
Now You See Me, Now You Don’t:
Secure Cloud-based Video Editing

Anonymous ACM Multimedia 2014 Submission

ABSTRACT

Personality prediction has been widely studied in various
fields including psychology and social media. The emer-
gence of online social networks provides novel opportunities
to obtain information about user behaviors, demographics
and administer standardized surveys for studying such so-
cial and psychological phenomena in a data-driven manner.
Using the data generated from a personality survey app on
Facebook used by 228,343 users, this work undertakes a sta-
tistical validation of a frequently posited hypothesis: does a
person’s personality have any relation with their demographic
information such as gender and date of birth (DOB). Also,
vast literature on astrology - though not yet scientifically
proven - suggests that the one’s personality is related to
their sun sign which is derived from DOB. Based on DOB
we have categorized all users into 12 groups referred as 12
sun sign and examined the relationship between users’ big
five personality traits and their sun sign through chi-square
(χ2) test. Subsequently, the ordinal regression model is used
to model this relationship. Our results suggest that there are
few personality traits which can relate to DOB, and it can
be a very quick indicator of one’s personality where there
exists a relationship.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Miscellaneous

General Terms

Human Factor

Keywords

Personality prediction, Date of birth, Sun sign, Social media

1. INTRODUCTION
Cloud computing is rapidly becoming ubiquitous. Users

are moving their data to cloud data centers for storage, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Multimedia ’14 Orlando, FL, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

businesses are using cloud resources to do their processing.
Computationally expensive operations are ideally suited for
cloud computing, and as such, off-loading heavy-lifting video
editing operations to cloud data centers is a cost-effective
alternative to local processing.

Moving data to the cloud has many benefits but it comes
at the cost of security and privacy. A lot of data being
stored and processed by cloud services is in plaintext, which
can be intercepted by attackers as the data is being trans-
ported to and from cloud data centers. Several recent data
breaches indicate that users data is not always secure even
when stored by a third party. Companies could still be the
victims of a breach and the attacks could steal or tamper
with the data.

These insecurities become increasingly significant when
the video data in question is of a sensitive nature. With
a huge amount of video data, emerging from different ap-
plications such as camera surveillance and smart phones,
and being outsourced to cloud, it is important that video
editing operations performed by cloud services are secure.
While traditional schemes provide computationally secure
data, those that lack homomorphic properties forces users
to decrypt the video before processing it, thus exposing the
data to increased risk.

The challenge then becomes to construct a method that
allows users to encrypt their video before uploading it to
cloud services where it can be safely manipulated. By uti-
lizing a homomorphic cryptographic scheme we can achieve
this goal. Using this scheme also allows us to perform ba-
sic arithmetic operations on the ciphertext, and we can still
retrieve the correct result. Thus, as long as video-editing
operations can be performed without comparisons and only
using the four fundamental arithmetic operations (addition,
subtraction, multiplication and division), we can reliably
edit videos in an encrypted domain if the following holds
E(v1 o v2) = E(v1 oE(v2), where v1 and v2 represent the
two data units in a video (e.g. two frames or two pixels in a
frame), E denotes the encryption function, and o represents
the one of the four fundamental operations.

We propose a solution to this problem by using Shamir’s
Secret Sharing (SSS) scheme. For each frame in a video, we
process it byte-by-byte and encrypt each byte, thus creating
shares, or shadow copies, of the video. Our solution allows
for cropping and scaling on the encrypted shadow copies to
achieve zooming. To the best of our knowledge, this is the
first paper which performs cropping and scaling of a video
in encrypted domain. We achieve bicubic scaling by way of
the additive and multiplicative properties of homomorphism



[2]. Zooming into a frame is done by first cropping the frame
and then upscaling it.

