the experimental results and we sum-
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Figure 3.1: Audio secret sharing framework

marize this chapter in Section 3.3.

3.1 Proposed Method for Secure Audio Stor-

age over Cloud

We apply the SSS scheme to create an audio secret sharing method as de-

picted in Figure 3.1. In our method, we create shares of amplitude samples

since they contain the information of an audio signal. The following section

explains share generation and reconstruction of the secret audio.
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3.1.1 Audio preprocessing and share generation

Using the (K,N) SSS threshold, we generate N shares such that at least

K shares can reconstruct the secret. Using real numbers in a cryptosystem

means excluding the modular prime operation which, in the case of SSS,

degrades security. Therefore, we have to preprocess amplitude samples of

the secret audio from real to positive integer values. During preprocessing,

we first round-off the real amplitude samples by multiplying by 10d where d

is some integer value. Round-off error is bounded by:

−
1

2
× 101−d ≤ Er ≤

1

2
× 101−d (3.1)

where Er is the rounding error and d is the rounding precision. Each ampli-

tude secret a0 is converted to an integer and shifted to the first quadrant by

a threshold ϕ to obtain positive sample values within Zp. Shifting the signal

to first the quadrant does not distort the waveform, as illustrated in Figure

3.2.

a′0 =
(

(a0 + Er)× 10d
)

+ ϕ (3.2)

Using Equation (2.1) from Section 2.3, N shares are created and distributed

to N participants. The algorithm is shown below.

Algorithm 1: Audio share generation

Input: Secret audio A = {A1, A2 . . . Am}; where Am is the amplitude at the

mth time interval

Output: Secret Shares S1, S2 . . . Sn
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Description:

1. Read wav file i.e. [A, fs] = wavread(’wavfile’)

2. A = round((A+ Er)× 10d)

3. A′ = A+absolute of the minimum value of A

4. Compute the first prime number q′ greater the than maximum value of

A′

5. for i = 1 to length of A′ do

amplitude value at the ith time interval is the secret i.e. a′0 = A′
i and

randomly choose coefficients a1, a2 . . . ak−1 from a set of positive integer

field Zp

6. for j = 1 to n; number of shares to create do

Compute share(i, j) from the polynomial obtained in 5. share(i, j)

is the jth share for the ith amplitude value

7. end for

8. end for

9. for j = 1 to n do

10. Sj = combine all amplitude share values for each share index

11. end for

12. return S1, S2 . . . Sn;

3.1.2 Audio secret reconstruction and post-processing

To reconstruct the secret audio we need at least K out of the N shares. Re-

ferring to Figure 3.1, there are two blocks at the secret reconstruction phase:

1) reconstruct the secret by using Equation (2.2) to solve the polynomial

22



Figure 3.2: Shifting signal to first quadrant

function in Equation (2.1) and obtain the secret sample at evaluation point

x = 0, (this is done for all samples) and 2) post-process to reverse-engineer

the preprocessing done during share generation. We first subtract the signal

shift threshold from the obtained signal in step 1 and then divide by 10d to

get the secret audio signal. The algorithm is shown below.

Algorithm 2: Audio secret reconstruction

Input: Any K ≤ N audio shares S1, S2 . . . Sk

Output: Secret Audio A = {A1, A2 . . . Am}

Description:

1. Reconstruct the polynomial f(x) from shares S1, S2 . . . Sk using La-

grange interpolation in Equation (2.2) in a finite field GF (q′)

2. for i = 1 to length of share do

23



Obtain a′0 coefficient at evaluation point f(0) i.e. a′0 is the reconstructed

amplitude secret at the ith time interval

A′(i) = a′0

3. end for

4. A = (A′ - absolute of the minimum value of A from Algorithm 1, step

2)/10d

5. return A;

3.1.3 Data overhead

Our proposed scheme introduces some data overhead to transmit a share to a

CDC. This is due to the preprocessing step. This data overhead is the number

of bits used to represent the maximum preprocessed audio sample. Since the

generation of shares under a finite field GF (q′) is upper bounded by q′ (where

q′ is the first prime number greater than maximum[(a0 + Er)× 10d + ϕ]) we

can conclude that the data overhead is also upper bounded by the number

of bits used to represent q′. If b′ is the number of bits to represent this value

then:

b′ = log2(q
′) (3.3)

Due to the dynamic range of audio signals, q′ will always vary for different

audio signals depending on the quantization level (8 bit, 16 bit etc.) of the

ADC converter used during quantization. From Equation (3.1), it can be seen

that increasing d during preprocessing will yield minimal round-off error but

higher data overhead so d should be chosen to maintain a balance between
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the two.

3.1.4 Security analysis

The proposed method is based on the (K,N) SSS threshold scheme which is

proven to be information theoretically secure [56]. SSS has perfect secrecy

when applied to independent input sequences, however, our scheme prepro-

cesses the audio signal before generating shares so it is imperative to examine

the impact on information theoretic security. We evaluate the security of our

proposed method using the below corollaries based on theorems in [30].

Corollary 1 Information theoretic security of SSS is preserved if the proba-

bility of revealing an audio secret sample a0 shared under GF (q) is the same

as the probability of determining a′0 = (a0 × 10d) + µ shared under GF (q′)

(where µ =
(

Er × 10d
)

+ ϕ from Equation (3.2) and q′ is a prime number

greater than (q × 10d) + µ)

Proof 1 For each plaintext of audio secret a0 ∈ A there is an equal proba-

bility that it can be any value from the set 0 ≤ a0 ≤ q − 1 of q values since

SSS encryption is upper bounded by q. This probability is given by:

Pr(a0)0≤a0≤q−1 =
1

q
(3.4)

Similarly, for each plaintext a′0 of the preprocessed audio secret A′ where

a′0 = (a0× 10d)+µ there is also an equal probability of being any value from
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Table 3.1: Data set

Test file (.wav) length(secs) Bits/sample sampling frequency (Hz)
audio1 2 16 16000
audio2 43 16 8000
audio3 8 8 22050
audio4 14 8 44100
audio5 4 8 8000
audio6 2 32 8000

the set 0 ≤ a′0 ≤ q′ − 1 of q values with probability given as:

Pr(a′0)0≤a′0≤q′−1 =
1

q
(3.5)

The probability of revealing the secret a0 and a′0 in the above cases is

the same 1
q
. Thus, our scheme preserves information theoretic security after

preprocessing the original audio secret. An adversary in both cases will have

to guess the secret with a probability of 1
q
.

3.2 Experimental Results

Table 3.1 details the 6 audio files obtained from [57] that we use to test the

proposed audio secret sharing method. In the (K,N) threshold scheme, we

set K = 2 and N = 3, implying that 2 out of 3 created secret shares are

required to reconstruct the secret audio.

We implemented the audio secret sharing method using MATLAB14 on

a 2.53GHz i5 CPU with 4GB RAM. Table 3.2 details the processing time

for creating secret shares and reconstructing the original audio secret. The

time information in the table suggests that the complexity of reconstructing

the secret is relatively lower than that of creating secret shares. Since the

proposed method is applied at an audio sample level, the processing time
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Table 3.2: Average processing time to create shares and reconstruct the secret

Test file length(secs) Share creation (ms) Secret reconstruction (ms)
audio1 2 152 7
audio2 43 1614 50
audio3 8 929 29
audio4 14 2770 80
audio5 4 150 12
audio6 2 83 5

Figure 3.3: Similarity score for 6 audio clips

is directly proportional to the audio bit rate, which is associated with the

sampling frequency and number of bits per sample.

Audio signals by nature have correlating adjacent samples and the use of

random coefficients as a blinding factor in Equation (2.1) to generate shares

eliminates this correlation. Thus, individual shares do not reveal information

about the secret audio. The time domain plots of one of our test audio files

(audio1) in Figure 3.4 illustrate: 1) the difference between the audio secret

and its noisy shares and 2) the similarity between the reconstructed and

original secret audio. Figure 3.3 shows the similarity scores between the
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Figure 3.4: audio1, its shares and reconstructed secret

original secret audio, and 1st share, 2nd share, 3rd share and reconstructed

secret audio. The similarities were computed using Pearson’s correlation

method. Results suggest less than 1% correlation between the original secret

audio and its shares.

It is also evident that the reconstructed secret audio is about 100% cor-

related with the original secret audio; suggesting minimal information loss

due to rounding error in the preprocessing step.

We also performed a listening study to evaluate perceptual security, which
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Table 3.3: User study

share reconstructed secret
audio1 0 2.75
audio2 0 2.67
audio3 0.08 2.75
audio4 0.08 2.67
audio5 0 2.92
audio6 0 2.83

was conducted online 1. User scores are summarized in Table 3.3. 20 subjects

in the age range of 20−40 years old participated in the survey. The similarity

score is captured in a 4 point scale where the value 3 is given when two audio

files are exactly the same content-wise and the value 0 is given when two audio

files are not similar at all content-wise. As expected, all the participants

agreed that both the share and the audio secret are completely dissimilar in

terms of content. However, about a 92% average similarity score was achieved

for content similarity between the original audio secret and the reconstructed

audio secret which confirms that our proposed scheme is perceptually secure.

However, as depicted in Figure 3.3, using Pearson’s correlation analysis, we

were able to establish about a 100% similarity score between the original

audio secret and the reconstructed audio secret. In the future we would

like to investigate the disparity of human judgment (Table 3.3) vs machine

evaluation (Figure 3.3) of similarity.

3.3 Chapter Summary and Conclusion

In this chapter we proposed a secure audio storage scheme using the SSS

scheme. Compared to existing techniques, the proposed technique meets

1https://az1.qualtrics.com/SE/?SID=SV 0AHmNAbzvekk
weN&Preview=Survey&BrandID=qtrial2014
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the (K,N) threshold requirement, is information theoretically secure and

has computationally efficient decryption which does not rely on HAS. Our

experimental results also support the fact that the reconstructed secret is

identical to the original audio secret with minimal losses.

30



Chapter 4

Secure Cloud-based Audio

Reverberation

This chapter focuses on the addition of reverb effects to an audio recording

in ED over cloud. This is one of the most widely used delay effects, among

others such as flanging, phasing, chorus effects etc., for audio recording,

reproduction and editing. This effect adds an acoustic environment to an

audio recording to make it sound realistic. The resulting reverb effected

audio inherits characteristics from that acoustic environment and sounds as

if the recording was created in that environment. Reverberation is a series of

delayed and attenuated sound waves reflected within an acoustic environment

which is perceived by the human ear in less than 0.1 seconds after the original

sound wave. The human auditory system is unable to perceive the 0.1 second

delay and interprets the original sound wave and delayed reflections as one

prolonged sound. This effect is different from echo where delays are more

than 0.1 seconds and the delayed sounds are perceived distinctly as decaying
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copies of the original sound. Key areas of applications of reverb effects in

audio are:

1. the recording industry for audio editing and reproduction.

2. audio forensics for analyzing/simulating an audio recording in different

acoustic environments.

3. simulation of acoustic reverberation for dereverberation algorithms, etc.

In this chapter, we propose the implementation of convolution reverb

to artificially add reverb effects to an encrypted audio secret over cloud to

ensure information assurance of a client’s data from a privacy and security

perspective. To the best of our knowledge, this is the first work that applies

reverb effect to an audio signal in ED.

The rest of this chapter is organized as follows. Section 4.1 provides

an overview of artificial reverberation techniques. In Section 4.2 we present

the proposed work for secure reverberation over cloud along with the data

overhead and security analysis. Experimental results are presented in Section

4.3, followed by the conclusion and summary of this chapter in Section 4.4.

4.1 Artificial Reverberation Techniques

There are many techniques for applying reverb effects to audio. The most

common techniques for artificial addition of reverb are:

1) Filter banks and delay line: this approach involves connecting filters

(comb, all-pass, lowpass filters) in parallel and series and adjusting their
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parameters to produce the desired reverb effect, e.g. Schroeder’s Reverbera-

tor [51], Moorer’s Reverberator [42] etc.

2) Convolution reverb: acoustic space is a Linear Time-Invariant (LTI) sys-

tem, and like any LTI system its impulse response can be modeled and con-

volved with an audio signal to produce the effects of that space. Modeling

of the impulse response depends on the application scenario and the needs

of the designer, which are beyond the scope of this work. Some examples

of modeled impulse responses are room, concert hall, cathedral, bottle hall,

conic long echo hall, deep space, etc. In this work, we apply this approach

to artificially add reverb effect to an audio secret in ED. Let h[n] be the

modeled impulse response and x[n] be the audio signal. Then, the below

discrete convolution will yield the reverb effected signal y[n].

y[n] = x[n] ∗ h[n] =
∞
∑

k=−∞

x[k]h[n− k] (4.1)

Figure 4.1: The proposed work: Addition of reverberation effect in ED
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4.2 Proposed Method for Secure Convolution

Reverb

The audio secret to be reverb effected is encrypted by creating shares with

the (K,N) SSS threshold scheme on the client’s system. The client then

uploads each of the N shares to N different non-colluding CDCs. The CDC

then applies the reverberation effect to their hosted shares by convolving with

the desired impulse response. Reverb impulse responses are public signals in

plaintext. The client does not need to transmit or upload impulse responses

to the CDC since the CDC can obtain a library of all impulse responses.

An authorized user then reconstructs the reverb effected secret by combining

at least K out of N processed shares. Figure 4.1 represents our proposed

scheme for the secure addition of reverberation effect to an audio secret over

cloud.

Signal processing operations often involve real-valued signal amplitudes;

however, using real numbers in a cryptosystem means excluding the modular

prime operation, which in the case of SSS, degrades security. Therefore, we

have to preprocess the real valued samples of the audio secret to positive

integer values. Steps 1 and 2 below preprocess the original signal before

creating shares. The below steps detail our method in ED.

Step 1: Scale real-valued signal amplitudes with constant factor 10d where

d is an integer value. Round-off error is bounded by:

−
1

2
× 101−d ≤ Er ≤

1

2
× 101−d (4.2)
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where Er is the rounding error and d is the rounding precision.

