Don’t See Me, Just Edit Me:
Toward Secure Cloud-based Video Editing

Anonymous ACM Multimedia Submission

ABSTRACT

Imagine that you want to store and edit a video in the cloud,
but you don’t want to let cloud know about the content.
Currently there is not good solution to this problem. In
this paper we present a system that allows users to encrypt
their video files using Shamir’s secret sharing scheme, up-
load them to the cloud where they can perform cropping and
bicubic scaling to achieve zooming. This system in its pre-
liminary stage, though has some limitations, provides per-
fect security and sets up for further research to explore the
possibility of supporting other video editing operations over
cloud in the encrypted domain.

Categories and Subject Descriptors
K.6.5 [Security and Protection]

General Terms

Security

Keywords

Cloud computing, Video zooming, Shamir’s secret sharing,
Secure processing

1. INTRODUCTION

Cloud computing is rapidly becoming ubiquitous. Users
are moving their data to cloud data centers (CDCs) for stor-
age, and businesses are using cloud resources to do their pro-
cessing. Computationally expensive operations are ideally
suited for cloud computing, and as such, off-loading heavy-
lifting video editing operations to CDCs is a cost-effective
alternative to local processing.

Moving data to the cloud has many benefits but it comes
at the cost of security and privacy. A lot of data being stored
and processed by cloud services is in plaintext, which can
be intercepted by attackers. Several recent data breaches
indicate that users data is not always secure when stored

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguees prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

by a third party. Companies could still be the victims of a
breach and the attacks could steal or tamper with the data.
Additionally, there could be insider attacks at the CDCs.

These insecurities become increasingly significant when
the video data in question is of a sensitive nature. With a
huge amount of video data, emerging from different appli-
cations such as camera surveillance and smart phones, and
being outsourced to cloud, it is important that video pro-
cessing operations performed by cloud services are secure.
Our focus in this paper is on video editing operations such
as cropping and scaling. While traditional schemes provide
computational security, those that lack homomorphic prop-
erties forces users to decrypt the video before processing it,
thus exposing the data to increased risk.

The challenge then becomes to construct a method that
allows users to encrypt their video before uploading it to
cloud services where it can be safely manipulated in en-
crypted form. By utilizing a homomorphic cryptographic
scheme we can achieve this goal. Using this scheme also
allows us to perform basic arithmetic operations on the ci-
phertext, and we can still retrieve the desired result. Thus,
as long as video editing operations can be performed with-
out comparisons and only using the four fundamental arith-
metic operations (addition, subtraction, multiplication and
division), we can reliably edit videos in an encrypted domain
if the following holds E(vi 0v2) = E(v1)o E(v2), where vy
and vy represent the two data units in a video (e.g. two
frames or two pixels in a frame), E denotes the encryption
function, and o represents the one of the four fundamental
operations.

In this paper, we propose a solution to this problem by us-
ing Shamir’s Secret Sharing (SSS) scheme. For each frame in
a video, we process it byte-by-byte and encrypt each byte,
thus creating shares, or shadow copies, of the video. Our
solution allows for cropping and scaling on the encrypted
shadow copies to achieve zooming. To the best of our knowl-
edge, this is the first paper which performs cropping and
scaling of a video in encrypted domain. We achieve bicubic
scaling by way of the additive and multiplicative properties
of homomorphism [2]. Zooming into a frame is done by first
cropping the frame and then upscaling it.

2. BACKGROUND AND RELATED WORK

2.1 SSSscheme

The (k,n) SSS scheme, 2 < k < n, was proposed by Adi
Shamir in 1979 (8], which divides a secret into n shares such
that: i) any k or more shares can reconstruct the secret, and

ii) k — 1 or fewer shares cannot reconstruct the secret.

To share a secret ap among n participants, a polynomial
function F'(z) is constructed of degree k — 1 using k — 1 ran-
dom coefficients a1, az . ..ak—1 in a finite field GF(p) where
p is prime number > a;,0 <i <k — 1.

F(z) = Zaimi mod p (1)

Any k out of n shares can reconstruct the secret using La-
grange interpolation; the secret can be obtained at L(0) i.e.
L(0) = ao, as:

k k
X — T
L(z) = ZZ/J‘ H P mod p (2)
j=1 i=l,izj 7 ¢

The SSS scheme has been used to protect different types
of data such as text, image and video [1]. There have been
efforts to limit the storage requirements using a variation
of the SSS scheme, called Ramp Secret Sharing. While
these schemes reduce how much space is needed to store the
shares, the scheme loses its information theoretic security
property, thus making it vulnerable to attacks.