The rest of this paper is outlined as follows: Section 2
presents prior work on this topic. Section 3 describes or
proposed work along with its assumptions, with Section 4
presenting our security analysis and our results. Future im-
provements are discussed in Section 5 and our conclusion in
Section 6

2. RELATED WORK
Khiem et al. [9] proposed two different methods of stream-

ing video data that allowed for dynamic zooming. By di-
viding a frame into macroblocks of 16x16 pixels, the mac-
roblocks needed to display the Region of Interest — RoI —
can be requested and the server will only decode the neces-
sary macroblocks and thus achieve zooming. Tiled stream-
ing was achieved by pre-selecting grid tiles that are encoded
separately, which would be requested as the RoI changes.
Then the excess data would be removed during decoding to
result in a zoomed frame. Monolithing streams on the other
hand use dependency graphs to calculate the necessary mac-
roblocks to decode the requested RoI.

Shamir‘s Secret Sharing algorithm creates polynomials of
degree n− 1 such we need n points to reconstruct the poly-
nomial F (x).

F (x) =
n∑

i=0

aix
i mod p

where a0 is the secret we want to obscure, and any other
a is a random number such that ai < p. x is the number of
the share being created, much like an identified, such that
xi < p and p is a prime number.

To reconstruct the secret value we use Lagrange Interpo-
lation, L(x), to find the points in L(x) that can recreate the
polynomial F (x).

L(x) =

k∑

j=1

yj

k∏

i=1,i6=j

x− xi

xj − xi

mod p

L(x) where x = 0, xi is the share value from F (x) and
yj is the number of the applied shares, their identifier, will
reveal the secret when the polynomial is of degree n = k.

Mohanty et al. [7] demonstrated how cropping and scal-
ing can be performed on encrypted image data using Ramp
Secret Sharing. This was done by creating shadow copies
of the image and then performing the cropping and scal-
ing operations on the shares. Reconstructing these shares
then resulted in an image that had been zoomed in at the
specified RoI.

There have been many applications of Secret Sharing. Ex-
amples including encryption of images etc. There have been
efforts to limit the storage requirements of Shamir‘s Secret
Sharing, i.e. Ramp Secret Sharing. While these schemes
reduce how much space is needed to store the shares, the
scheme loses its information theoretically secure property,
thus making it vulnerable to attacks. Alharthy et al. [1]
showed how Shamir’s Secret Sharing scheme could be ap-
plied to video while attaining perfect secrecy. The proposed
work is an extension of Mohanty and Alharthy work.

Lu et al. [6] discussed various applications of video pro-
cessing in the encrypted domain, the challenges and poten-
tial techniques, focusing on video search, classification and

Figure 1: System architecture

summarization. Brown et al. demonstrated how to auto-
matically detect different events in a video stream. Saini
showed that image forgery is more reliably implemented in
hardware, not in software. Similarly, Saini et al [10] found
that image enhancement can be implemented better using
VHDL for in-chip image processing. Bitouk et al. [3] pro-
posed a system to replace faces in photographs. Avidan
and Butman [11] presented a method to securely perform
face detection without leaking vital information about the
image. Chen et al. [4] proposed a method to securely cal-
culate linear equations in cloud data centers. Newton et al.
[8] presented an algorithm, k-same, to de-identify faces in
images, thus rendering face detection impossible. Defaux
and Ebrahimi [5] showed how a region of interest could be
scrambled to hide private information.

3. PROPOSED WORK

3.1 Threat Model
Cloud-based video editing give host to a slew of security

threats. If the video is being sent in clear text, it can be in-
tercepted and collected by and adversary during the upload.
An adversary can break into the cloud data center and steal
the data or modify it. Disgruntled system administrators
pose additional security risks. Encrypting the video pre-
vents an attacker from stealing or modifying it, but in order
to facilitate editing operations the cloud data center must
either have access to a secret key, or alternatively the opera-
tions can be carried out at the cost of increased computation,
which often proves unfeasible in real applications. Of course,
providing cloud data centers with keys still means that un-
reliable system administrators are still a threat. Devising a
method to efficiently perform operations on encrypted video
data would combat all of the issues mentioned above.

