
Local Community Detection in Dynamic Networks
Daniel J. DiTursi∗† Gaurav Ghosh∗ Petko Bogdanov∗

∗Department of Computer Science
State University of New York at Albany

Albany, NY 12222

†Department of Computer Science
Siena College

Loudonville, NY 12211

Abstract—Given a time-evolving network, how can we detect
communities over periods of high internal and low external
interactions? To address this question we generalize traditional
local community detection in graphs to the setting of dynamic
networks. Adopting existing static-network approaches in an “ag-
gregated” graph of all temporal interactions is not appropriate
for the problem as dynamic communities may be short-lived and
thus lost when mixing interactions over long periods. Hence,
dynamic community mining requires the detection of both the
community nodes and an optimal time interval in which they are
actively interacting.

We propose a filter-and-verify framework for dynamic com-
munity detection. To scale to long intervals of graph evolution, we
employ novel spectral bounds for dynamic community conduc-
tance and employ them to filter suboptimal periods in near-linear
time. We also design a time-and-graph-aware locality sensitive
hashing family to effectively spot promising community cores.
Our method PHASR discovers communities of consistently higher
quality (2 to 67 times better) than those of baselines. At the
same time, our bounds allow for pruning between 55% and 95%
of the search space, resulting in significant savings in running
time compared to exhaustive alternatives for even modest time
intervals of graph evolution.

I. INTRODUCTION

Given a large network with entities interacting at different
times, how can we detect communities of intense internal and
limited external interactions over a period? Temporal network
interaction data abounds, hence, answering the question above
can inform decisions in a wide range of settings. A set of
computers that do not typically interact extensively suddenly
exhibits a spike in network traffic—this burst could be the
activation of a botnet and warrants special attention from
network administrators [15]. Similarly, prior to a major project
deadline, members of a team may communicate more and
exclusively among each other compared to other times [19].
Knowledge of such periods and the involved parties can
lead to better communication systems by accordingly ranking
temporally and contextually important messages.

In the example of Fig. 1 nodes {2, 3, 4} induce a strong
community at times t2-t3 due to multiple high-weight (thick
line) internal and weaker external interactions. Intuitively,
including more nodes or extending this community in time can
only make it less exclusive. Detection of such dynamic com-
munities can be viewed as a generalization of local community
detection [3, 2], where locality is enforced in both (i) the graph
domain: local as opposed to complete partitioning; and (ii) the
time domain: communities exhibit bursty internal interactions
in a contiguous time interval. For example, in a log of cellular
tower interactions in the city of Milan, we detect just such

0 1

2

3
4

5
6

7 8

0 1

2

3
4

5
6

7 8

0 1

2

3
4

5
6

7 8

0 1

2

3
4

5
6

7 8

C1

C2Weights:
2
1

t1 t2 t3 t4

Fig. 1. Interactions in a small graph over 4 time steps. Thicker edges designate
stronger interactions. Two temporal communities C1 across t2-t3 and C2

across t2-t4 are designated in dashed boxes.

a bursty temporal community near a major highway during
hours corresponding to the morning commute. (See Fig. 2.)

Unlike evolutionary clustering [21, 18, 6], whose goal is to
partition all vertices at every timestamp, our goal is to identify
the most cohesive communities and their interval of activity
without clustering all nodes in time. Hence, our problem is
more similar to local community detection [3, 13, 29] than
partitioning. In addition, evolutionary clustering methods are
often concerned with the long-term group membership evo-
lution: how partitions appear, grow, shrink and disappear [6].
Instead, we focus on interaction bursts among a temporally
stable group of nodes.

While local dynamic community detection has practical
applications, it also presents non-trivial challenges. Even in
static graphs, many local community measures involving cuts
are NP-hard to optimize, including conductance [30], modular-
ity [8], ratio cut [31], and normalized cut [27]. Furthermore, to
detect the active period of a dynamic community one needs to
consider a quadratic number of possible intervals. Aggregating
all interactions and resorting to static community detection
approaches [3, 13] may occlude dynamic communities due to
mixing interactions from different periods. Alternatively, con-
sideration of individual timestamps in isolation may fragment
the community in time.