There have been a few attempts to process image data in
encrypted domain using SSS’s homomorphic property. Ex-
amples include: Mohanty et al. [6] for image scaling and
cropping, Lathey and Atrey [3]. This work is an extension
of [6]. While in [6], authors performed scaling and cropping
on encrypted images, this paper goes a step ahead and at-
tempts to perform the same operations on encrypted videos.

2.2 Encrypted Domain Video Processing

From the perspective of encrypted domain video process-
ing, there are a few works. For instance, Upmanyu et al.
[9] proposed secure solutions for applications such as blind
authentication, i.e. blindly authenticating a remote-user us-
ing his biometric, object tracking, and face detection over
cloud. They presented a secure framework for carrying out
visual surveillance on random looking video streams at re-
mote servers. Similarly, Avidan and Butman [7] presented a
method to securely perform face detection without leaking
vital information about the image. Lu et al. [4] discussed
various applications of video processing in the encrypted
domain, the challenges and potential techniques, focusing
on video search, classification and summarization. Despite
these works, video scaling and cropping has not been done
earlier, which we do in this paper.

2.3 Bicubic Scaling

For scaling of video frames, we used the bicubic interpo-
lation method [5], which takes 16 reference points and in-
terpolate them. This scaling algorithm generally works well
for upscaling images while still maintaining decent levels of
detail. Mathematically, it is expressed as:

3 3
P(z,y) => Y aiz'y’ (3)
i—=0 j—0

Here, z and y denote the position of the interpolated value,
aij is the value of the the ij'" sub pixel in the targeted
image, and P(z,y) is the interpolated pixel value.

3. PROPOSED WORK

.—> Decoder ‘
T

Share creation ‘

oloe]

-'.-. ll*",.' |'.-. u‘".‘ . -'.-. f".‘
I@,ﬂ .’@E}. ele’e) I@,ﬂ
Data cfnter 1 Data center 2 Data center n
Crop & scale| Crop & scale‘ Crop & scale‘

oloe]

Video reconstruction ‘

v
Encoder ’—).

Figure 1: System architecture

3.1 Threat Model and Assumptions

Cloud-based video editing give host to a slew of security
threats. The following entities are involved in the process:
the owner of the video, video transmission channels, CDCs,
users of the video. Here transmission channels and CDCs are
assumed to be vulnerable to attacks and they are considered
untrustworthy, while the owner and the user of the video
can have full access to the video, and hence, are regarded as
trustworthy.

With these vulnerabilities we need a solution that assumes
the data is at risk as soon as it is not in the possession of
the user. To achieve the best security possible, all CDCs
should be unrelated and any (k < n) must not collude. We
assume that both the input and output will be in the mpeg
compression format. For convenience and to maintain data
integrity, all video editing operations should be nondestruc-
tive so not to change the input file. For simplicity we further
assume that all operations will be performed on the entire
video and not for selected frames.

3.2 Architecture

To not expose the secret video to unnecessary risks, all
encryption and decryption should happen on the user’s end.
The CDCs should not possess the capability to do any of
these operations. We address this issue with the architecture
illustrated in Fig. 1. Here, the CDCs can only crop and
scale the shadow copies while the user can create shares and
reconstruct the original.

The secret video is inputted into the decoder, which gives
us access to all the frames in their presentation order. De-
coding is done by the FFmpeg decoder. With each frame,
we input the frame, byte-by-byte to the SSS algorithm to
create the shares. Once all the frames have been processed,
and all shares created, the shadow copies are uploaded to
the CDCs and the original secret video is deleted.

With shadow copies stored in CDCs they can now be pro-

cessed. This is where shadow copies will be cropped and
scaled. Shares are cropped and scaled individually. To re-
construct the secret video, edited or otherwise, k shares are
downloaded and reconstructed using L(0) where z; is the
number of that particular share and y; is the value of the
share being used in reconstruction. Reconstruction leads to
either the original secret being recovered, or the result of
cropping and scaling of the shadow copies, but in plaintext.