With these vulnerabilities we need a solution that assumes
the data is at risk as soon as it is not in the possession of the



user. As such we assume that both data transmission and
cloud data centers are vulnerable to attacks. To achieve the
best security possible, all n data centers should be unrelated.
We assume that both the input and output will be in the
mpeg compression format. For convenience and to maintain
data integrity, all video editing operations should be nonde-
structive so not to change the input file. For simplicity we
further assume that all operations will be performed on the
entire video and not for selected frames.

3.2 Architecture
1 show the architecture of our system. The secret video

is inputted into the decoder, which gives us access to all
the frames in presentation order. Decoding is done by the
FFmpeg decoder. With each frame, we input the frame,
byte-by-byte to the Secret Sharing algorithm to create our
shares. Once all the frames have been processed, and all
shares created, they shadow copies are uploaded to the cloud
data centers and the original secret video deleted.

With shadow copies stored in cloud data centers they
can now be processed. This is where shadow copies will
be cropped and scaled. Shares are cropped and scaled on an
individual basis. To reconstruct the secret video, edited or
otherwise, k shares are downloaded and interpolated using
L(0) where xi is the value of that particular share and yi
is the number of the shares being used in reconstruction.
Reconstruction leads to either the original secret being re-
covered, or the result of cropping and scaling of the shadow
copies, but in plaintext.

3.3 System
We utilized FFmpeg‘s libav library for decoding and en-

coding. This also gave us access to the frame data, which
we could then encrypt. We originally intended to use libav
to re-encode each shadow copy into the same format as the
secret video, but this proved difficult to achieve with codecs
that use lossy compression techniques. As a result, by re-
encoding a share in the same format as the original video
we lose information thus making reconstruction impossible.
We could not reliably re-encode shares using lossy codecs so
we opted to develop out own file format to store each share.

Out file format is reflects our näıve encryption of the video
where all I, P and B frames are stored completely, and in
presentation order. This is a less than ideal solution and
gives cause for future improvements. As a result, we store
a lot of redundant information for each frame, and as such
the space required for each share is dramatically higher than
that of the original video because we do not employ any
compression techniques.

Furthermore we chose to store the header information in
plaintext, while all the frame data is stored as ciphertext.
The headers contain important information that it is needed
to properly reconstruct the video. Even with headers in
plain text, the content of the video is still secure. An at-
tacker does not gain any insight into the secret by knowing
the content of the headers. Our headers store timestamps,
the resolution of the video, and the size of each frame in
bytes.

Our system consist of three components, the video source,
the n shareholders and the user, as illustrated by Fig. 1.
A user would first create shares of the secret video before
distributing all n shadow copies to its shareholders. Then
cropping and scaling is done on all n shares. 3 shareholders

bring their shadow copies together to reconstruct the video.
First we use FFmpeg‘s libav library to decode the in-

put video. In presentation order, we process all P, B and
I frames. All frames contain Y, Cb and Cr components
with 4:2:0 sub-sampling. Each component is processed in
its entirety and the decoder interleaves the components to
produce a fully realized frame. Byte-by-byte we input each
component into F (x) such that a0 is the current sub-pixel.
When all three components are processed, we will have fully
generated the shadow copies for the frame. Each shadow
frame is now written to their respective shares, where all
frames are stored in presentation order. This makes recon-
struction easier.

Once the shadow videos have been created, they are up-
loaded to different cloud data centers, and the original video
deleted. The cloud data centers does not possess the means
to reconstruct the video, nor analyze the contents of videos.

To achieve zooming in the video, the user submit the di-
mensions for the RoI along with the starting coordinate of
the region. The system proceeds to remove all data that
lies outside the RoI for all frames. When the frame is fully
cropped, the system scales the cropped frame to the same
dimensions as the original frame. This is done by calculated
P (x, y) for each sub-pixel in the scaled output frame. Now
that the RoI has been scaled the frame is written to a new
file that stores the zoomed shadow copy.