We propose a Prune, HASh and Refine (PHASR) approach
for the problem of temporal community detection. We prune
infeasible time periods based on novel spectral lower bounds
for the graph conductance tailored to the dynamic graph
setting. We show that pruning all O(T 2) possible intervals can
be performed in time O(T log T) due to an interval grouping
scheme exploiting the similarity of overlapping time intervals.
In order to efficiently spot candidate community nodes in
non-pruned time intervals, we design a time-and-graph-aware
locality sensitive hashing scheme to group similar temporal
neighborhoods of community nodes in linear time. Our hash-

ar
X

iv
:1

70
9.

04
03

3v
1

 [
cs

.S
I]

 1
2

Se
p

20
17

Fig. 2. Map of Milan and surroundings. The marked areas contain the
cell towers of the top discovered communities in the Call data set. These
communities exist in the early morning hours and likely correspond to
morning commute along Milan’s beltway.

ing scheme can be configured to maximize the probability
of spotting communities of a target duration informed by the
pruning step. In the refinement step, we expand communities
rooted in candidate nodes in time. Our contributions in this
work are as follows:
• We propose novel spectral bounds for temporal commu-
nity conductance and an efficient scheme to compute them
using O(T log T) eigenvalue computations. Our bounds enable
pruning of more than 95% of the time intervals in synthetic
and more than 50% in real-world instances; and are trivial to
parallelize.
• We propose a joint time-and-graph, locality-sensitive family
of functions and employ them in an effective scheme for
spotting temporal community seeds in linear time. Our LSH
scheme enables the discovery of 2 to 67 times better commu-
nities compared to those discovered by baselines.
• PHASR scales to synthetic and real-world networks of sizes
that render exhaustive alternatives infeasible. This dominating
performance is enabled by effective pruning and high true
positive rate of candidates produced by our hashing scheme.

II. RELATED WORK

Static local communities: Our work is different from static
community detection [32, 3, 23, 13, 20] in that we consider
a dynamic setting. We compare to temporal generalization of
the method in [3] since it similarly focuses on the subgraph
conductance of a community and the method in [23] as it
employs hashing for static network communities. Our experi-
ments demonstrate that naive extensions of the above methods
do not scale well with time.
Dense subgraph detection has been recently considered for
unweighted interactions in time [25, 14, 24]. Such methods
allow for analysis at the maximal temporal resolution in which
only fragments of the community may be available at an
instance and thus require parameters that predefine the total
span of a community [25] or some notion of persistence (e.g.
time-to-live interval) for interaction edges [14, 24]. In addition,
these works consider the density within a community, but
not its separation from the rest of the network, i.e. its cut.
In contrast, in our setting we focus on communities that are
well-separated from the rest of the network, we do not require
predefined persistence/span, and we allow for weights of edges
modelling varying strength of interactions in time.

Persistent subgraphs in time have also been considered [22,
1]. Similar to this work, the methods in this category require
that the subgraph of interest persists as either a conserved
topology [1] or as a stable level of intra-community interac-
tions. These objectives are different and even complementary
to ours in that they do not consider how well-separated the
community is from the rest of the network. The persistence
requirements can be considered in conjunction with conduc-
tance to further rank candidates of interest.
High-weight temporal subgraph detection is another relevant
setting with the goal of detecting connected subgraphs which
optimize a function of their node or edge weights in time
have also been considered [22, 1, 7]. Similar to this work, the
methods in this category require that the subgraph of interest
persists as either a conserved topology [1] or as a stable level
of intra-community interactions. These objectives are different
from ours in that they do not consider how well-separated the
community is from the rest of the network; the focus is only
on high internal weights. The persistence requirements could
be considered in conjunction with conductance to further rank
candidates of interest.
Evolutionary clustering for dynamic networks is another
related and very active area of research [21, 18, 6, 29].
The goal in evolutionary clustering is to track the changes
in the global network partitions over time, where partitions
are allowed to vary from one time slice to the next by
incorporating temporal smoothness of partition membership.
The general problem setting, however, differs from ours as the
goal is to partition all vertices at every timestamp as opposed
to identifying the best local communities and their interval
of activity. Closest to our goal from this group is the local
community method by Takafolli et al. [29] which extends local
communities of good modularity from one time-step to the
next. In comparison, our approach considers the full timeline
as opposed to only consecutive time steps, and as a result
consistently finds lower-conductance communities than that of
Takafolli et al. [29].