Step 2: Add a constant additive shift ϕ to the signal obtained from Equation

(4.2) in order to avoid negative numbers.

A′ =
(

(A+ Er)× 10d
)

+ ϕ (4.3)

Step 3: Create N shares (S1, S2 . . . SN ∈ S) of preprocessed signal A′ using

Equation (2.1) of SSS in the finite field of q′ and upload them to N

non-colluding CDCs. In order to avoid the cipher blow-up problem

as a result of convolution as discussed in Section (5.2.5), the modulus

prime should be the product of the maximum sample of A′ and the

sum of absolute values of the impulse response sequence i.e. q′ >

max(A′)×
∑I−1

n=0 |hREV [n]|, where hREV [n] is the impulse response.

Step 4: Convolution of each share on the CDC. The modeled impulse re-

sponse is real-valued and there are instances where some samples are

negative. This might result in errors while performing convolution re-

verberation. In order to avoid errors, perform the following steps:

1) Scale impulse response hREV by 10t that is h′
REV = hREV × 10t;

where t is an integer value.

2) Modify Equation (4.1) by adding a constant additive shift ϑ′ to avoid

negative samples. ϑ′ = ⌈ q′

2
⌉ if h′

REV has a negative sample, else ϑ′ = 0,

where ⌈.⌉ is a ceiling function.

Convolve each share (S1, S2 . . . SN ∈ S) with h′
REV using Equation (4.4)

to obtain (S ′
1REV , S

′
2REV . . . S ′

NREV ∈ S ′
REV ).
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S ′
iREV [n] =

(

(

Si[n] ∗ h
′
REV [n]

)

+ ϑ′

)

modq′

=

(

( L−1
∑

k=0

Si[k]h
′
REV [n− k]

)

+ ϑ′

)

modq′ , i ∈ {1, 2 . . . N}

(4.4)

Where L is the number of samples of each share.

Step 5: An authorized user can reconstruct the reverb effected secret by

putting together K processed shares from any of the N CDCs using

Lagrange interpolation from Equation (2.2).

Step 6: Postprocess the reconstructed secret to reverse-engineer the prepro-

cessing done in the above steps. 1) Subtract the additive shift ϑ′ and

divide by the scale factor of h′
REV which is 10t. 2)Subtract the additive

shift ϕ and divide by the scale factor 10d from Equations (4.3) and

(4.2) respectively.

4.2.1 Data overhead

Preprocessing prior to creating shares introduces some data overhead for our

secure reverberation scheme. This data overhead per sample to transmit a

share from client to CDC is upper bounded by the modulus prime q′ used for

share creation. If b′ is the number of bits to represent q′, then data overhead

in bits is bounded by:

36



b′ = log2(q
′) (4.5)

4.2.2 Security analysis

The proposed method is based on the (K,N) SSS threshold scheme which

is proven to be information theoretically secure [56]. The following corollary

proves the information theoretic security property of our proposed work for

secure reverberation over cloud.

Corollary 2 Information theoretic security of SSS is preserved if the proba-

bility of revealing an audio secret sample a0 shared under GF (q) is the same

as the probability of determining a′0 = (a0 × 10d) + µ shared under GF (q′)

(where µ =
(

Er × 10d
)

+ ϕ from Equation (4.3) and q′ is a prime number

greater than (q × 10d) + µ)

Proof 2 Proof follows the same lines as Corollary 1.

Since the generation of shares is bounded by q′, it follows that samples

of each share are within the set {0, 1, 2, ..., q′ − 1} and, referring to Equation

(2.1) of SSS, each sample of a share is a unique polynomial. In this case,

an adversary will have to guess with a probability of 1
q
, making it highly

unlikely to infer a secret sample from its share. Audio signals, by nature, have

correlating adjacent samples. This correlation reduces the entropy (degree

of uncertainty) of the entire signal; i.e. a sample can be predicted from its

adjacent samples as in Linear Predictive Coding (LPC). However, the use of

random coefficients as a blinding factor in Equation (2.1) to generate shares
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eliminates this correlation. Thus, individual shares do not reveal information

about the secret audio.

Theorem 1 Our proposed scheme in ED for the addition of reverberation

effect is 100(1 − r(ED,PD))-accurate implementation of its plaintext version

with negligible loss in accuracy, where 0 ≤ r(ED,PD) ≤ 1 is the similarity

coefficient between ED and PD processing.

Proof 3 From preprocessing in Equation (4.2) rounding error Er is bounded

by:

Er ≤

∣

∣

∣

∣

1

2
× 101−d

∣

∣

∣

∣

(4.6)

Er propagates to the output of the computation. We can say that Er is

proportional to the output error or loss in accuracy (El) between ED and PD

processing i.e.

Er = cfEl (4.7)

where cf is a magnification factor which determines the growth of the error

from the input to the output. Substituting (4.7) into (4.6) gives the bound

of the loss in accuracy between ED and PD processing (El):

El ≤
1

cf
×

∣

∣

∣

∣

1

2
× 101−d

∣

∣

∣

∣

(4.8)

From (4.8) El will always be negligible for increasing d. El can be computed

from the similarity coefficient between ED and PD processed signals, i.e.

El = (1− r(ED,PD)), and in terms of percentage:

El = 100(1− r(ED,PD)) (4.9)
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Theorem 2 In the malicious model, our proposed scheme in ED for the

addition of reverberation effect is a 1-checkable implementation of the corre-

sponding computations over cloud.

Proof 4 For (K,N) SSS, there are
(

N

K

)

ways of reconstructing the secret,

hence the client will have w =
(

N

K

)

ways of reconstructing the processed

signal. It should be noted that:

• Untampered reconstructed secret: All shares for reconstruction are un-

tampered and all untampered reconstructed secrets from w will always

be the same.

• Tampered reconstructed secret: At least one share is tampered and all

reconstructed secrets from w that use the tampered share will always

be different.

Now suppose that N̂ ( where N̂ < N) CDCs deviate from the computation

protocol by tampering with shares or returning false computation results

to the client. There will then be N̄ = N − N̂ (where N̄ > K) CDCs

with untampered shares. Consequently, this will result in w̄ =
(

N̄

K

)

and

ŵ =
((

N

K

)

−
(

N̄

K

))

ways of reconstructing untampered and tampered secrets

respectively (i.e. w = w̄ + ŵ).

Now let (Ā1, Ā2 . . . Āw̄ ∈ Ā) be a set of all untampered reconstructed

secrets and (Â1, Â2 . . . Âŵ ∈ Â) be a set of all tampered reconstructed secrets,

then the below holds true for comparison in pairs between untampered and

tampered reconstructed secrets where D(., .) is some distance metric:

D(Āi, Āj)i 6=j = 0; i ∈ {1, 2 . . . w̄}, j ∈ {1, 2 . . . w̄} (4.10)
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D(Āi, Âj) > 0; i ∈ {1, 2 . . . w̄}, j ∈ {1, 2 . . . ŵ} (4.11)

D(Âi, Âj)i 6=j > 0 i ∈ {1, 2 . . . ŵ}, j ∈ {1, 2 . . . ŵ} (4.12)

Thus, with a distance of 0 as in Equation (4.10), the client can be certain

that both reconstructed secrets are untampered with a probabilty of 1:

Pr
[

D(Āi, Āi)i 6=j = 0
]

= 1 (4.13)

And with a distance > 0, from Equations (4.11) and (4.12), the client can be

certain that shares of either of the reconstructed secrets are tampered with

a probability of 1 and hence can discard them.

Pr
[

D(Āi, Âj) > 0
]

= 1, P r
[

D(Âi, Âj)i 6=j > 0
]

= 1 (4.14)

Remark 1 The computational complexity for checkability by the client is

linear to the size L of the reconstructed processed signal, i.e O(L). This

might cause additional overhead for the client and hence can be performed

offline.

4.3 Experimental Results

Table 4.1 details the test audio files obtained from [57] that we used for ex-

perimenting with our proposed method. We test our method with a modeled

impulse response [43] from the acoustic environment of a living room. That

is, we add the effects of a living room to our audio test files in ED. In the

(K,N) SSS scheme, we set K = 2 and N = 3, implying that we created
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Table 4.1: Data set

Test file (.wav) length(secs) Bits/sample sampling frequency (Hz)
audio1 2 16 16000
audio2 43 16 8000
audio3 13 16 11025
audio4 14 8 44100
audio5 4 8 8000
audio6 2 32 8000

Table 4.2: Average processing time (ms)

Test file Share creation (offline) ED processing reverb effected secret
reconstruction

audio1 205.18 97.77 17.81
audio2 1620.27 631.44 80.32
audio3 747.46 276.57 39.58
audio4 2802.95 1068.85 115.98
audio5 219.06 73.21 18.64
audio6 149.20 44.26 15.02

three shares of the audio secret such that at least two shares will be required

to reconstruct the reverb effected audio secret.

We implemented the proposed method using MATLAB14 on a 2.53GHz

i5 CPU with 4GB RAM. Table 4.2 details the processing time for creating

secret shares, applying the reverberation effect in ED and reconstructing the

audio secret. The table suggests that the complexity of reconstructing the

secret is relatively lower than that of creating shares and ED processing.

This is as a result of the additional complexity of preprocessing prior to

share creation. The creation of shares can be performed offline in order to

reduce complexity for the client. Our method is applied on a sample basis.

As a result, the processing time is directly proportional to the audio bit

rate, which is associated with the sampling frequency and number of bits

per sample. Therefore, the greater the length of the signal, the greater the

complexity. This is evident for audio2.wav and audio4.wav with the greatest

complexities.
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Table 4.3: Number of operations on cloud and client side

ED(Cloud processing) Client side
IREV multiplications 2L subtractions

2
(

(L+ IREV )− 1
)

modular additions 2L divisions

L× IREV modular multiplications
1 division

Note: L and IREV are the number of samples of the audio signal and the
impulse response hREV respectively.

Theorem 3 Our proposed scheme for the addition of reverberation effect in

ED is O
(

NU

NCDC

)

-efficient if the total number of operations NU performed by

the client is less than the total number of operations NCDC performed by the

CDC (where O(NU) and O(NCDC) are the asymptotic complexities of the

client and the CDC respectively).

Proof 5 Proof follows from Table 4.3 which represents the number of op-

erations performed by the client and the CDC. It is evident that for the

proposed scheme in ED from Table 4.3 that: NU < NCDC and consequently

O(NU) < O(NCDC), i.e.

O

(

4L

IREV + 2((L+ IREV )− 1) + (L× IREV ) + 1

)

(4.15)

Figure 4.2 shows the similarity scores between the PD and ED reverb

effected signals. We computed the similarities using Pearson’s correlation

method. Results suggest the reverb effected signal, after applying our method,

correlates about 99.99% with normal PD processing. Thus, our method yields

identical results to PD processing while maintaining security and privacy.

The 0.01% difference can be accounted for by the rounding-off during the

preprocessing steps for both original audio secret A and impulse response

hREV . We hope to optimize the solution in the future to further minimize
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Figure 4.2: Similarity score between PD and ED processing
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Figure 4.3: Modeled room impulse response

43



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−1

−0.5

0

0.5

1

Time(sec)

Am
pl

itu
de

(a) audio secret

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.2

0.4

0.6

0.8

1

Time(sec)

Am
pl

itu
de

(b) 1st share

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time(sec)

A
m

pl
itu

de

(c) reconstructed reverb effected audio

Figure 4.4: Time domain plots of audio1.wav
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round-off errors.

Time domain plots of audio1.wav are represented in Figure 4.4 showing

the audio secret, one of its shares and the reverb effected reconstructed secret.

The time series reveals that 1) the share is noise and likely to have equal

power across all frequencies and 2) the amplitude series of the reverb effected

reconstructed secret shows some low amplitude regions as compared to the

audio secret. This results from the delay and decay effect of the impulse

response shown in Figure 4.3, which verifies that the audio secret has been

reverb effected.

4.4 Chapter Summary and Conclusion

The addition of reverberation effects, among others such as flanging and cho-

rus effect, is a vital aspect of audio editing and production in big industries

such as music and film production, etc. Such operations are expensive, es-

pecially for a client that is constrained in resources. We have proposed in

this chapter a secure addition of reverberation effect to an audio secret over

cloud by using the (K,N) SSS scheme as our cryptosystem. Our method

implements convolution reverb and can be applied to any reverberation im-

pulse response and an audio secret in ED over cloud. Experimental results

reveal that our proposed method is efficient and yields similar results to PD

with minimal loss.
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Chapter 5

Secure Cloud-based Speech

Noise Reduction

Apart from storage services provided by CDCs, most clients also make use

of computing services. Most importantly, when the need arises for some

processing to be done on this encrypted data, the third-party server will first

have to decrypt the cipher text which will expose the confidential information.

This makes the confidential data vulnerable to exploitation by an adversary.

Hence, secure processing of such confidential data is of utmost importance.

A quality-degraded speech secret outsourced to a CDC for storage and

processing could be contaminated with different types of noise. The noise

could be random, from the circuitry of the recording system or even from

power line interference. In this work we propose the implementation of se-

cure digital linear filters using difference equations and impulse responses to

enhance the quality of an encrypted speech secret over cloud. We filter out

noise from an encrypted quality-degraded speech secret such that decrypting
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the ciphertext will produce an enhanced version of the speech secret. We use

SSS as the cryptosystem in order to achieve this.

The rest of this chapter is organized as follows. In Section 5.1, we discuss

the feasibility of noise reduction techniques and digital filters in ED. The

proposed method for secure noise reduction over cloud is presented in Section

5.2 and experimental results are discussed in Section 5.3. We conclude and

summarize this chapter in Section 5.4.

5.1 Preliminaries of and Challenges in Noise

Reduction ED

5.1.1 White, wind and humming noise

Noise is an unwanted sound which may contaminate a speech signal through

the acquisition process (e.g. cockpit voice recorder, hidden recorders of

surveillance applications, power line interference, etc.), transmission chan-

nel, signal quantization, etc. As a result, the quality and/or intelligibility

of the signal is degraded. In general, the main goals of speech enhancement

are:

1. to make it pleasant for human perception and to reduce listener fatigue.