To reconstruct the original video, 3 shareholders bring
their shares together by downloading their shadow copy from
their respective data centers, and inputting their share into
the system. The system reads the frames from the shares,
and inputs three current bytes into the Lagrange interpola-
tion L(x) where x = 0. The results from this is the recon-
structed byte. After reconstructing a frame, it is re-encoded
using FFmpeg‘s encoding functionality. With all frames re-
constructed the original video has been retrieved.

4. ANALYSIS
As can be seen in Fig. 2 , our solution maintains visual

security of the video. An attacker cannot infer the content of
the video by viewing the shadow copy. Furthermore, because
our system uses Shamir’‘s Secret Sharing, along with näıve
video processing, we know that our system is information
theoretically secure. Assuming that an adversary does not
have access to at least k shadow copies, the adversary cannot
infer the value of a specific byte in the frame data. If the
adversary needs only 1 additional share to reconstruct the
secret video, he will not be able to do so. In our system, if
an attacker gains access to 2 shares, for any particular value
there are p−1 possible values for the secret byte in the finite
field mod p.

An additional benefit of using SSS is that it is resistant to
data tampering. SSS provides data integrity by making re-
construction of a secret impossible if the shadow value does
not coincide with the original polynomial. Thus if the ad-
versary modifies a share, the polynomial being reconstructed
will be incorrect, resulting in an unintelligible video.

The data loss mentioned earlier does not produce dramat-
ically different output as can be seen in Fig. 2. The data
loss is only affected by the larger values a byte can have.
Practically, this means that the maximum brightness of a
pixel is somewhat reduced. As can be seen in Fig. 2 there
is no significant reduction in video quality.

The proposed system suffer from major limitations in its



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 2: Cropping and scaling of the Foreman where (a) , (g) and (m) are the 1st, 190th and 300th frames, respectively,
from the original video. (b), (c), (h), (i), (n) and (o) are the 1st and 2nd unedited shares for their respective frame. (d), (e),
(j), (k), (p) and (q) are the 1st and 2nd cropped and scaled shadow copy for their respective frame (f), (l) and (r) show the
reconstructed frames.

design. By storing video shares in their entirety the storage
requirements of our system is rather strict. foreman.yuv
requires a total of 436 KB in its compressed MPEG form,
whereas each shadow copy take up 47 MB. The storage re-
quirements of the shadow copies depend on the resolution
of the video as well as its length.Thus, long high resolution
videos will require large amounts of free space. In our tests,
a 01:58 minute video with 720x480 resolution require only 90
MB of storage in its compressed form, but approximately 2
GB for each of its shadow copies. The exact compressed-to-
share storage ratio is difficult to pinpoint as it is a function of
the video resolution, length and overall change from frame
to frame. Videos with many new visual elements cannot
be as efficiently compressed as scenes that introduce fewer
elements.

Further limitations come from share generation, cropping,
scaling and reconstruction. Because each byte in the video
data must be considered a secret, any operation must be
done on each individual byte. This means that there is a lot
of processing overhead, especially with share creation, bicu-
bic interpolation and Lagrange interpolation. If the user
does not request scaling, the time to reconstruct the secret
using Lagrange interpolation can be significantly reduced
due to the smaller video resolution. There are fewer secrets
in each frame to reconstruct. Table 1 shows the run time of
our system using the Foreman as our secret. Share creation
is a relatively quick process and is largely bound by decod-
ing the input video. Reconstruction can take a lot longer
because of Lagrange interpolation where we have to calcu-
late x−xi

xj−xi
≡ (x − xi)(xj − xi)

−1 = 1 mod p which can be

computationally expensive.