III. PROBLEM DEFINITION

Our goal is to find communities of stable membership over
a period of time during which members interact mostly among
each other as opposed to with the rest of the network. To model
this intuition we propose the temporal conductance measure,
a natural extension to graph conductance which is commonly
adopted for local communities in static graphs [30, 3]. Our
problem can then be cast as detecting the subgraph and interval
of smallest temporal conductance, formalized next.

Let G(V,E,W) be an undirected edge-weighted temporal
graph, where V is the set of vertices, E ⊆ V × V is
the set of edges and W is a family of weight functions
W : E × T → R+ mapping edges to real values across a
discrete timeline T = {0, 1, . . . , |T | − 1} of graph evolution.
We will use w(u, v, t) to denote the weight of an edge
(u, v) at time t and w(u, v, t, t′) =

∑t′

i=t w(u, v, i) to denote
the aggregate (temporal) weight on the same edge in the
interval [t, t′]. The temporal volume of a node u is defined as

vol(u, t, t′) =
∑

(u,v)∈E w(u, v, t, t′). A temporal community
(C, t, t′) is a connected subgraph of G induced by nodes
C ⊆ V and weighted by w(u, v, t, t′),∀(u, v) ∈ E ∩ (C×C).
The temporal conductance, of a community (C, t, t′), a gen-
eralization of the classic conductance [30], is defined as:

φ(C, t, t′) = η(t, t′)
cut(C, t, t′)

min(vol(C, t, t′), vol(C̄, t, t′))
,

where C̄ = V \ C ; cut(C, t, t′) =
∑
u∈C,v∈C̄ w(u, v, t, t′) is

the temporal cut of C; and η(t, t′) is a temporal normalization
factor. The smaller the conductance, the more cohesive the
community.

If η(t, t′) is a constant, the temporal conductance reduces
to the regular graph conductance of C on an aggregated
network in the interval [t, t′]. However, without normalization
the conductance will favor small communities in single times-
tamps, thus fragmenting a natural community in time. Hence,
we consider a temporal normalization η(t, t′) = (t′ − t)−α,
where α controls the importance of community time extent.
Our methods can trivially accommodate different forms of the
normalization function, e.g. exponential time decay similar to
that used in streaming settings [26, 33].

To demonstrate the effect of normalization, consider C1

and C2 in Fig. 1. When α = 0 (i.e. no normalization),
the conductance of C1 is φ(C1, 2, 3) = 5/29 = 0.17,
while φ(C2, 2, 4) = 8/39 = 0.21 (weights considered).
Upon increasing the normalization (say α = 1), and hence
the preference for longer-lasting communities, the temporal
conductance of C2 becomes lower than that of C1.

Problem 1. [Lowest temporal conductance community]
Given a dynamic network G(V,E,W), find the community:
(Co, to, t

′
o) = arg minC∈V,0≤t≤t′≤T φ(C, t, t′).

The lowest conductance problem in a static graph is known
to be NP-hard [30] and since a dynamic graph of a single
timestamp T = 1 is equivalent to the static case, our problem
of temporal conductance minimization is also NP-hard. Hence,
our focus is on (i) scalable processing of dynamic graphs
over long timelines; and (ii) effective and efficient detection
of community seeds in the graph and time which existing
approximate solutions for the static case require as input [3, 2].

IV. METHODS

Since our problem is NP-hard, exhaustive approaches would
not scale to large real-world dynamic networks. We experi-
mentally demonstrate that naı̈ve heuristics are infeasible in all
but trivially-small instances. Thus, our overall method enables
scalability (i) with the graph size by identifying and refining
candidate seed nodes in time that are likely to participate
in low-conductance communities (Seed selection IV-B); and
(ii) with the length of the timeline by pruning infeasible
periods in time with guarantees (Pruning Sec. IV-C). Our final
approach is presented in Sec. IV-D.