Noise is disturbing, irritating, annoying and in the case of low frequency

noise (infrasound) it might be hazardous to human health [45], [9].

2. to be used as a preprocessing step for speech processing applications

such as speech transcription systems, speech/speaker recognition sys-
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tems, speech coders, etc., in order to increase accuracy.

There are different types of noise, and the removal technique depends on

the nature and frequency characteristics of the noise. In this work, we focus

on the attenuation of white, wind and humming noise. We choose these

types of noise because: 1) Their frequency characteristics cut across the

general spectral nature of noise. White noise consists of high frequencies,

wind noise of lower frequencies and humming noise of harmonic frequencies.

Our technique can be applied to any noise of similar frequency characteristics.

2) Noise with these characteristics can be attenuated with linear filters (Finite

Impulse Response). In our case, linear filters can be implemented in ED

with the homomorphic property of SSS (i.e. addition and multiplication).

Subtraction and division operations can also be performed in the ED of SSS

with intelligent preprocessing techniques. Table 5.1 gives a brief description

of the noise types that our proposed scheme attenuates in ED.

Types of noise presented in Table 5.1 are additive, meaning that the noisy

signal is a sum of the clean signal and the noise process. That is:

x(n) = y(n) + v(n) (5.1)

where x is the noisy signal, y is the clean signal and v is the noise. Proposed

noise removal/attenuation algorithms in literature either operate in temporal

domain (time domain) or some transform domain (Fast Fourier Transform

(FFT), Discrete Cosine Transform (DCT), wavelet tranform). They can be

classified into: 1) Wiener filtering approach [55], [13]; 2) Spectral subtraction

[6], [37]; 3) Statistical model approaches [34]; 4) Subspace techniques [25],
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Table 5.1: Noise types

Noise Characteristics Reduction technique

PD ED
Proposed schemes

Difference
eqn. Convolution

White
noise

Wide-band frequency
characteristics, flat
spectral density, sta-
tistically uncorrelated
with a zero mean
normal distribution,
overlaps with speech
spectral components,
random in nature.
[Noise source: ran-
dom process]

Low-pass filter (TD,FD)
Wiener filter (TD,FD)
Kalman filter (TD,FD)
Spectral subtraction
(FD)
Statistical techniques
(TD,FD)
Subspace techniques
(EGD)
etc.

Low pass
filter
(LPF)

LPF-
scheme1

LPF-
scheme2

Humming
noise

narrow-band fre-
quency characteristics,
characterized by a
fundamental frequency
and its harmonics,
tonal in nature. [Noise

source: Interference
from AC power line
(50hz or 60hz)]

Notch filter (TD,FD),
Comb filter (TD,FD),
Wiener filter (TD,FD),
Kalman filter (TD,FD),
Spectral subtraction
(TD,FD),
Statistical techniques
(TD,FD),
Subspace techniques
(EGD)
etc.

Comb fil-
ter (CF)

CF-
scheme1

CF-
scheme2

Wind
noise

Wide-band frequency
characteristics, has
higher strengths in
selected frequency
bands; mostly in the
lower frequency band
(< 500Hz). [Noise

source: air fluctua-
tions]

High-pass filter (TD,FD),
Wiener filter (TD,FD),
Kalman filter (TD,FD),
Spectral subtrac-
tion(FD),
Statistical techniques
(TD,FD),
Subspace techniques
(EGD)
etc.

High
pass filter
(HPF)

HPF-
scheme1

HPF-
scheme2

Note: TD and FD means that the reduction technique can be performed in Time Domain and
Frequency Domain respectively. However, all reduction techniques under Encrypted Domain are
performed in time domain. Subspace techniques are performed in Eigen Domain (EGD)

[15]; and 5) Pass-stop filters (low-pass, high-pass, etc.) [32], [67]. A detailed

survey can be obtained from [44], [32], [31], [20]. Noise reduction techniques

are not meant to attenuate noise 100%, as significant attenuation results in

distortion of the speech signal. Instead, they reduce the noise to a level which

makes perception of the actual signal easy and pleasant. After processing,

most of these algorithms leave uncorrelated magnitude peaks in the spectrum

of the processed signal, which is called residual noise. For instance, spectral
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subtraction leaves behind musical tones, so there is often a tradeoff between

noise reduction and the quality and/or intelligibility of the signal.

5.1.2 Digital filters

In this work, we propose the implementation of three Finite Impulse Response

(FIR) digital filters in ED for the attenuation of the three types of noise

stated above: 1) LPF for the attenuation of white noise, 2) CF for the

reduction of humming noise and 3) HPF (differentiator) for the reduction

of wind noise. We implement these filters in time domain using difference

equations and convolution with their impulse responses, as converting to

other transform domains such as FFT is complex-valued and not feasible in

ED of SSS. Despite the fact that there are implementation techniques for FFT

in ED [5], the estimation of the noise spectrum during speech inactive periods

is not feasible solely on homomorphism in ED (eg. spectral subtraction and

its variants - Power Spectral Subtraction, Magnitude Spectral Subtraction,

etc.)

Prior knowledge of the signal and noise statistics makes speech enhance-

ment algorithms easy to implement. However, in real life scenarios, these

parameters are not known a priori [20]. Hence, most enhancement algo-

rithms estimate these parameters by employing modeling techniques (Hid-

den Markov Models (HMM), autoregression (AR), LPC, etc.), Voice Activ-

ity detectors (VAD) to learn noise parameters during non-voiced parts of

the speech signal, and adaptive techniques to adjust filter coefficients as and

when noise parameters are detected or changed. The major challenge here
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is that these implementations are nonlinear, involving operations which are

not feasible in ED by using homomorphism. For instance, the well known

Wiener and Kalman filters, which many of these techniques revolve around,

are based on optimization algorithms which converge to a minimal error co-

efficient and are recursive and iterative. Recursive, adaptive and iterative

filtering solely based on homomorphic encryption is not feasible as discussed

in [58], [60]. For these reasons, we focus on time domain techniques which

can be decomposed into the four basic arithmetic operations (addition, sub-

traction, multiplication and division) which are feasible in ED based on SSS

homomorphic encryption. Table 5.2 illustrates the operations involved in

the techniques for the reduction of the noise types stated earlier and their

feasibility in ED.

In addition to the feasibility of LPF, CF and HPF in time domain in ED,

below are key reasons for the selection of these three filters:

(1) they are linear in nature (Linear Time-Invariant) and can be disinte-

grated into the four basic arithmetic operations (addition, subtraction, mul-

tiplication and division) as illustrated in Table 5.2. These operations are

supported by homomorphism as discussed in Section 2.3.2 and hence can be

implemented in ED.

(2) they are time domain filters, i.e., the Moving Average (MA) filter and the

differentiator are time domain implementations of a simple LPF and HPF

respectively.

(3) FIR filters have a finite impulse duration which makes it possible to ap-

ply convolution to its impulse response and the noisy signal, unlike Infinite

Impulse Response (IIR) filters with infinite impulse duration. Furthermore,
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Table 5.2: Filtering and operations involved

Filter Operations
ED feasible
(Yes/No)

Time Domain
Low-pass filter (MA filter) Addition, Multiplication, Division Yes
High-pass filter (Differentiator) Subtraction Yes

Notch filter
Addition, Subtraction, Multiplication,
Trigonometric Functions

No

Comb filter Subtraction, Multiplication Yes

Wiener filter
Addition, subtraction, multiplication,
division, comparison, iterative filtering,
MSE

No

Kalman filter

Addition, subtraction, multiplication,
division, comparison, estimates the
state space (AR) model parameters
from the noisy speech, MSE

No

Statistical approach techniques
modeling of noise which requires non-
linear operations

No

Frequency Domain
Low-pass filter, High-pass filter,
Notch filter, Comb filter, Wiener
filter, Kalman filter, Spectral sub-
traction, Statistical approach tech-
niques

FFT transform (Complex arithmetic) No

Eigen Domain

Subspace model-based techniques

Addition, subtraction, multiplication,
division, eigen vector decomposition
(EVD), optimization criteria, thresh-
olding

No

FIR filter operations have a linear phase property, i.e., the time shifts (delay)

performed per sample in each of the filtering operations (LPF, CF and HPF)

discussed below are by a constant amount. This results in a linear phase

response and there is no phase distortion of the resulting enhanced signal.

In the future we hope to examine the feasibility of the other FIR filtering

techniques for speech enhancement.

LPF - MA filter

MA filter, also called anti-hiss filter, is a low pass filter which passes low

frequencies and attenuates higher frequencies. This filter is mostly used to

smoothen the higher frequency portions of a signal in temporal domain. The

difference equation for an M -point MA filter is represented below, where ŷ
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x[n] Z−1 Z−1 Z−1

× b0 × b1 × b2 × bM

+ + + ŷ[n]

Figure 5.1: MA filter

is the denoised signal sequence, x is the noisy signal sequence and M is the

size of the filter:

ŷ[n] =
M−1
∑

k=0

bkx[n− k] , b0 = · · · = bM−1 =
1

M

=
1

M

M−1
∑

k=0

x[n− k]

(5.2)

The signal x is partitioned into frames of size M samples; with M − 1

overlap and the average of each frame is computed. As can be seen from

Figure 5.1, the order of the filter is equal to the number of samples delayed,

which is M − 1. Like any LPF, increasing the order of the MA filter results

in a steeper roll-off in the transition band, which produces a sharper cutoff of

higher frequencies. It is important to note that larger values of M not only

reduce noise but also affect the crispness and distort the speech signal. As a

result, the size M of the filter should be chosen in such a way to maintain a

balance between noise reduction and signal distortion.
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Comb filter

The comb filter attenuates harmonic-like noise (e.g noise from 50Hz or 60Hz

power mains). Figure 5.2. shows its digital signal processing (DSP) dia-

gram whose input is the noisy signal x, output is enhanced signal ŷ, a delay

component D and a feedforward coefficient g. The difference equation is:

ŷ[n] = x[n]− g × x[n−D] (5.3)

where D = fs
fo
, fs is the sampling frequency of the noisy signal, fo is

the fundamental frequency of humming noise (mostly 60Hz) and g is within

0 < g ≤ 1, which controls the level of noise attenuation. The magnitude

response of this filter has the comb effect which results from phase cancella-

tion and reinforcement between the delayed and undelayed signal. Adding a

signal with a delayed version of itself where the delay is fs
fo

results in phase

cancellations in time domain which corresponds to the harmonics of fo in

frequency domain. Humming noise not only degrades speech signals but also

contaminates Electrocardiography (ECG) signals which might mislead pa-

tient diagnosis. Our proposed scheme for secure humming noise removal can

also be applied for the reduction of humming noise of encrypted ECG signals

in order to protect patient record confidentiality and privacy for delivering

cloud based telemedicine services or cloud based patient record storage.

HPF - differentiator

The HPF attenuates lower frequencies and passes higher frequencies. This

filter is applicable for attenuating wind noise, and eliminating DC offsets and
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x[n] + ŷ[n]

Z−D g

Figure 5.2: Comb filter

x[n] + ŷ[n]

Z−1 a

Figure 5.3: HPF filter

microphone pops. We implement a simple HPF, also called a differentiator,

as shown in Figure 5.3. Its input is the quality-degraded signal x, and its

output is the denoised signal ŷ and a delay component of one sample. Its

difference equation is shown below:

ŷ[n] = x[n]− x[n− 1] (5.4)

Our proposed scheme for HPF of wind noise in ED can also be applied as

a pre-emphasis filter in ED to increase the energy of a signal at higher fre-

quencies prior to performing many speech processing applications like speech

recognition, Linear Predictive Coding (LPC), etc.

Convolution with impulse response

Another approach to perform the filtering discussed above is to compute the

impulse response h[n] of the filters as they are LTI systems. The impulse

response is then convolved with the quality-degraded signal to produce the
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denoised signal. Impulse response represents the behavior of a system H in

response to a unit impulse δ[n] and is computed by:

h[n] = H{δ[n]}; where δ[n] =















1, if n = 0.

0, otherwise.

(5.5)

The convolution sum to produce the enhanced signal is given by:

ŷ[n] = x[n] ∗ h[n] =
∞
∑

k=−∞

x[k]h[n− k] (5.6)

Figure 5.4: The proposed work: Speech noise reduction in ED
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5.2 Proposed Method for Speech Noise Re-

duction in ED

Figure 5.4 represents the proposed work. Shares of the quality-degraded

speech signal (contaminated with noise) are created with the (K,N) SSS

threshold scheme on the client system. The client then uploads each of N

shares to N different non-colluding CDCs. The CDC then performs the noise

reduction operation on their hosted shares (that is, processing the encrypted

speech signal without knowing the secret). The authorized user then re-

constructs the enhanced (denoised) secret by putting at least K out of N

processed shares together. We propose the implementation of the difference

equation approach and convolution approach (i.e convolution with the im-

pulse response of the digital FIR filter) for each of the filters (LPF, CF and

HPF) discussed in Section 5.1.2 in ED. We implement two schemes for each

filter.

5.2.1 Preprocessing

We preprocess the speech signal to convert it from real values to positive

integer values. Below, we describe the preprocessing steps performed on the

original quality-degraded speech signal A prior to creating shares for all three

filtering techniques (LPF, CF and HPF).

Step 1: Scale real-valued signal amplitudes with constant factor 10d where
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d is some integer value. Round-off error is bounded by:

−
1

2
× 101−d ≤ Er ≤

1

2
× 101−d (5.7)

where Er is the rounding error and d is the rounding precision.

Step 2: Shift the signal to the first quadrant by a constant additive shift ϕ

to avoid negative numbers.

A′ =
(

(A+ Er)× 10d
)

+ ϕ (5.8)

5.2.2 LPF in ED

The steps below describe the operations involved in performing ED Low

pass filtering (MA filtering) on shares of the secret speech signal contami-

nated with white noise.

LPF-scheme 1: Difference equation approach.