Average Minimum Maximum
Encryption 6.8646 6.029 7.829

Reconstruction 31.474875 5.419 57.53075

Table 1: Processing time in seconds

5. FUTURE WORK
As previously stated, our implementation of the encrypted

videos uses a näıve way of representing video data. This
leads to increased storage requirements, and as such a form
of compression should be used to reduce this requirement.
Adding additional video format properties can make for fur-
ther improvements. This would include would include cal-
culating the different between frames, so not to store redun-
dant data. By applying Discrete Cosine Transform, motion
vectors and possibly macroblocks, the storage requirements
would decrease drastically. The benefit would be two-fold: i)
reducing storage overhead, and ii) reducing processing over-
head.

Implementing macrobocks for encrypted videos allow for
additional benefits by making the video better suited to be
streamed to a user. Currently our method is only working on
a local machine, and as such extensions should be made to
work on distributed systems. This would involve streaming
encrypted frames to the user for reconstruction, whereupon
zooming factors are provided and sent back to the servers,
which then apply the operation and produce a zoomed video.

These major limitations prevent our system from being
adopted in real world scenarios. Future work should attempt
to identify a more efficient way of encrypting videos while
maintaining its security.



6. CONCLUSION
TO BE FILLED IN LATER

7. REFERENCES
[1] S. Alharthi, P. K. Atrey, and M. S. Kankanhalli.

Secret video sharing. In Proc. of the APSIPA annual
summit and conference, 2010.

[2] J. C. Benaloh. Secret Sharing Homomorphisms:
Keeping Shares of a Secret Secret (Extended
Abstract). In A. M. Odlyzko, editor, Advances in

Cryptology âĂŤ CRYPTOâĂŹ 86, number 263 in
Lecture Notes in Computer Science, pages 251–260.
Springer Berlin Heidelberg, 1987.

[3] D. Bitouk, N. Kumar, S. Dhillon, P. Belhumeur, and
S. K. Nayar. Face Swapping: Automatically Replacing
Faces in Photographs. In ACM SIGGRAPH 2008
Papers, SIGGRAPH ’08, pages 39:1–39:8, New York,
NY, USA, 2008. ACM.

[4] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and
D. Wong. New Algorithms for Secure Outsourcing of
Large-Scale Systems of Linear Equations. IEEE
Transactions on Information Forensics and Security,
10(1):69–78, Jan. 2015.

[5] F. Dufaux and T. Ebrahimi. Scrambling for Privacy
Protection in Video Surveillance Systems. IEEE
Transactions on Circuits and Systems for Video
Technology, 18(8):1168–1174, Aug. 2008.

[6] W. Lu, A. Varna, and M. Wu. Secure video processing:
Problems and challenges. In 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5856–5859, May 2011.

[7] M. Mohanty, W. T. Ooi, and P. Atrey. Scale me, crop
me, know me not: Supporting scaling and cropping in
secret image sharing. In 2013 IEEE International
Conference on Multimedia and Expo (ICME), pages
1–6, July 2013.

[8] E. Newton, L. Sweeney, and B. Malin. Preserving
privacy by de-identifying face images. IEEE
Transactions on Knowledge and Data Engineering,
17(2):232–243, Feb. 2005.

[9] N. Quang Minh Khiem, G. Ravindra, A. Carlier, and
W. T. Ooi. Supporting Zoomable Video Streams with
Dynamic Region-of-interest Cropping. In Proceedings
of the First Annual ACM SIGMM Conference on
Multimedia Systems, MMSys ’10, pages 259–270, New
York, NY, USA, 2010. ACM.

[10] P. Saini, A. Kumar, and N. Singh. Article: Fpga
implementation of 2d and 3d image enhancement chip
in hdl environment. International Journal of
Computer Applications, 62(21):24–31, January 2013.
Full text available.

[11] B. SchÃűlkopf, J. Platt, and T. Hofmann. Advances in
Neural Information Processing Systems 19:
Proceedings of the 2006 Conference. MIT Press, 2007.