A. Preliminaries
Before we present our solution, we review preliminaries

related to locality sensitive hashing (LSH) [16] and local
community detection [3, 4]. Both concepts have been employed

for static networks and are, thus, a natural starting point for
naı̈ve baselines.
LSH and neighborhood similarity. Indyk et al. [16] proposed
LSH for approximate nearest neighbor (NN) search. A family
of functions is (d1, d2, p1, p2)-sensitive w.r.t. a distance mea-
sure d if for every function f in the family, d2 ≤ d(x, y) ≤
d1 ⇒ p2 ≥ P [f(x) = f(y)] ≥ p1. The family of minhash
functions for sets was shown to be locality-sensitive w.r.t. the
Jaccard distance (defined as 1−Jaccard Similarity) [9, 16]. The
concept of LSH for node neighborhoods was employed for
fast community detection in static networks by Macropol et
al. [23]. The intuition is that nodes in dense communities tend
to have similar neighborhoods and thus they will collide when
hashed using an LS family. We extend this intuition to locality
in time by considering similarity in both time and graph space.
In addition, the community strength in time is dependent not
only on the existence of edges but also the level of interaction,
which we model as weights in time w(u, v, t). In order to
incorporate weights we adopt a recent approach by Ioffe et
al. [17] for LSH of weighted sets using a weighted Jaccard
similarity, defined as follows for neighborhoods in our setting:

JW (Ni, Nj) =

∑
v∈Ni∪Nj

min(w(v, i), w(v, j))∑
v∈Ni∪Nj

max(w(v, i), w(v, j))
,

where Ni and Nj are the neighborhoods of nodes i and j in
a given time period (time indices of the weight omitted for
simplicity).
Local communities in static graphs. Recent approaches for
low-conductance local community detection in static networks
rely on graph diffusion [3, 4]. The goal is to obtain a single
partition around a predefined seed node by a local computation
that involves a small fraction of the graph around the seed and
that closely approximates the best conductance involving the
seed. In our proposed approach, we first “spot” seed nodes
in time based on high temporal neighborhood similarity and
expand to a community similar to the spectral sweep method
by Andersen et al. [3].

B. Temporal Neighborhood LSH to spot seeds

A low-conductance temporal community consists of nodes
that mostly interact with each other over a contiguous time
interval when the community is active. A first step in our
approach is to find seed nodes within the community in the
corresponding time frame that can then be used to expand
to strong communities. Our solution for seed selection is
based on the observation that weighted node neighborhoods
within the community tend to be similar. We exploit this
observation in order to obtain seeds for promising regions
in time. Specifically, we propose a scalable similarity search
method based on hashing of node neighborhoods in time.
We show that our scheme is locality-sensitive in both time
and graph space. Its parameters can be optimized to target
a pre-specified duration in time—a property that we exploit
in conjunction with temporal pruning of feasible intervals in
order to reduce the computational and memory footprint of
our approach.

Given a dynamic graph G(V,E,W), the weighted tempo-
ral neighborhood N t

u of node u is the weighted set of its
neighbors (including u): N t

u = {(v : w(u, v, t))|(u, v) ∈
E}∪ (u : vol(u, t)). We adopt the weighted Jaccard similarity
JW (N t

u, N
t
v) and the weighted minhash function for ψ(·)

ensuring that
P [ψ(N t

u) = ψ(N t
v)] = JW (N t

u, N
t
v).

We hash neighborhoods using r independent minhash func-
tions to create a graph signature SrG(N t

u) for a given neigh-
borhood N t

u.
If we compare weighted neighborhoods, disregarding the

time at which they were observed, we may produce collisions
of high-similarity neighborhoods that may be potentially dis-
tant in time. Hence, a straightforward adoption of LSH for
weighted sets will not be locality sensitive with respect to time.
Instead, we need to associate highly similar neighborhoods
that are also close in time. The main intuition behind our
temporal locality sensitive hashing function is: close time
instants are likely to belong to the same interval if the timeline
is partitioned into random segments.

Let pk = {p1 < p2 · · · < pk} be a k-partitioning of
the timeline using k pivot time points selected uniformly
at random in [0, T]. We define a hash function τk(·) based
on the partitioning p that maps a given time point t to the
index of the earliest pivot pi ∈ p whose time exceeds t:
τk(t) = {min(i)|pi ≥ t, pi ∈ pk}.
Theorem 1. [Temporal locality] The family of temporal hash
functions τk is (∆1,∆2, (1−∆1

T)k, (1−∆2
T)k)-sensitive family

for the distance in time ∆ defined as the delay between two
timepoints.