Step 1: Preprocess signal A′ from Equation (5.8) to multiples of the size

of the MA filter M from Equation (5.2). This is done to make division as

a result of the averaging operation in Equation (5.2) possible in ED of the

cryptosystem (SSS).

A′′ = A′ ×M (5.9)

Step 2: Create N shares (S1, S2 . . . SN ∈ S) of A′′ under GF (qLPF ) where

qLPF > max(A′′) using Equation (2.1) of SSS and upload shares to N CDCs.
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Step 3: Low pass filter each share over CDC. Apply Equation (5.10) to each

share (S1, S2 . . . SN) to obtain processed shares (S ′
1LPF , S

′
2LPF . . . S ′

NLPF ∈

S ′
LPF )

S ′
iLPF [n] =

(

1

M

M−1
∑

k=0

Si[n− k]

)

modqLPF , i ∈ {1, 2 . . . N} (5.10)

Step 4: The authorized user downloads K processed shares from any K out

of N CDCs, and uses Lagrange interpolation from Equation (2.2) to recon-

struct the denoised version of the secret.

Step 5: Postprocess to reverse the preprocessing done in the above steps.

First, divide the reconstructed denoised secret by the size of the MA filter

M , then subtract the additive shift ϕ and finally divide by the scaling factor

10d from Section (5.2.1) step 1.

LPF-scheme 2: Convolution approach.

Step 1: Preprocess signal A′ to obtain A′′ using Equation (5.9) as performed

in step 1 of LPF-scheme 1.

Step 2: Create N shares (S1, S2 . . . SN ∈ S) of A′′ using Equation (2.1) of

SSS in the finite field of q′LPF and upload shares to N CDCs. As discussed in

Section (5.2.5), the modular prime chosen should be more than the maximum

sample of A′′ multiplied by the sum of absolute values of the impulse response

sequence. From Equation (5.17), q′LPF > max(A′′) ×
∑ILPF−1

n=0 |hLPF [n]|,

where hLPF [n] is the impulse response of the MA filter computed using Equa-

tion (5.5).
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Step 3: Convolve the impulse response hLPF [n] with each share on the CDC

to produce processed shares (S ′′
1LPF , S

′′
2LPF . . . S ′′

NLPF ∈ S ′′
LPF )

S ′′
iLPF =

(

Si[n] ∗ hLPF filter[n]

)

modq′LPF

=

( L−1
∑

k=0

Si[k]hLPF filter[n− k]

)

modq′LPF

i ∈ {1, 2 . . . N}

(5.11)

where L is the number of samples of each share.

Step 4: The authorized user puts together K processed shares from any

K out of N CDCs, then uses Lagrange interpolation from Equation (2.2) to

reconstruct the denoised version of the secret.

Step 5: Postprocess to reverse the preprocessing done in the above steps.

First, divide the reconstructed denoised secret by the size of the MA filter

M , then subtract the additive shift ϕ and finally divide by the scaling factor

10d from Section (5.2.1) step 1.

5.2.3 CF in ED

Comb filtering in ED is detailed below for the enhancement of a speech secret

degraded with humming noise.

CF-scheme 1: Difference equation approach.

Step 1: Create N shares (S1, S2 . . . SN ∈ S) of preprocessed signal A′ from

Equation (5.8) using Equation (2.1) of SSS under GF (qCF ), where qCF is the
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first prime more than max(A′).

Step 2: Comb filter each share. Comb filtering in ED with Equation (5.3)

might result in errors due to the negative real-valued feedforward gain g.

In order to avoid errors, we modify Equation (5.3) by performing the below

scaling and additive shift in ED.

1. Scaling real-valued g: The real-valued feedforward coefficient 0 < g ≤ 1

might result in real numbers during processing on encrypted shares. As

g is a one decimal place number between 0 and 1, scaling it with 10

will eliminate real numbers, i.e., g′ = 10g, where 0 < g′ ≤ 10, which

is also the same as multiplying Equation (5.3) by 10. The value of g′

determines the level of noise attenuation by the filter (i.e. 1 means 10%

attenuation, 2 means 20% attenuation, 3 means 30% attenuation ... 10

means 100% attenuation).

S ′
CF [n] = 10

(

S[n]− g × S[n−D]
)

S ′
CF [n] = 10× S[n]− g′ × S[n−D]

(5.12)

2. Avoiding negative numbers: Add a constant additive shift ϑ to Equa-

tion (5.12) which is equal to 10d (signal scaling factor from step 1 Sec-

tion (5.2.1) multiplied by 10 (scaling factor from above), i.e. ϑ = 10d+1
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S ′
iCF [n] =

(

(

10× Si[n]− g′ × Si[n−D]

)

+ ϑ

)

modqCF

i ∈ {1, 2 . . . N}

(5.13)

Apply Equation (5.13) to comb filter each share to obtain processed shares

(S ′
1CF , S

′
2CF . . . S ′

NCF ∈ S ′
CF )

Step 3: The authorized user can reconstruct the enhanced secret by putting

together K processed shares from any of the N CDCs using Lagrange inter-

polation from Equation (2.2).

Step 4: Postprocess the reconstructed enhanced secret to reverse-engineer

preprocessing done in the above steps.

1. Subtract additive shift ϑ and divide by the scale factor of 10 from

Section (5.2.3) step 2.

2. Subtract additive shift ϕ and divide by the scale factor of 10d from

Section (5.2.1) step 2 and 1 respectively.

CF-scheme 2: Convolution approach.

Step 1: Create N shares (S1, S2 . . . SN ∈ S) of the preprocessed signal A′

in finite field of q′CF using Equation (2.1) of SSS. In order to address the

cipher blow-up problem as a result of convolution in ED as discussed in

Section 5.2.5, we determine the modular prime using Equation (5.17), i.e.

q′CF > max(A′)×
∑ICF−1

n=0 |h′
CF [n]|, where h

′
CF is the scaled impulse response

hCF of the comb filter, which will be explained in the next step.
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Step 2: Convolution of each share on CDC. Due to the negative real-valued

feedforward gain g of the comb filter, hCF = [1, . . . ,−g] has a negative real-

valued last sample. We perform the following in ED to avoid negative and

real-valued samples. 1) Since g is a one decimal place number between 0 and

1, we scale hCF by 10, i.e. h′
CF = 10×hCF and 2) we add a constant additive

shift ϑ′ to avoid negative samples, i.e. ϑ′ = ⌈
q′
CF

2
⌉, where ⌈.⌉ is a ceiling

function. Convolve each share (S1, S2 . . . SN ∈ S) with h′
CF using Equation

(5.14) to obtain (S ′′
1CF , S

′′
2CF . . . S ′′

NCF ∈ S ′′
CF )

S ′′
iCF [n] =

(

(

Si[n] ∗ h
′
CF [n]

)

+ ϑ′

)

modq′CF

=

(

( L−1
∑

k=0

Si[k]h
′
CF [n− k]

)

+ ϑ′

)

modq′CF

i ∈ {1, 2 . . . N}

(5.14)

Step 3: The authorized user can reconstruct the enhanced secret by putting

together K processed shares from any of the N CDCs using Lagrange inter-

polation from Equation (2.2).

Step 4: Postprocess the reconstructed enhanced secret to reverse-engineer

the preprocessing done in the above steps. 1) Subtract additive shift ϑ′ and

divide by the scale factor of h′
CF , which is 10. 2)Subtract additive shift ϕ and

divide by the scale factor of 10d from Section (5.2.1) step 2 and 1 respectively.
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5.2.4 HPF in ED

Removal of wind noise in ED with HPF is detailed below.

HPF-scheme 1: Difference equation approach.

Step 1: Create N shares (S1, S2 . . . SN ∈ S) of A′ using Equation (2.1) of

SSS. Shares are created under GF (qHPF ); where qHPF is the first prime more

than the maximum sample a′max of A′.

Step 2: High pass filter each share. Before high pass filtering, add a con-

stant additive shift λ to Equation (5.4) to avoid negative numbers. Addi-

tive shift is equal to the scaling factor 10d from step 1 Section (5.2.1), i.e.

λ = 10d. Filter each share with Equation (5.15) to obtain processed shares

(S ′
1HPF , S

′
2HPF . . . S ′

NHPF ∈ S ′
HPF )

S ′
iHPF [n] =

(

(

Si[n]− Si[n− 1]

)

+ λ

)

modqHPF

i ∈ {1, 2 . . . N}

(5.15)

Step 3: Reconstruction of the denoised secret by the authorized user with

any K processed shares using Lagrange interpolation from Equation (2.2).

Step 4: Postprocess the reconstructed denoised secret. Subtract the sum of

additive shifts (i.e. λ+ϕ) and divide by the scale factor of 10d from Section

(5.2.1) step 1.

HPF-scheme 2: Convolution approach.

Step 1: Create N shares (S1, S2 . . . SN ∈ S) of A′ using Equation (2.1)
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of SSS under GF (q′HPF ) and upload them to N CDCs. q′HPF > a′max ×
∑IHPF−1

n=0 |hHPF [n]|, where hHPF [n] is the impulse response of HPF computed

from Equation (5.5) and a′max is the maximum sample of A′.

Step 2: On the CDC, convolve each share with hHPF [n] to obtain processed

shares (S ′′
1HPF , S

′′
2HPF . . . S ′′

NHPF ∈ S ′′
HPF ). The computed impulse response

of HPF is hHPF = [1,−1]. Due to the negative second sample of hHPF ,

convolution in ED might result in negative values, so we add an additive

shift λ′ to avoid using negative integers in modular domain. λ′ = ⌈
q′
HPF

2
⌉,

where ⌈.⌉ is a ceiling function.

S ′′
iHPF [n] =

(

(

Si[n] ∗ hHPF [n]

)

+ λ′

)

modq′HPF

=

(

( L−1
∑

k=0

Si[k]hHPF [n− k]

)

+ λ′

)

modq′HPF

i ∈ {1, 2 . . . N}

(5.16)

Step 3: Reconstruction of the denoised secret by the authorized user with

any K processed shares using Lagrange interpolation from Equation (2.2).

Step 4: Postprocess the reconstructed denoised secret by 1) subtracting the

sum of additive shifts (λ′+ϕ) and 2) dividing by the scale factor of 10d from

Section (5.2.1) step 1.

5.2.5 Implementation challenges of convolution in ED

The implementation of convolution in ED requires us to address the problem

of cipher blow-up with homomorphic computation[60],[59],[16]. Homomor-
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phic operations performed in ED are in some finite field (modular domain).

However, signal processing operations on plaintext are not in modular do-

main. This means that computations in ED, when applied to PD, should not

overflow the message space as a result of the modular operation. Discrete

convolution sum is comprised of a series of multiplication and addition oper-

ations and sometimes results in cipher blow-ups depending on the numbers

and weights of the samples of the impulse response. This causes operations

to overflow (wrap-around) the modular space several times which disconnects

the homomorphic mapping between ED and PD.

To simplify this explanation, assume that the preprocessed samples of

some 8 bit real-valued signal X = {x1, x2, x3} after scaling to integer X̂ =

{56, 162, 98}, are processed in both PD and ED with an FIR system y[n] =

x[n] + x[n − 1] whose impulse response is h = [1, 1]. Creating shares with

the (2, 3) SSS scheme under modulus prime 257 (q = 257; i.e. the first

prime greater than the maximum sample of an 8 bit signal X̂) produces

S1 = {155, 4, 197}, S2 = {254, 103, 39} and S3 = {96, 202, 138} as share 1,

2 and 3 respectively.

i. PD convolution: convolution of X̂ with h = [1, 1] will give {218, 260, 98}

ii. ED convolution underGF (257): Convolving each share (S1, S2 and S3)

with h = [1, 1] and reconstructing will produce {218, 3, 98}

It is evident that the results of i and ii above are not the same. The

mapping between the result of ii and its real-valued version with a scale

factor is lost. This is due to the fact that computation overflows the modular

space GF (257). To solve this problem, the modulus prime should be chosen
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large enough to accommodate overflows within the modular domain. For the

convolution operation, we propose that the modular prime should be greater

than the multiple of the maximum sample of the preprocessed signal and the

sum of absolute values of the impulse response. That is:

q > xmax ×
I−1
∑

n=0

|h[n]| (5.17)

where xmax is the maximum sample of the scaled signal X̂, and I is the

number of samples of the impulse response. With this in mind, we compute

the prime with Equation (5.17) to get 331 and repeat the above example

under GF (331) to obtain {218, 260, 98} in PD and {218, 260, 98} in ED after

reconstruction, which are identical. Though this will produce large primes

with increasing numbers of non-zero samples of the impulse response, it is

practical for FIR systems with less overhead since they are non-recursive

with finite impulse duration. For instance, the above example incurred an

overhead of less than 1 bit (i.e. log2(331)− log2(257))

5.2.6 Data overhead

In our proposed ED noise reduction schemes, there are some data overheads

incurred to transmit a share from the client to the CDC as a result of data

expansion caused by the preprocessing steps. This data overhead is the

number of bits used to represent the maximum preprocessed speech sample.

Since shares are generated under a finite field bounded by a modulo prime

number, we can conclude that the data overhead is also bounded by the

number of bits used to represent this prime number.
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Overhead for LPF-scheme 1

Preprocessing before creating shares for low pass filtering (scheme 1) involves

Equations (5.7),(5.8) and (5.9). Shares of preprocessed signal A′′ are created

bounded by qLPF . If bLPF is the number of bits representing qLPF then the

overhead is:

bLPF = log2(qLPF ) (5.18)

Now we examine how the expansion of the message space of the origi-

nal signal A due to preprocessing relates to data overhead and transmission.