3.3 System Implementation

We utilized FFmpeg's libav library for decoding and en-
coding. This also gave us access to the frame data, which
we could then encrypt. We originally intended to use libav
to re-encode each shadow copy into the same format as the
secret video, but this proved difficult to achieve with codecs
that use lossy compression techniques. As a result, by re-
encoding a share in the same format as the original video
we lose information thus making reconstruction impossible.
We could not reliably re-encode shares using lossy codecs so
we opted to develop out own file format to store each share.

Our file format is reflects our naive encryption of the video
where all I, P and B frames are stored completely, and in
presentation order. This is a less than ideal solution and
gives cause for future improvements. As a result, we store
a lot of redundant information for each frame, and as such
the space required for each share is dramatically higher than
that of the original video because we do not employ any
compression techniques.

Furthermore we chose to store the header information in
plaintext, while all the frame data is stored as ciphertext.
The headers contain important information that it is needed
to properly reconstruct the video. Even with headers in
plaintext, the content of the video is still secure. An attacker
does not gain any insight into the content of the secret video
by knowing the headers. Our headers store timestamps, the
resolution of the video, and the size of each frame in bytes.

Our system consists of three components, the video source,
the n shareholders and the user, as illustrated by Fig. 1. A
user would first create shares of the secret video before dis-
tributing all » (n = 5 in our case) shadow copies to its
shareholders. Then cropping and scaling is done on all n
shares. Any k (k = 3 in our case) shareholders bring their
shadow copies together to reconstruct the video.

After decoding the input video, we process all P, B and I
frames in presentation order. All frames contain Y, Cb and
Cr components with 4:2:0 sub-sampling. Each component
is processed individually and independently to each other.
The FFmpeg decoder interleaves the components to display
the frame. To create all n shares, the system computes Fy(x)
for each byte b in the frame and for n different values of x.

When all three components are processed, we will have the
fully generated shadow copies for the frame. Each shadow
frame is now written to their respective shares, where all
frames are stored in presentation order. This simplifies the
reconstruction phase.

Once the shadow videos have been created, they are up-
loaded to different CDCs, and the original video is deleted.
The CDCs do not possess the means to reconstruct the
video, nor analyze the contents of videos.

To achieve zooming in the video, the user submits the
dimensions for the Region of Interest (Rol) along with the
starting coordinate of the region. The system removes all
data outside the Rol for all frames in the shares. When the

frame is fully cropped, the system scales the cropped frame
to the dimensions of the original frame. This is done by
calculating P(z,y) for each sub-pixel in the output frame.
Note that all computations are performed under modulo p.
Now that the Rol has been scaled, the frame is written to a
new file that stores the zoomed shadow copy.

To reconstruct the original video, k shareholders input
their shares to the system. To find the original secret video,
the i*" byte of k shadow copies are used in Lagrange interpo-
lation to create the polynomial L(z) where = 0 and byte
b; = y; and x; is the number indicating the share‘s id. L(z)
is now the reconstructed i*® subpixel. After reconstructing
a frame, it is re-encoded using FFmpeg‘s encoding function-
ality. With all frames reconstructed the original video has
been retrieved.

4. ANALYSIS

In our testing our secret video was the Foreman video
(size: 436 KB, dimensions: 352 x 288). As can be seen in
Fig. 2, our solution maintains visual security of the video.
An attacker cannot infer the content of the video by viewing
the shadow copy. Furthermore, because our system uses the
SSS scheme, along with naive video processing, we know that
our system is information theoretically secure. Assuming
that an adversary does not have access to k shadow copies,
the adversary cannot infer the value of a specific subpixel
in a frame. In our system, if an attacker gains access to 2
shares, for any particular value there are p possible values
for the secret byte in the finite field Zp.

An additional benefit of using SSS is that it is resistant to
data tampering. SSS provides data integrity by making re-
construction of a secret impossible if the shadow value does
not coincide with the original polynomial. Thus if the ad-
versary modifies a share, the polynomial being reconstructed
will be incorrect, resulting in an unintelligible video.

The proposed system, though provides perfect security,
suffers from some limitations in its design. By storing video
shares in their entirety the storage requirements of our sys-
tem is rather strict. the shadow copies of the Foreman
take up 47 MB. The storage requirements of the shadow
copies depend on the resolution of the video as well as its
length.Thus, long high resolution videos will require large
amounts of free space. In our tests, a 01:58 minute video
with 720 x 480 resolution require only 90 MB of storage in
its compressed form, but approximately 2 GB for each of
its shadow copies. The exact compressed-to-share storage
ratio is difficult to pinpoint as it is a function of the video
resolution and length.