Proof. Available in the Appendix. �
Beyond being locality sensitive in time, our pivot-based

hashing family τk can be configured to target specific com-
munity lengths. While we do not know the duration of good
communities in the data a priori, as we will show in the
following section, we can prune intervals in time that cannot
include the best communities with guarantees. Hence, we
need to be able to focus on matching neighborhoods at time
resolutions that are viable in order to reduce the memory and
running time footprint of our solution. To enable this, we
need to answer the following question: What is the optimal
number of pivots k to detect communities of a given duration?
Assuming that a target community duration is ∆∗, we need to
choose k such that similar temporal neighborhoods within that
period have a high chance of collision. A perfect partitioning
p of the timeline would produce a single segment that isolates
the target period of length ∆∗. This requires two pivots to
“bracket” the period and all other pivots to fall outside of it.
Theorem 2. [Optimal number of pivots] The number of
pivots k∗ that maximizes the probability of a perfect partition
of a period of length ∆∗ is k∗ ≈ b 2T

∆∗ c.
Proof. Available in the Appendix. �

To detect similar neighborhoods in time we combine an
r-sized graph signature SrG(N t

u) with a temporal signature
SkT (N t

u) = τk(t) using an AND predicate to obtain a unified

temporal neighborhood signature Sr,k(N t
u) that is a locality

sensitive family in both the time and graph domains as a direct
consequence of the locality SrG(N t

u) and SkT (N t
u).

Corollary 3. Let Sr,k be a temporal neighborhood hash func-
tion with r minhashes and k partitions. Then: P [Sr,k(N t

u) =

Sr,k(N t′
u)] = JW (N t

u, N
t′
v)r(1− |t−t

′|
T)k.

Since our composite hashing family is locality sensitive in
both time and the graph, we can construct signatures that
amplify its locality sensitivity. For example, if we combine
l independent hash signatures Sr,k using an OR predicate,
i.e. require that there is a match in at least one hash value
for a collision, the resulting collision probability will be
1 − [1 − pr,k]l, where pr,k = P [Sr,k(N t

u) = Sr,k(N t′
u)].

Similarly, an AND predicate composition will result in plr,k
probability of collision. Using cascades of such composition
we can “shape” the selectivity of our LSH scheme and thus
control rate of FP and FN collisions at the cost of increased
memory and computational overhead.

A neighborhood signature requires log(k|V |r) bits of stor-
age, since a single weighted minhash value is a vertex index
and a temporal hash value is the position of the first pivot
index exceeding the timestamp of the hashed neighborhood.
For a fixed temporal resolution and a composition of b
independent signatures (OR/AND predicate compositions),
the overall memory footprint of our hashing approach will
be bT |V | log(k|V |r) bits. The above analysis is pessimistic
as it assumes no collisions and thus storing the signatures
for all existing collision bins. Nevertheless, large and long-
evolving instances may be impractical to exhaustively hash and
process. Our filtering approach discussed next addresses this
challenge and allows us to significantly reduce the memory
and computational footprint.

C. Spectral bounds for pruning time intervals

The strongest temporal communities exhibit lower con-
ductance than other communities in the network. Also, in
real-world graphs many time intervals contain no promising
communities—i.e. no project deadline or spike in network
traffic. Our goal is to eliminate from consideration such
periods of low community activity which cannot coincide with
the best temporal community. In what follows, we develop
lower bounds on the temporal conductance of any subgraph
in a given time window. We employ our bounds in combination
with a solution estimate to deterministically prune irrelevant
intervals in time. Such pruning can significantly improve the
running time of our LSH-based approach as we can target only
promising neighborhoods in time by adjusting the time scale
(i.e. number of pivots k) for temporal hashing.

Let G[t,t′] be the aggregate graph of G(V,E,W) over
time interval [t, t′] with aggregate edge weights w(u, v, t, t′).
The temporal graph conductance in an aggregate weighted
graph is defined as the minimum temporal conductance over
all subsets C ∈ V : φ(G[t,t′]) = minC∈V φ(S, t, t′). Let A
be the adjacency matrix of a weighted graph G[t,t′] with
elements Au,v = w(u, v, t, t′) and D be the diagonal “degree”

matrix with elements Du,u = vol(u, t, t′) and 0 in all off-
diagonal elements. The matrix L = D−A is the unnormalized
graph Laplacian, while the matrix N = D−1/2LD−1/2 is
the symmetric normalized graph Laplacian [28]. The Lapla-
cian matrices have many advantageous properties and have
been employed in spectral graph partitioning [28, 11]. The
eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λ|V | ≤ 2 of N are
all real, non-negative and contained in [0, 2]. The smallest
eigenvalue is 0 and its multiplicity is the same as the number of
connected components. Assuming that the graph is connected
(i.e. one connected component), one can show the following
relationship with the graph conductance:
Lemma 1. [Spectral bound [28]] The temporal graph con-
ductance of a weighted graph can be bounded as follows:
φ(G[t,t′]) = η(t, t′)λ2/2 ≤ φ(G[t,t′]).