From Equations (5.7),(5.8) and (5.9), the relationship between amax (maxi-

mum sample of the original secret signal A) and a′′max (maximum sample of

preprocessed signal A′′) can be expressed as:

a′′max =
(

(amax × 10d) + µ
)

× M ; where µ =
(

Er × 10d
)

+ ϕ and con-

sequently, qLPF > a′′max. Rewriting Equation (5.18) in terms of amplitude

gives:

bLPF > log2

(

(

(amax × 10d) + µ

)

×M

)

(5.19)

Overhead for LPF-scheme 2

Convolution in ED requires the selection of a modular prime such that the

cipher blow-up problem highlighted in Section 5.2.5 does not occur. The

prime q′LPF chosen bounds the message space. If b′LPF is the overhead in bits

then:

b′LPF = log2(q
′
LPF ) (5.20)
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From LPF-scheme 2 step 2,

q′LPF > a′′max ×
∑ILPF−1

n=0 |hLPF [n]| so:

b′LPF > log2

(

a′′max ×
ILPF−1
∑

n=0

|hLPF [n]|

)

b′LPF > log2

[(

(

(amax × 10d) + µ
)

×M

)

×
ILPF−1
∑

n=0

|hLPF [n]|

]

(5.21)

Overhead for CF-scheme 1

Shares of preprocessed signal A′ are created for this scheme under GF (qCF ).

Let bCF be the number of bits of qCF then overhead is:

bCF = log2(qCF ) (5.22)

From Equation (5.7) and (5.8), qCF > (amax × 10d) + µ where µ =
(

Er × 10d
)

+ ϕ and consequently:

bCF > log2

(

(amax × 10d) + µ

)

(5.23)

Overhead for CF-scheme 2

Let b′CF be the data overhead in bits for comb filtering scheme 2. Shares of

the preprocessed signal A′ are created in the finite field of q′CF . Then, the

overhead is represented by:

b′CF = log2(q
′
CF ) (5.24)
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q′CF > a′max ×
∑ICF−1

n=0 |h′
CF [n]| from CF-scheme 2 step 1. Expressing b′CF

in terms of amplitude will give:

b′CF > log2

[(

(amax × 10d) + µ

)

×
ICF−1
∑

n=0

|h′
CF [n]|

]

(5.25)

Overhead for HPF-scheme 1

For HPF, preprocessing involving Equations (5.7) and (5.8) produces A′ and

shares are bounded by qHPF . If bHPF is the overhead for this scheme then it

is given by:

bHPF = log2(qHPF ) (5.26)

qHPF > (amax × 10d) + µ so:

bHPF > log2

(

(amax × 10d) + µ

)

(5.27)

Overhead for HPF-scheme 2

The convolution approach of HPF is bounded by q′HPF . If the bit represen-

tation of q′HPF is b′HPF , then the overhead is:

b′HPF = log2(q
′
HPF ) (5.28)

From step 1 of HPF-scheme 2, q′HPF > a′max ×
∑IHPF−1

n=0 |hHPF [n]|, and

rewriting equation (5.28) gives:
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b′CF > log2

[(

(amax × 10d) + µ

)

×
IHPF−1
∑

n=0

|hHPF [n]|

]

(5.29)

For all the difference equation approaches of all the filters (LPF-scheme

1, CF-scheme 1 and HPF-scheme 1), it is evident that from Equations (5.19),

(5.23) and (5.27), increasing d during preprocessing will yield minimal round-

off error but higher data overhead so d should be chosen to maintain a balance

between the two. From Equation (5.19), it is clear that LPF-scheme 1 and 2

data overhead also depends on the size M of the filter. The greater the size,

the greater the overhead to transmit a share to CDC. The overhead for the

convolution approaches (LPF-scheme 2, CF-scheme 2 and HPF-scheme 2),

as shown in Equations (5.21), (5.25) and (5.29), depends on the maximum

sample of the preprocessed signal and the weights and number of non-zero

samples of the impulse response sequence. The higher these values are, the

higher the bandwidth resources required to transmit each share to CDC.

Thus, an impulse response with higher weights and many non-zero elements

will require a larger message space (modulus prime) in order for convolution

in ED to maintain mapping to their plaintext versions with a scaled factor,

without the cipher blow-up problems stated in Section 5.2.5. FIR filters have

finite impulse duration and the responses of the FIR filters implemented in

this work have small weights and finitely few samples. For example, the

impulse response of an M point MA filter has weights of 1
M

and a length of

M , and the comb filter and the HPF have two non-zero samples with weights

of 1.
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5.2.7 Security analysis

The proposed method is based on the (K,N) SSS threshold scheme which

is proven to be information theoretically secure [56]. However, our scheme

preprocesses the speech signal before generating shares so it is imperative

to examine the impact on information theoretic security. We evaluate the

security of our proposed method using the below corollaries based on the

theorems in [30].

Corollary 3 LPF-scheme 1 is information theoretically secure if the proba-

bility of revealing a speech secret sample a0 shared under GF (q) is the same

as the probability of determining a′′0 =
(

(a0 × 10d) + µ
)

× M shared under

GF (qLPF ) (where µ =
(

Er × 10d
)

+ ϕ from Equation (5.8) and qLPF is a

prime number greater than
(

(q × 10d) + µ
)

×M).

Proof 6 For each plaintext of speech secret a0 ∈ A, there is an equal prob-

ability that it can be any value from the set 0 ≤ a0 ≤ q − 1 of q values since

SSS encryption is upper bounded by q. This probability is given by:

Pr(a0)0≤a0≤q−1 =
1

q
(5.30)

Similarly, for each plaintext a′′0 of the preprocessed speech secret A′′ where

a′′0 =
(

(a0 × 10d) + µ
)

× M , there is also an equal probability of being any

value from the set {0,
(

10d + µ
)

×M,
(

(2× 10d) + µ
)

×M,
(

(3× 10d) + µ
)

×

M, ..., qLPF − 1}, that is 0 ≤ a′′0 ≤ qLPF − 1 of q values with the probability

given as:

Pr(a′′0)0≤a′′0≤qLPF−1 =
1

q
(5.31)
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Corollary 4 LPF-scheme 2 is information theoretically secure if the proba-

bilities of revealing a speech secret sample and a preprocessed sample are the

same.

Proof 7 Proof is the same as Corollary 3 where the preprocessed sample is

shared underGF (q′LPF ) with q′LPF >
[ (

(q × 10d) + µ
)

×M
]

×
∑ILPF−1

n=0 |hLPF [n]|.

Corollary 5 CF-scheme 1 is information theoretically secure.

Proof 8 Proof is the same as Corollary 3 with preprocessed speech secret

sample a′0 = (a0 × 10d) + µ shared under GF (qCF ) ; qCF > (q × 10d) + µ.

Corollary 6 CF-scheme 2 is information theoretically secure.

Proof 9 Proof is the same as Corollary 3 with preprocessed speech secret

sample a′0 = (a0×10d)+µ shared under GF (q′CF ) ; q′CF >
[

(q×10d)+µ
]

×
∑ICF−1

n=0 |h′
CF [n]|.

Corollary 7 HPF-scheme 1 is information theoretically secure.

Proof 10 Proof is the same as Corollary 3. Preprocessed speech secret sam-

ple shared under GF (qHPF ) ; qHPF > (q × 10d) + µ.

Corollary 8 HPF-scheme 2 is information theoretically secure.

Proof 11 Proof is the same as Corollary 3 where preprocessed speech secret

sample is shared underGF (q′HPF ) ; q′HPF >
[

(q×10d)+µ
]

×
∑IHPF−1

n=0 |hHPF [n]|.

In all cases above, the probability of revealing the secret sample a0 and the

preprocessed samples a′0 or a′′0 is 1
q
. Thus, our scheme preserves information

theoretic security after preprocessing the original secret speech signal. An

adversary in both cases will have to guess the secret with a probability of 1
q
.
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Corollary 9 Our proposed schemes in ED (LPF-scheme 1 and 2, CF-scheme

1 and 2, and HPF-scheme 1 and 2) are 100(1 − r(ED,PD))-accurate imple-

mentations of their plaintext versions with negligible loss in accuracy, where

0 ≤ r(ED,PD) ≤ 1 is the similarity coefficient between ED and PD processing.

Proof 12 Proof follows the same lines as theorem 1.

Corollary 10 In the malicious model, our proposed schemes in ED (LPF-

scheme 1 and 2, CF-scheme 1 and 2, and HPF-scheme 1 and 2) are 1-

checkable implementations of their corresponding computations over cloud.

Proof 13 Proof follows the same lines as theorem 2.

Remark 2 The computational complexity for checkability by the client is

linear to the size L of the reconstructed denoised signal, i.e. O(L). This

might cause additional overhead for the client and can therefore be performed

offline.

5.3 Experimental Results

We selected a set of 35 clean speech paragraphs from the Language Tech-

nologies Institute at CMU (Carnegie Mellon University) database [61]. The

speech files are sampled at 16kHz 16bit. We digitally added white noise,

humming noise (60Hz harmonics) [2] and wind noise [17] to the 35 clean

speech files at 7 global SNR levels of −15dB,−10dB,−5dB, 0dB, 5dB, 10dB

and 15dB to obtain 35 noisy speech secret files per noise type (ie. a total of

105 noise corrupted speech signals). We used these 105 noisy speech signals
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(35 white noise, 35 humming noise and 35 wind noise corrupted speech sig-

nals) to test and evaluate our proposed method. We perform the denoising

operations in ED for our methods and then in PD. We later evaluate the

ED denoised signal with respect to the PD denoised signal and the clean

reference signal. Figure 5.5 illustrates our experimental setup.

Figure 5.5: Experimental setup

We implemented the proposed method using MATLAB14 on a 2.53GHz

i5 CPU with 4GB RAM. In the (K,N) threshold SSS scheme, we set K = 2

and N = 3, implying that we created three shares of the quality-degraded

speech secret such that at least two shares will be required to reconstruct the

enhanced speech secret.

The experiments performed in this section and their goals are:

(i) Objective quality measurement:

(a) Segmental signal-to-noise ratio (segSNR): We employ segSNR to

evaluate the quality of the denoised speech signal in ED with re-

spect to the clean reference signal. The same is done for the PD
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denoised signal. segSNR provides a higher correlation with sub-

jective ratings than the classical SNR and it is one of the most

effective metrics in evaluating speech noise reduction algorithms

[29],[35],[23].

(b) Perceptual Evaluation of Speech Quality (PESQ): We evaluate the

distortion measure of the denoised signal in ED with reference to

the clean signal. PESQ [50] is an international standard widely

used for estimating speech quality. It was developed by the Inter-

national Telecommunication Union (ITU).

(c) Pearson’s correlation: We evaluate the similarity between the de-

noised speech signal in ED and in PD. Alternatively, this test is

similar to computing the Mean Square Error(MSE) between the

denoised speech signal in ED and in PD.

(ii) Subjective quality measurement: A listening test survey was conducted

to evaluate the quality similarity of the denoised speech signal in ED

and in PD.

(iii) Computational complexity: We evaluate how many computational op-

erations are performed on both the client and the CDC side.

5.3.1 Objective quality measurement

Segmental signal-to-noise ratio (segSNR)

We use segSNR to evaluate the quality of the denoised reconstructed speech

from our proposed method in ED and the percentage loss in segSNR with
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respect to PD filtering operations. segSNR was measured by averaging the

frame level SNR per signal using Equation (5.32).

segSNR =
10

J

J−1
∑

j=0

log10

∑Tj+T−1
n=Tj y[n]2

∑Tj+T−1
n=Tj (y[n]− ŷ[n])2

(5.32)

where y is the clean signal (reference signal), ŷ is the enhanced signal,

T is the frame length (we choose 20ms) and J is the number of frames

in the signal. Signal energy during silent intervals of a speech signal may

cause biasing to the measurement of segSNR [29], [35], [23]. We remedy this

by using a P.56-based VAD (voice activity detector) to exclude the silent

frames of the signal from the computation of segSNR (5.32). We obtained

the implementation source code of the segSNR measurement from [40].

Table 5.3: segSNR for white, wind noise reduction

White noise

SNR(dB)
noisy
speech

LPF-scheme1 LPF-scheme2
segSNR(dB)
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
segSNR

denoised
in ED

denoised
in PD

% Loss in
segSNR

-15 -26.603074 -17.287079 -17.287012 0.000387 -17.286468 -17.287012 0.00315
-10 -19.883201 -10.982527 -10.982503 0.000215 -10.982241 -10.982503 0.002391
-5 -14.333825 -6.361027 -6.360992 0.000543 -6.360759 -6.360992 0.003663
0 -10.067725 -3.255279 -3.255331 0.001587 -3.255185 -3.255331 0.004483
5 -4.078657 0.629071 0.628893 0.028254 0.628833 0.628893 0.009446
10 -0.518699 2.462141 2.462831 0.028009 2.46114 2.462831 0.068667
15 5.067411 4.669561 4.669828 0.005732 4.665243 4.669828 0.098188

Wind noise

SNR(dB)
noisy
speech

HPF-scheme1 HPF-scheme2
segSNR(dB)
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
segSNR

denoised
in ED

denoised
in PD

% Loss in
segSNR

-15 -24.284081 -4.651359 -4.651354 0.000111 -4.654222 -4.643519 0.230485
-10 -17.46624 -2.161524 -2.161478 0.002165 -2.166288 -2.15826 0.371955
-5 -12.129808 -0.914804 -0.914705 0.010843 -0.920766 -0.912698 0.883978
0 -7.703269 -0.137905 -0.137799 0.076895 -0.13617 -0.136017 0.112288
5 -1.831293 0.178706 0.178841 0.075663 0.175428 0.178967 1.977176
10 1.941045 0.18719 0.187331 0.075486 0.183301 0.187298 2.133943
15 7.533529 0.32759 0.327743 0.046702 0.31184 0.327734 4.849494