Further limitations come from share generation, cropping,
scaling and reconstruction. Because each byte in the video
data is considered a secret, any operation must be done on
each individual byte. This means that there is a lot of pro-
cessing overhead, especially with share creation, bicubic in-
terpolation and Lagrange interpolation. If only cropping is
requested by the user, the time to reconstruct the secret
using Lagrange interpolation can be significantly reduced
due to the smaller video resolution. There are fewer se-
crets in each frame to reconstruct. Table 1 shows the run
time of our system using the Foreman video. Share cre-
ation is relatively quick and is largely bound by decoding
the input video. Reconstruction can take a lot longer be-
cause of Lagrange interpolation where we have to calculate

L% = (3 — ;) (z; — ;)" ' =1 mod p which can be com-
J i

(h)

() (0)

5

(p) (a)

Figure 2: Cropping and scaling of the Foreman where (a) , (g) and (m) are the 1st, 190th and 300th frames, respectively,
from the original video. (b), (c), (h), (i), (n) and (o) are the 1st and 2nd unedited shares for their respective frame. The red
rectangle in these share frames shows the region chosen for cropping and scaling. (d), (e), (j), (k), (p) and (q) are the 1st and
2nd cropped and scaled shadow copy for their respective frame (f), (1) and (r) show the reconstructed frames.

Table 1: Processing time for Foreman video in seconds

Average | Minimum | Maximum
Encryption 6.86 6.03 7.83
Reconstruction 31.48 5.42 57.53

putationally expensive.

5. CONCLUSION AND FUTURE WORK

As previously stated, our implementation of the encrypted
videos uses a naive representation of video data. This leads
to increased storage requirements, and as such, a form of
compression should be implemented. Video features such
as Discrete Cosine Transform coefficients, motion vectors,
inter frames and macroblocks would gain significant storage
improvements. The benefit would be two-fold: i) reducing
storage overhead, and ii) reducing processing overhead.

Implementing macrobocks for encrypted videos allow for
additional benefits by making the video better suited to be
streamed to a user. Thus the shadow copies can be streamed
to a user and cropping and scaling can be done interactively.
Also, in future, we would attempt to identify a more efficient
way of storing the encrypted data while still maintaining its
security.

6. REFERENCES

[1] S. Alharthi, P. K. Atrey, and M. S. Kankanhalli. Secret
video sharing. In Proc. of the APSIPA annual summit
and conference, 2010.

[2] J. C. Benaloh. Secret Sharing Homomorphisms:
Keeping Shares of a Secret Secret (Extended Abstract).

(4]

5]

(6]

In A. M. Odlyzko, editor, Advances in Cryptology —
CRYPTO’86, number 263 in Lecture Notes in
Computer Science, pages 251-260. Springer Berlin
Heidelberg, 1987.

A. Lathey and P. K. Atrey. Image enhancement in
encrypted domain over cloud. ACM Transactions on
Multimedia Computing, Communications and
Applications, 11(3), 2015.

W. Lu, A. Varna, and M. Wu. Secure video processing;:
Problems and challenges. In 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5856—-5859, May 2011.

D. P. Mitchell and A. N. Netravali. Reconstruction
Filters in Computer-graphics. In Proceedings of the
15th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’88, pages 221-228,
New York, NY, USA, 1988. ACM.

M. Mohanty, W. T. Ooi, and P. Atrey. Scale me, crop
me, know me not: Supporting scaling and cropping in
secret image sharing. In 2013 IEEE International
Conference on Multimedia and Exzpo (ICME), pages
1-6, July 2013.

B. Scholkopf, J. Platt, and T. Hofmann. Advances in
Neural Information Processing Systems 19: Proceedings
of the 2006 Conference. MIT Press, 2007.

A. Shamir. How to share a secret. In: Communications
of the ACM, 22:612-613, 1979.

M. Upmanyu, A. M. Namboodiri, K. Srinathan, and
C. V. Jawahar. Efficient privacy preserving video
surveillance. In Proceedings of IEEE 12" International
Conference on Computer Vision, pages 16391646,
2009.