Tables 5.3 and 5.4 present the segSNR averaged over signals per global
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Table 5.4: segSNR for humming noise reduction

g=0.2
SNR(dB)
noisy
speech

CF-scheme1 CF-scheme2
segSNR(dB)
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
segSNR

denoised
in ED

denoised
in PD

% Loss in
segSNR

-15 -26.789155 -24.891482 -24.891496 0.000057 -24.892079 -24.892094 0.000058
-10 -19.900499 -18.004854 -18.004874 0.000114 -18.005024 -18.005045 0.000114
-5 -14.344659 -12.424354 -12.424385 0.000254 -12.424816 -12.424848 0.000255
0 -10.055748 -8.363831 -8.363574 0.003077 -8.363858 -8.3636 0.003082
5 -4.081147 -2.772173 -2.772037 0.004913 -2.771655 -2.771523 0.004769
10 -0.534559 -0.105765 -0.105028 0.702441 -0.105102 -0.104357 0.713137
15 5.052778 4.048975 4.051667 0.066431 4.048216 4.050895 0.066127

g=0.5

SNR(dB)
noisy
speech

CF-scheme1 CF-scheme2
segSNR(dB)
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
segSNR

denoised
in ED

denoised
in PD

% Loss in
segSNR

-15 -26.789155 -20.969356 -20.969364 0.000037 -20.969971 -20.969979 0.000039
-10 -19.900499 -14.290356 -14.290355 0.000007 -14.290599 -14.290596 0.000021
-5 -14.344659 -9.253574 -9.253547 0.000287 -9.254081 -9.254058 0.00025
0 -10.055748 -6.076147 -6.075712 0.007162 -6.076219 -6.075781 0.00721
5 -4.081147 -1.989504 -1.989222 0.014186 -1.989012 -1.988735 0.013926
10 -0.534559 -0.556309 -0.554837 0.265251 -0.555794 -0.554317 0.266441
15 5.052778 2.105467 2.109487 0.190577 2.10437 2.1084 0.191157

g=0.8

SNR(dB)
noisy
speech

CF-scheme1 CF-scheme2
segSNR(dB)
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
segSNR

denoised
in ED

denoised
in PD

% Loss in
segSNR

-15 -26.789155 -14.515005 -14.514963 0.000285 -14.515667 -14.515624 0.000294
-10 -19.900499 -8.979682 -8.979531 0.001685 -8.980078 -8.979923 0.001724
-5 -14.344659 -5.474085 -5.473757 0.00599 -5.474839 -5.474518 0.005856
0 -10.055748 -3.452074 -3.450484 0.046104 -3.452613 -3.451017 0.046252
5 -4.081147 -1.103423 -1.101352 0.188093 -1.103358 -1.101282 0.188466
10 -0.534559 -0.129311 -0.123949 4.325916 -0.128999 -0.123626 4.346415
15 5.052778 1.102041 1.111948 0.890938 1.100711 1.110647 0.894576

g=1

SNR(dB)
noisy
speech

CF-scheme1 CF-scheme2
segSNR(dB)
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
segSNR

denoised
in ED

denoised
in PD

% Loss in
segSNR

-15 -26.789155 -9.334196 -9.333807 0.004172 -9.33494 -9.334552 0.004149
-10 -19.900499 -5.472685 -5.471761 0.016869 -5.472775 -5.471851 0.016882
-5 -14.344659 -3.149341 -3.147692 0.052401 -3.152706 -3.151098 0.051006
0 -10.055748 -1.85155 -1.845075 0.350943 -1.852237 -1.845771 0.350286
5 -4.081147 -0.807828 -0.800418 0.925796 -0.806939 -0.799499 0.930626
10 -0.534559 -0.355181 -0.345201 2.891109 -0.35443 -0.344465 2.8931
15 5.052778 -0.081436 -0.081464 0.034719 -0.08299 -0.082119 1.05962
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SNR level for ED schemes and their corresponding PD filtering operations.

Tables 5.3 and 5.4 reveal that:

(i) For all ED proposed schemes, it is evident that: (1) the segSNR de-

creases as the global SNR increases from -15dB to 15dB. This is as a

result of increasing signal distortion with respect to noise suppression

as the SNR value of the noisy speech signal increases, and (2) at lower

SNRs (-15dB to 5dB), there is a significant increase in segSNR. How-

ever, for relatively higher SNRs (10dB and 15dB), segSNR is minimal

as there is much less noise to suppress, i.e., the algorithm imposes more

distortion to the signal than it would suppress the noise at higher SNR

values. It is important to note that these observations are similar for all

speech enhancement algorithms ([38], [41]) and not just our proposed

methods in ED.

(ii) For white noise reduction in ED, there is an average segSNR increase

of 5.7561dB and 5.7554dB for LPF-scheme 1 and LPF-scheme 2 respec-

tively over all global SNR levels, whereas wind noise reduction in ED

yields an average segSNR increase of 6.6811dB and 6.6712dB for HPF-

scheme 1 and HPF-scheme 2 respectively. However, it can be observed

from Table 5.4 for humming noise reduction in ED (CF-scheme 1 and

CF-scheme 2) that segSNR increases with an increasing gain value g of

the comb filter. The greater the value of g, the greater the attenuation

in the stop band of the filter’s frequency response.

(iii) Most importantly, segSNR observations in ED are similar to their cor-

responding PD filtering operations with no significant differences. The
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%loss in segSNR between ED and PD values is minimal as can be seen

from Tables 5.3 and 5.4. This is because roundoff errors are introduced

by the preprocessing steps prior to the creation of shares for ED schemes

and artifacts are introduced into the speech signal as a result of atten-

uation effect for each scheme. This is common for speech enhancement

algorithms, as discussed in Section 5.1. This supports the fact that

our proposed scheme improves quality in ED with minimal losses when

compared to their PD implementation versions.

Perceptual evaluation of speech Quality (PESQ)

Tables 5.5 and 5.6 represent the perceptual evaluation of speech quality

(PESQ) scores of the noisy speech, the denoised signal in ED and in PD

and the %loss in PESQ between ED and PD. PESQ is one of the most effec-

tive objective measures for estimating the quality of noise-corrupted speech

processed by noise suppression algorithms. It has shown high correlations

(r > 0.92) with subjective listening tests [26]. PESQ evaluates the quality

of speech by obtaining the loudness spectra of the clean reference signal and

the enhanced signal through an auditory transform (a model of the human

auditory system). The difference between both spectra is then computed

to estimate the quality of the enhanced signal on a 5 point mean-opinion

score (MOS) scale from 1(bad) to 5(excellent). Higher scores represent good

speech quality. The implementation of this measure is obtained from [50].

Tables 5.5 and 5.6 reveal that at lower SNRs where background noise

is higher, there is improvement in the quality. However, this improvement

reduces with higher SNRs. This is because at higher SNRs, the noise power
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Table 5.5: PESQ for white, wind noise reduction

White noise

SNR(dB)
noisy
speech

LPF-scheme1 LPF-scheme2
PESQ
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
PESQ

denoised
in ED

denoised
in PD

% Loss in
PESQ

-15 1.559797 1.761232 1.761192 0.002268 1.761231 1.744328 0.969022
-10 1.460326 1.777213 1.777222 0.000481 1.777211 1.777224 0.000747
-5 1.624654 1.922633 1.922628 0.000274 1.922635 1.922742 0.005547
0 1.861036 2.157773 2.157729 0.002081 2.157745 2.157882 0.006327
5 1.990906 2.306961 2.307005 0.001926 2.306943 2.306946 0.000125
10 2.417972 2.632079 2.632279 0.007633 2.63206 2.632238 0.006767
15 2.679818 2.896017 2.896386 0.012753 2.89601 2.896394 0.01324

Wind noise

SNR(dB)
noisy
speech

HPF-scheme1 HPF-scheme2
PESQ
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
PESQ

denoised
in ED

denoised
in PD

% Loss in
PESQ

-15 2.12794 2.363889 2.363904 0.000628 2.363982 2.36421 0.009672
-10 2.3692 2.69919 2.699187 0.000114 2.699132 2.699265 0.004924
-5 2.70672 3.004558 3.004537 0.000692 3.005193 3.004641 0.018369
0 3.0294 3.239933 3.239868 0.002019 3.244064 3.23989 0.128812
5 3.32316 3.505822 3.505643 0.005128 3.515403 3.505644 0.278388
10 3.65638 3.788975 3.789028 0.001377 3.799723 3.789028 0.282253
15 3.85828 3.976098 3.976029 0.001748 3.989873 3.976028 0.348202

is minimal as compared to the signal, and the algorithm introduces little

distortion to the signal. This can be observed for white and wind noise

reduction in Table 5.5, as the PESQ scores for the noisy signal and the

denoised signal decrease as SNR values increase. Humming noise reduction

presented in Table 5.6 also shows similar characteristics for gain values of

g = 0.2 and 0.5. However, for SNR values of 5dB and higher, the quality for

g = 0.8 and 1 drops as there is less noise present and the filter imposes more

attenuation on the signal at higher gain values, thus causing more signal

distortion at higher SNR and g values.

It is important to note that the %loss in PESQ for all schemes in ED from

Tables 5.5 and 5.6 is minimal. This further supports the fact that our scheme

in ED yields identical results as their PD versions with minimal losses while

providing security and privacy of data.
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Table 5.6: PESQ for humming noise reduction

g=0.2

SNR(dB)
noisy
speech

CF-scheme1 CF-scheme2
PESQ
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
PESQ

denoised
in ED

denoised
in PD

% Loss in
PESQ

-15 1.846326 1.857057 1.857079 0.001206 1.898395 1.898579 0.009738
-10 1.810163 1.885748 1.885754 0.000309 1.877674 1.887513 0.521283
-5 2.040983 2.125112 2.125187 0.003509 2.12919 2.1298 0.028642
0 2.347948 2.441143 2.44117 0.001124 2.459677 2.452621 0.287709
5 2.563545 2.677533 2.677753 0.008234 2.673487 2.679049 0.207584
10 3.021158 3.121028 3.12124 0.006808 3.123496 3.123119 0.012087
15 3.261622 3.372775 3.373371 0.017683 3.375616 3.375677 0.00179

g=0.5

SNR(dB)
noisy
speech

CF-scheme1 CF-scheme2
PESQ
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
PESQ

denoised
in ED

denoised
in PD

% Loss in
PESQ

-15 1.846326 1.973547 1.973577 0.001491 2.014597 2.016042 0.071672
-10 1.810163 2.061267 2.061258 0.000422 2.051797 2.062942 0.540288
-5 2.040983 2.316765 2.316809 0.001905 2.319042 2.320255 0.052287
0 2.347948 2.625317 2.625272 0.001721 2.644772 2.638542 0.236092
5 2.563545 2.799452 2.799647 0.006979 2.794744 2.799963 0.1864
10 3.021158 3.150586 3.151013 0.01354 3.146897 3.146427 0.014953
15 3.261622 3.237025 3.237661 0.019657 3.242378 3.242322 0.001735

g=0.8

SNR(dB)
noisy
speech

CF-scheme1 CF-scheme2
PESQ
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
PESQ

denoised
in ED

denoised
in PD

% Loss in
PESQ

-15 1.846326 2.136331 2.136361 0.001397 2.165529 2.168196 0.123011
-10 1.810163 2.299348 2.299326 0.000966 2.289894 2.301155 0.489362
-5 2.040983 2.539561 2.53973 0.006686 2.541054 2.543268 0.087021
0 2.347948 2.74083 2.741173 0.012527 2.761715 2.756688 0.18233
5 2.563545 2.752785 2.753687 0.032742 2.741107 2.746802 0.207326
10 3.021158 2.961089 2.962238 0.038795 2.952738 2.952613 0.004229
15 3.261622 2.947032 2.947951 0.03119 2.951306 2.951925 0.02099

g=1

SNR(dB)
noisy
speech

CF-scheme1 CF-scheme2
PESQ
noisy
speech

denoised
in ED

denoised
in PD

% Loss in
PESQ

denoised
in ED

denoised
in PD

% Loss in
PESQ

-15 1.846326 2.127502 2.128384 0.041428 2.147793 2.150311 0.117068
-10 1.810163 2.276821 2.279339 0.110486 2.27321 2.24232 1.377592
-5 2.040983 2.487225 2.487807 0.023395 2.461804 2.484055 0.895769
0 2.347948 2.636943 2.637247 0.011554 2.660013 2.633787 0.995739
5 2.563545 2.600074 2.600783 0.027269 2.58934 2.587343 0.077187
10 3.021158 2.799851 2.817672 0.632458 2.78111 2.786666 0.199397
15 3.261622 2.767098 2.762191 0.177645 2.817171 2.812651 0.160714
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Pearson’s correlation (similarity score)

Table 5.7 represents (1) the similarity scores for white, wind and humming

noise reduction between the denoised signal in ED and in PD and (2) the

%loss in accuracy between ED denoising and PD denoising. The similarities

were computed using Pearson’s correlation method. Pearson’s correlation

coefficient r(X,Y ) between two data series X and Y is given by:

r(X,Y ) =

∑n

i=1(Xi − X̄)(Yi − Ȳ )
√

∑n

i=1(Xi − X̄)2
√

∑n

i=1(Yi − Ȳ )2
(5.33)

Where X̄ and Ȳ are the mean of X and Y respectively. r(X,Y ) of 0 means

no correlation and 1 means total correlation. The correlation coefficients

from the results from Table 5.7 suggest that for all proposed schemes in

ED, the denoised signals in ED correlate to the denoised signals in PD with

coefficients in the range of 0.99 to 1. This represents a strong correlation

(0.99 ≤ r ≤ 1), which translates to an accuracy in the range of 99% to 100%.

Loss in accuracy between ED and PD denoising is in the order of 10−5 to

10−9, which is not significant. This accuracy loss can be accounted for by

the roundoff errors introduced as a result of scaling the real-valued signal to

positive integers during the preprocessing steps. In the future, we hope to

further optimize the solution in order to avoid such errors. This observation

suggests that our methods in ED yield identical results to normal PD filtering

operations with near zero loss in accuracy while maintaining security and

privacy.
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Table 5.7: Similarity scores with Pearson’s correlation
(Comparison of denoised signal in ED and PD)

White noise Wind noise
LPF-scheme
1

LPF-scheme
2

HPF-scheme 1 HPF-scheme 2

SNR
(dB)
noisy
speech

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

-15 0.99999978 2.15E-09 0.9999997 2.20E-09 0.9999987 1.27E-08 0.99869569 1.30E-05
-10 0.99999959 4.01E-09 0.99999957 4.23E-09 0.99999869 1.31E-08 0.99923438 7.66E-06
-5 0.99999944 5.59E-09 0.99999938 6.13E-09 0.99999866 1.33E-08 0.99922232 7.78E-06
0 0.99999918 8.19E-09 0.99999907 9.21E-09 0.99999797 2.03E-08 0.99966522 3.35E-06
5 0.99999917 8.28E-09 0.99999906 9.42E-09 0.99999816 1.84E-08 0.99980772 1.92E-06
10 0.99999929 7.01E-09 0.99999919 8.08E-09 0.99999781 2.19E-08 0.99977371 2.26E-06
15 0.99999928 7.19E-09 0.99999918 8.24E-09 0.99999863 1.37E-08 0.99986181 1.38E-06

Humming noise CF-scheme 1
g=0.2 g=0.5 g=0.8 g=1

SNR
(dB)
noisy
speech

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

-15 0.99999959 4.08E-09 0.99999887 1.13E-08 0.99999558 4.42E-08 0.99999254 7.45E-08
-10 0.99999901 9.94E-09 0.99999764 2.36E-08 0.99999439 5.62E-08 0.99999305 6.95E-08
-5 0.9999979 2.12E-08 0.99999619 3.81E-08 0.99999424 5.76E-08 0.99999379 6.21E-08
0 0.99999525 4.75E-08 0.99999346 6.55E-08 0.99999221 7.79E-08 0.99999199 8.01E-08
5 0.99999406 5.94E-08 0.99999338 6.62E-08 0.99999304 6.96E-08 0.99999299 7.01E-08
10 0.9999941 5.90E-08 0.99999369 6.31E-08 0.9999935 6.50E-08 0.99999348 6.52E-08
15 0.99999413 5.87E-08 0.99999408 5.92E-08 0.99999406 5.94E-08 0.99999406 5.95E-08

Humming noise CF-scheme 2
g=0.2 g=0.5 g=0.8 g=1

SNR
(dB)
noisy
speech

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

ED vs.
PD

% Loss
in accu-
racy

-15 0.99999959 4.08E-09 0.99999887 1.13E-08 0.99999558 4.42E-08 0.99999255 7.45E-08
-10 0.99999901 9.94E-09 0.99999764 2.36E-08 0.99999439 5.62E-08 0.99999305 6.95E-08
-5 0.9999979 2.12E-08 0.99999619 3.81E-08 0.99999424 5.76E-08 0.99999379 6.21E-08
0 0.99999525 4.75E-08 0.99999346 6.55E-08 0.99999221 7.79E-08 0.99999199 8.01E-08
5 0.99999406 5.94E-08 0.99999338 6.62E-08 0.99999304 6.96E-08 0.99999299 7.01E-08
10 0.9999941 5.90E-08 0.99999369 6.31E-08 0.9999935 6.50E-08 0.99999348 6.52E-08
15 0.99999413 5.87E-08 0.99999408 5.92E-08 0.99999406 5.94E-08 0.99999406 5.95E-08
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5.3.2 Subjective quality measurement

We evaluated the subjective quality similarity between the denoised signals

from our proposed schemes in ED and their PD denoised versions by con-

ducting an online user survey 1. 20 users in the age group of 18-34 years

participated in the survey. We randomly selected a speech file from each

noise group (i.e. white noise, humming noise and wind noise) and denoised

it in ED and in PD. Users listened to each pair (ED denoised and PD de-

noised speech files) and rated the quality similarity in terms of clarity and

pleasantness. The score is captured on a 5 point Mean Opinion Score (MOS)

scale from 1(bad) to 5(excellent). Figure 5.6 shows the bar graph of the MOS

taken for the 20 users. The bar graph reveals that the scores for the similar-

ity comparison between the ED denoised signals for our proposed schemes

(LPF-scheme 1 and 2, CF-scheme 1 and 2, and HPF-scheme 1 and 2) and

their PD denoised versions are in the range of [4 - 5]. This shows a simi-

larity score between very good and excellent with slight variations between

schemes. This can be attributed to the fact that speech listening tests are

influenced by the highly subjective nature of quality. This means that par-

ticipants have different standards of what they consider to be good or poor

quality, thereby introducing slight variations in the ratings among listeners

[35]. We subjected scores from all 20 users to statistical analysis in order to

assess their significant differences. Analysis of variance (ANOVA) indicated

no significant difference (F (5, 114) = 0.312, p = 0.904), which means that all

users agreed that the perceptual quality of denoised signals by our proposed

1http://myabukari.polldaddy.com/s/speech-quality-similarity-survey
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schemes in ED is similar to the quality of their PD implementation versions

with minimal data loss, which corroborates our findings for segSNR, PESQ

and similarity scores.
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Figure 5.6: User study for comparison of quality similarity between ED de-
noised signals (LPF-scheme 1 and 2, CF-scheme 1 and 2, and HPF-scheme
1 and 2) and their PD denoised versions.

5.3.3 Time domain analysis

Figures 5.7a - 5.7d, 5.7e - 5.7h and 5.7i - 5.7l show the time domain plots

for low pass filtering white noise, comb filtering humming noise and high

pass filtering wind noise, respectively. Each plot scenario contains the noise

quality degraded speech secret, one of its shares, the denoised signal in ED

and the denoised signal in PD. In all cases, observing the amplitude dis-

tribution of the quality degraded speech secret and denoised reconstructed

secret, it is evident that: (1) our proposed methods reduce noise, as part of

the amplitude portions of the signals, which likely represent noise, are absent

in the denoised signals, (2) the encrypted share signals are completely noise
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(arbitrary data) as each share sample is a unique polynomial generated with

a random blinding factor in Equation (2.1) and (3) the waveforms of the de-

noised signals in ED and in PD are similar which supports our finding from

Pearson’s similarity score that ED denoising correlates highly with their PD

versions with minimal loss in accuracy.

0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time(sec)

A
m

p
li
tu

d
e

 

 
1st share

(b)

0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal
Denoised Signal

(c)

0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal
Denoised Signal

(d)

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal

(e)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time(sec)

A
m

p
li
tu

d
e

 

 
1st share

(f)

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal
Denoised Signal

(g)

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal
Denoised Signal

(h)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal

(i)
Noisy speech
secret

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Time(sec)

A
m

p
li
tu

d
e

 

 
1st share

(j)
1st share

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal
Denoised Signal

(k)

denoised in ED

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(sec)

A
m

p
li
tu

d
e

 

 
Noisy Signal
Denoised Signal

(l)

denoised in PD

Figure 5.7: Time domain plots of noisy speech, one of its shares, denoised
signals in ED and PD: (a) white noise corrupted speech signal (b) its 1st
share (c) denoised in ED and (d) denoised in PD. Humming noise reduction
with comb filtering: (e) humming noise corrupted speech signal (f) its 1st
share (g) denoised in ED and (h) denoised in PD. Wind noise reduction with
HPF (High pass filtering): (i) noisy speech signal corrupted with wind noise
(j) its 1st share (k) denoised in ED and (l) denoised in PD.
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5.3.4 Magnitude spectrum analysis (frequency domain)

Figure 5.8 represents the magnitude spectrum (frequency domain) of the

noisy speech secret, the denoised signal in ED and the denoised signal in PD

for the attenuation of white noise (fig. 5.8a - 5.8c), humming noise (fig. 5.8d

- 5.8f) and wind noise (fig. 5.8g - 5.8i). Based on these plots, the following

observations can be made:

1. Figures 5.8a - 5.8c show that white noise, which is characterized by

higher frequencies (from about 1.5kHz to 8kHz) in the noisy signal, is

reduced in magnitude in the denoised signal in both ED and PD.

2. Figures 5.8d - 5.8f show a zoomed-in version of the magnitude response

of the signals to highlight the 1st, 2nd and 3rd harmonics (60Hz, 120Hz

and 180Hz) of the humming noise. These plots reveal spikes in magni-

tudes at 60Hz, 120Hz and 180Hz of the noisy signal (Figure 5.8d) and

a reduction in magnitude in the denoised signals in ED and in PD.

3. The magnitude spectrum for the wind noise contaminated signal (Fig-

ure 5.8g) shows higher magnitudes concentrated at lower frequencies

(wind noise is characterized by lower frequencies mostly < 500Hz de-

pending on the wind speed). The denoised signals in ED (Figure 5.8b)

and in PD (Figure 5.8c) reveal an attenuation in the magnitude of these

lower frequencies.

The above observations support the fact that our methods in ED attenuate

the noise for each case and also produce similar magnitude responses as those

in PD processing.
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Figure 5.8: Frequency plots (magnitude spectrum) of noisy speech signal and
denoised signals in ED and in PD for the reduction of white, humming and
wind noise.
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5.3.5 Computational complexity analysis

Table 5.8 details the average processing time per scheme for creating se-

cret shares, performing filtering operations in ED and reconstructing the

enhanced speech secret for all 35 quality-degraded speech secrets for each

noise type. The time information in the table suggests that the complexity

of reconstructing the enhanced secret is relatively lower than that of creat-

ing secret shares and filtering in ED. Creating shares has the highest time

complexities because of the preprocessing (Equations (5.7), (5.8) and (5.9))

involved to convert the real-valued signal to positive integer domain and the

polynomial computation in modular domain.

Table 5.8: Average processing time per signal point (ms)

Encrypted Domain

Scheme Noise type
Share
creation
(offline)

ED
processing

Denoised secret
reconstruction

LPF-scheme 1 white noise 337.85 575.29 7.36
LPF-scheme 2 white noise 333.49 29.11 9.01

CF-scheme 1 humming noise 357.55 20.93 9.02

CF-scheme 2 humming noise 343.88 11.29 7.38
HPF-scheme 1 wind noise 357.64 13.36 6.91
HPF-scheme 2 wind noise 347.07 14.17 5.77

Plaintext Domain

Scheme Noise type Share
creation

PD
processing

Denoised secret
reconstruction

LPF-difference eqn. white noise n/a 75.40 n/a
LPF-convolution white noise n/a 0.86 n/a
CF-difference eqn. humming noise n/a 1.96 n/a

CF-convolution humming noise n/a 0.87 n/a
HPF-difference eqn. wind noise n/a 1.90 n/a
HPF-convolution wind noise n/a 0.75 n/a

wind noise 0.75

Note: LPF-difference eqn., LPF-convolution, CF-difference eqn., CF-convolution, HPF-
difference eqn. and HPF-convolution are the PD filtering versions of LPF-scheme 1, LPF-
scheme 2, CF-scheme 1, CF-scheme 2, HPF-scheme 1 and HPF-scheme 2 respectively.

Share creation can be performed offline in order to reduce complexity on

the client side. Outsourcing storage and high-end computing to the CDC

means that the majority of computation (operations) should be performed
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on the CDC. To evaluate the number of operations performed on the CDC

and on the client side, we present Table 5.9. This table shows the number

of operations for ED processing over cloud and on the client side. Creating

shares is not included as it is performed offline. The table shows that the

majority of operations are performed on the CDC, most of which are mod-

ular operations. It should also be noted that modular operations are more

expensive than basic arithmetic operations (e.g. a modular addition opera-

tion on the CDC has a higher complexity than a basic addition operation on

the client side).

Table 5.9: Number of operations on cloud and client side

Scheme ED(Cloud processing) Client side

LPF-scheme1
L(M − 1) modular additions L subtractions
L modular inverse L divisions

LPF-scheme2
(L+ ILPF )− 1 modular additions L subtractions
L modular inverse L divisions

CF-scheme1
L modular additions 2L subtractions
L modular subtractions 2L divisions
2L modular multiplications

CF-scheme2

ICF multiplications 2L subtractions

2
(

(L+ ICF )− 1
)

modular additions 2L divisions

L× ICF modular multiplications
1 division

HPF-scheme1
L modular additions L subtractions
L modular subtractions L divisions

HPF-scheme2
2
(

(L+ IHPF )− 1
)

modular additions L subtractions

L× IHPF modular multiplications L divisions
1 division

Note: L is the number of samples of the speech signal, M is the size of the MA lowpass filter,
ILPF , ICF and IHPF are sizes of the impulse responses hLPF , hCF and hHPF respectively.

Theorem 4 Our proposed schemes in ED (LPF-scheme 1 and 2, CF-scheme

1 and 2, and HPF-scheme 1 and 2) are O
(

NU

NCDC

)

-efficient if the total number

of operations NU performed by the client is less than the total number of

operations NCDC performed by the CDC (where O(NU) and O(NCDC) are

the asymptotic complexities of the client and the CDC respectively).
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Proof 14 Proof follows from table 5.9 which represents the number of op-

erations performed by the client and the CDC. It is evident for all proposed

schemes in ED (LPF-scheme 1 and 2, CF-scheme 1 and 2, and HPF-scheme

1 and 2) from table 5.9 that: NU < NCDC and consequently O(NU) <

O(NCDC).

5.3.6 Statistical analysis

We used statistical analysis to assess the significant differences between our

results obtained from the objective evaluation. The goal of our statistical

analysis are: (i) to evaluate the significant effect between ED and PD pro-

cessing in order to test the hypothesis that our proposed schemes in ED

produce similar results as their PD versions with minimal loss in accuracy,

(ii) to compare the performance of our proposed schemes in ED and their PD

versions with reference to the noisy signals, (This is to evaluate statistically

whether the quality of the denoised signals has been improved) and (iii) to

compare the performance of the various g values of the comb filter in order

to ascertain which range of g produces the best enhancement for humming

noise attenuation.

We subjected the results obtained from objective measures (segSNR and

PESQ) from ED and PD denoising to statistical analysis. The analysis was

performed on results from distributions of: (i) ED difference eqn. schemes:

LPF-scheme 1, CF-scheme 1 and HPF-scheme 1, (ii) PD implementation ver-

sions of difference eqn. schemes, (iii) ED convolution schemes: LPF-scheme

2, CF-scheme 2 and HPF-scheme 2, and (iv) PD implementation versions

92



of convolution schemes. As depicted in Table 5.10, ANOVA indicated no

significant difference (0.89 < p ≤ 1) across all SNR levels and noise types

between ED and PD denoised signals, which supports the fact that our pro-

posed schemes in ED yield similar results to their PD implementations with

minimal or near negligible data losses.

Further ANOVA analysis of results from distributions of ED denoised

signals (difference eqn. schemes and convolution schemes) and noisy signals

indicated a significant effect of (F (2, 102) = 4.86, p < 0.009), (F (2, 102) =

3.48, p < 0.04) and (F (2, 102) = 4.61, p < 0.0014) for white noise, wind

noise and humming noise respectively. It is important to note that the same

significant effect will result from comparing PD denoised signals and noisy

signals since we have already established that there is no significant difference

between ED and PD denoising. In order to assess where the difference lies,

we conducted a pairwise multiple comparison (post-hoc test) using Tukey’s

HSD test. The results for Tukey’s HSD test are shown in Table 5.11 for

both segSNR and PESQ. From the table, an indication of: (i) “E” means

that there is no significant difference between the ED denoised signal and the

noisy signal, (ii) “Y” means scores obtained from ED denoised signals are

significantly higher than that of the noisy signal, and (iii) “N” means that

scores obtained from ED denoised signals are significantly less than that of

the noisy signal. Table 5.11 shows that at lower SNRs (-15dB to 5dB) for both

white and wind noise, the quality (segSNR) of the denoised signlas in ED is

significantly higher (p < 0.05) than that of the noisy signals. However, there

is no significant effect at higher SNRs of 15dB. This is because there is more

signal than noise power at higher SNRs, hence the noise reduction algorithms
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impose more strain on the signal than the noise, thereby causing distortions.

For PESQ scores at -15dB, the results from Table 5.5 show improvement

in denoised signals for both white and wind noise reduction, however the

difference in scores was not found to be statistically significant. From -5dB to

15dB, PESQ scores for enhanced signals were significantly higher (p < 0.05)

in quality than noisy signals. Analysis results from Table 5.11 also showed

that humming noise reduction with g = 0.8 produced significantly better

quality (segSNR and PESQ) than the other g values (0.2, 0.5 and 1) across

all SNR levels. The suppression effect of the comb filter is minimal at lower

values of g and increases towards 1. g can be any value between 0.1 and

1. Lower values of g cause minimal noise attenuation with less distortions

while higher values suppress more noise but introduce more distortions to the

signal. The significance score from our statistical analysis does not mean that

g = 0.8 is the best gain value, but rather a value between 0.1 and 1 should

be chosen in order to balance noise attenuation and signal distortion. The

significant difference between the denoised signals in ED and noisy signals

for g = 0.8 follows the same lines as that of white and wind noise.

5.4 Chapter Summary and Conclusion

This chapter presented the denoising of quality-degraded speech secret files

outsourced to cloud. LPF, CF and HPF were proposed, based on their

linearity and feasibility with homomorphic computation, for the attenuation

of white, humming and wind noise respectively. Utilizing the principles of LTI

systems, each of these filters were implemented using (1) difference equation
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and (2) convolution with filter impulse response.

Our objective and subjective (listening test) evaluation revealed that our

proposed schemes in ED improved the quality of the degraded speech which

yields similar results to PD denoising with minimal accuracy losses due to

preprocessing techniques. Further statistical analysis on the experimental

results (segSNR, PESQ and survey scores) showed no significant difference

between ED and PD denoising which corroborates our findings from both

the objective and subjective evaluation.
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Table 5.10: ANOVA comparison of results between ED and PD denoising

segSNR PESQ
noise
type

SNR(dB) F F0.05 p val F F0.05 p val

white

-15 0.307 3.24 0.82 0 3.24 1
-10 0 3.24 1 0 3.24 1
-5 0 3.24 1 0 3.24 1
0 0 3.24 1 0 3.24 1
5 0 3.24 1 0 3.24 1

10 0 3.24 1 0 3.24 1
15 0 3.24 1 0.0001 3.24 1

wind

-15 0 3.24 1 0.0001 3.24 1
-10 0.2139 3.24 0.8853 0.0002 3.24 1
-5 0.0001 3.24 1 0.0001 3.24 1
0 0.0037 3.24 0.9997 0.0056 3.24 0.9994
5 0.0434 3.24 0.9875 0.0061 3.24 0.9993

10 0.0362 3.24 0.9904 0.0114 3.24 0.9983
15 0.1 3.24 0.9589 0.0587 3.24 0.9807

humming g=0.2

-15 0 3.24 1 0.0006 3.24 1
-10 0.0026 3.24 0.9998 0.001 3.24 1
-5 0 3.24 1 0.0013 3.24 0.9999
0 0.0019 3.24 0.9999 0.0005 3.24 1
5 0.0033 3.24 0.9997 0 3.24 1

10 0 3.24 1 0.0003 3.24 1
15 0 3.24 1 0.001 3.24 1

humming g=0.5

-15 0.0001 3.24 1 0.0006 3.24 1
-10 0.0038 3.24 0.9997 0.001 3.24 1
-5 0.0001 3.24 1 0.0014 3.24 0.9999
0 0.0017 3.24 0.9999 0.0004 3.24 1
5 0.0031 3.24 0.9998 0.0002 3.24 1

10 0 3.24 1 0.0008 3.24 1
15 0.0003 3.24 1 0.0013 3.24 0.9999

humming g=0.8

-15 0.0002 3.24 1 0.0006 3.24 1
-10 0.0062 3.24 0.9993 0.0013 3.24 0.9999
-5 0.0002 3.24 1 0.0013 3.24 0.9999
0 0.0016 3.24 0.9999 0.0001 3.24 1
5 0.0078 3.24 0.999 0.0107 3.24 0.9984

10 0 3.24 1 0.0253 3.24 0.9943
15 0.0011 3.24 0.9999 0.0114 3.24 0.9983

humming g=1

-15 0.0009 3.24 1 0.0001 3.24 1
-10 0.0971 3.24 0.9605 0.0062 3.24 0.9993
-5 0.028 3.24 0.9934 0.0014 3.24 0.9999
0 0.05 3.24 0.9847 0.0034 3.24 0.9997
5 0.0005 3.24 1 0.0218 3.24 0.9954

10 0.0009 3.24 1 0.0238 3.24 0.9948
15 0.0452 3.24 0.9868 0.0239 3.24 0.9948
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Table 5.11: Tukey’s HSD test of multiple comparisons between results ob-
tained from ED denoised signals and noisy signals

segSNR PESQ
ED (diff eqn.
schemes) denoised
vs. noisy

ED (conv.
schemes) denoised
vs. noisy

ED (diff eqn.
schemes) denoised
vs. noisy

ED (conv.
schemes) denoised
vs. noisy

noise
type

SNR
(dB)

mean
diff.

Q0.05
mean
diff.

Q0.05
mean
diff.

Q0.05
mean
diff.

Q0.05

white

-15 9.32 4.23 Y 9.32 4.23 Y 0.21 0.56 E 0.21 0.56 E
-10 8.9 2.47 Y 8.9 2.47 Y 0.36 0.35 Y 0.36 0.35 Y
-5 7.97 2.89 Y 7.97 2.89 Y 0.32 0.45 E 0.32 0.45 E
0 6.81 2.66 Y 6.81 2.66 Y 0.33 0.28 Y 0.33 0.28 Y
5 4.71 1.55 Y 4.71 1.55 Y 0.35 0.19 Y 0.35 0.19 Y

10 2.98 1.96 Y 2.98 1.96 Y 0.25 0.21 Y 0.25 0.21 Y
15 0.4 1.37 E 0.4 1.37 E 0.24 0.17 Y 0.24 0.17 Y

wind

-15 19.63 3.02 Y 19.63 3.02 Y 0.24 0.47 E 0.24 0.47 E
-10 15.3 1.34 Y 15.3 1.34 Y 0.31 0.31 Y 0.37 0.31 Y
-5 11.22 1.84 Y 11.21 1.84 Y 0.3 0.2 Y 0.3 0.2 Y
0 7.57 1.65 Y 7.55 1.65 Y 0.21 0.14 Y 0.21 0.14 Y
5 2.01 1.04 Y 2 1.04 Y 0.18 0.14 Y 0.19 0.14 Y

10 1.75 1.74 Y 1.77 1.74 Y 0.13 0.12 Y 0.14 0.12 Y
15 7.21 0.88 N 7.22 0.88 N 0.12 0.09 Y 0.13 0.09 Y

humming
g=0.2

-15 1.9 4.38 E 1.9 4.38 E 0.05 0.54 E 0.05 0.54 E
-10 1.9 2.49 E 1.9 2.49 E 0.07 0.41 E 0.07 0.41 E
-5 1.92 2.81 E 1.92 2.81 E 0.09 0.43 E 0.09 0.43 E
0 1.69 2.98 E 1.69 2.98 E 0.11 0.41 E 0.11 0.41 E
5 1.31 2.16 E 1.31 2.16 E 0.11 0.23 E 0.11 0.23 E

10 0.43 2.93 E 0.43 2.93 E 0.1 0.31 E 0.1 0.31 E
15 1 1.66 E 1 1.66 E 0.11 0.12 E 0.11 0.12 E

humming
g=0.5

-15 5.82 4.38 Y 5.82 4.38 Y 0.17 0.51 E 0.17 0.51 E
-10 5.61 2.48 Y 5.61 2.48 Y 0.24 0.39 E 0.24 0.39 E
-5 5.09 2.83 Y 5.09 2.83 Y 0.28 0.41 E 0.28 0.41 E
0 3.98 2.81 Y 3.98 2.81 Y 0.3 0.4 E 0.3 0.4 E
5 2.09 1.89 Y 2.09 1.89 Y 0.23 0.23 Y 0.23 0.23 Y

10 0.02 2.14 E 0.02 2.14 E 0.13 0.32 E 0.13 0.32 E
15 2.95 1.32 N 2.95 1.32 N 0.02 0.07 E 0.02 0.07 E

humming
g=0.8

-15 12.27 4.3 Y 12.27 4.3 Y 0.32 0.46 E 0.32 0.46 E
-10 10.92 2.29 Y 10.92 2.29 Y 0.48 0.32 Y 0.48 0.32 Y
-5 8.87 2.63 Y 8.87 2.63 Y 0.5 0.38 Y 0.5 0.38 Y
0 6.6 2.05 Y 6.6 2.05 Y 0.41 0.36 Y 0.41 0.36 Y
5 2.98 1.43 Y 2.98 1.43 Y 0.18 0.17 Y 0.18 0.17 Y

10 0.41 1.52 E 0.41 1.52 E 0.07 0.35 E 0.07 0.35 E
15 3.95 0.96 N 3.95 0.96 N 0 0.23 E 0 0.46 E

humming
g=1

-15 17.45 3.81 Y 17.45 3.81 Y 0.3 0.38 E 0.3 0.38 E
-10 14.43 1.79 Y 14.43 1.79 Y 0.46 0.26 Y 0.46 0.26 Y
-5 11.19 1.94 Y 11.19 1.94 Y 0.42 0.3 Y 0.42 0.3 Y
0 8.2 1.48 Y 8.2 1.48 Y 0.31 0.32 E 0.31 0.32 E
5 3.27 1.06 Y 3.27 1.06 Y 0.03 0.22 E 0.03 0.22 E

10 0.18 1.35 E 0.18 1.35 E 0.24 0.4 E 0.24 0.4 E
15 5.14 0.79 N 5.14 0.79 N 0.44 0.07 Y 0.44 0.07 N

Note: Comparison between the scores of denoised signals in ED with that of noisy signal indicates (1) “E”
if there no significant difference between ED denoised signal and noisy signal (2) “Y” if scores obtained
from ED denoised signals are significantly higher than that of noisy signal and (3) “N” if scores obtained
from ED denoised signals are significantly lesser than that of noisy signal
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Chapter 6

Conclusion and Future Work

There is a current trend in IT moving toward cloud computing where online

access to resources (storage, computation and network) is available on a pay-

per-use basis. In order for individuals and companies to entrust storage and

computation of their data to a CDC, security issues should be given great

importance. Though there are policies and service level agreements (SLAs)

governing the operations of CDCs, this is not enough to guarantee the secu-

rity and privacy of data. Researchers in the fields of mathematics, computer

science and engineering are continuously developing encryption protocols and

computational tasks possible in ED. Only then will CDC services be fully em-

braced without fear of security or privacy issues. As a contribution to realize

this, this thesis has presented methods for secure storage and processing (ad-

dition of reverberation effect and noise reduction) of audio/speech data over

cloud with minimal overheads in terms of data losses, transmission band-

width and computational complexity. With the proposed methods in this

thesis, a client constrained in resources (storage, computation or IT exper-
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tise) can offload data to a CDC and leverage the benefits of the CDC such

as elasticity, scalability, availability, etc., to reduce capital expenditure and

optimize operational cost. The information theoretic security of our methods

protects the privacy and confidentiality of sensitive information over CDC

(e.g. Amazon Web Services (AWS) and Microsoft Azure) where it is the

responsibility of the client to secure their data.

Audio and speech processing in ED is still scarcely explored as compared

to other multimedia content such as text and image, and there are many

open topics that still need to be addressed:

1. Collusion avoidance among CDCs: CDCs in this work are assumed

to be non-colluding which means that they do not come together to

reconstruct the secret. In the future we hope to explore the possibility

of designing a protocol to avoid collusion amongst CDCs.

2. Non-linear speech noise reduction algorithms: In this thesis we focused

on linear noise reduction algorithms that are feasible with only homo-

morphism. Implementation of non-linear algorithms (e.g. with max-

ima, minima or comparison) such as subspace techniques, log-MMSE

(log-Minimum Mean Square Error), etc. cannot be achieved with only

homomorphic encryption techniques. However, incorporating other

SPED primitives such as SMC (Yao’s protocol) with homomorphic

cryptosystems has been used to solve the problem of non-linearity in

ED computation, which can be applied in the case of speech noise re-

duction.
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