Note that the above bound is valid for arbitrary weighted
graphs, although we explicitly state it in the context of ag-
gregated graphs including the normalization based on η(t, t′).
The conductance of any approximate solution φ̄ can serve as an
upper bound to that of the lowest conductance in G(V,E,W)
and can be employed to prune irrelevant intervals:
Corollary 4. [Pruning] If φ̄ ≤ η(t, t′)λ2(N t,t′)/2, then [t, t′]
does not contain the lowest conductance temporal community.

The corollary follows directly from the spectral
bound. An intuitive approach for pruning is to compute
η(t, t′)λ2(N t,t′)/2 for the aggregated graphs of all possible
intervals in time, incurring a quadratic number of eigenvalue
computations which will not scale to large graphs evolving
over long periods of time. In what follows, we show that one
can obtain a lower bound for λ2 of an interval based on the
eigenvalues in sub-intervals reducing the number of necessary
eigenvalue computations in our pruning strategy.
Lemma 2. Let A be a real positive semi-definite matrix
of dimension n, and let d and ε be two real vectors of
the same dimension s.t. di ≥ 0, εi ≥ 0 ∀i ≤ n. Then,
minf⊥d+ε f

TAf ≥ ming⊥d g
TAg.

Proof. Available in the Appendix. �

Theorem 5. [Composite bound] Let [t, t′] be par-
titioned in k consecutive non-overlapping subintervals
{[t1, t′1], [t2, t

′
2]...[tk, t

′
k]} such that ti = t′i+1 − 1,∀i ∈ [1, k)

with corresponding aggregated normalized graph Laplacians
Ni. Then,

λ2(N̂) ≥
k∑
i=1

min
u∈V

vol(u, ti, t
′
i)

vol(u, t, t′)
λ2(Ni),

where λ2(Ni) is the second smallest eigenvalue of Ni, and N̂
is the Laplacian of G[t,t′].
Proof. Available in the Appendix. �

The composite bound for λ2(N̂) enables pruning in-
tervals without explicitly computing their interval eigen-
values. Given any partitioning {[t1, t′1]...[tk, t

′
k]} of [t, t′],

we can prune using the composite bound φc(G
[t,t′]) =

η(t, t′)
∑k
i=1 minu∈V

vol(u,ti,t
′
i)

vol(u,t,t′) λ2(Ni).
To enable scalable pruning, we can pre-compute λ2 for a

subset of intervals and attempt to prune all intervals using

φc instead of an exhaustive eigenvalue computation. There is
a trade-off between how many eigenvalues to pre-compute
and the pruning power of φc. If we only compute single-
time snapshot intervals, we can obtain all composite bounds,
however, they may not be very tight for longer intervals. If we
pre-compute too many intervals, we will incur cost similar to
the exhaustive all-eigenvalue computation.

We adopt a multi-scale scheme in which we pre-compute
non-overlapping intervals of exponentially increasing lengths:

li, l ∈ N≥2,∀i ∈ N[0,dlog(T)e].

For example, if l = 2, we compute λ2 for non-overlapping
intervals of sizes powers of 2, i.e. {[0, 0], . . . [T, T], [0−1], [2−
3], . . . [T − 1, T], . . .}. The pre-computation requirement for
our composite bound scheme is O(T log(T)B), where B is
the time to compute λ2 for a single aggregated graph using
the Lanczos method. To compute φc for any interval we incur
cost O(|E|log(T)) as any interval can be composed by at most
O(log(T)) subintervals with known eigenvalues.

While our composite scheme requires sub-quadratic (in
T) eigenvalue computations, we still need to compute φc
for O(T 2) intervals to prune them. To further speed up
the process, we group intervals of significant overlap and
attempt to prune using a group-level bound without composing
individual intervals within the group. To this end, we define
a pruning group τ = (t, t′, t′′) as a set of intervals with a
common start t and ending at times t′ to t′′, t′ < t′′. We ensure
a significant overlap between all group members by enforcing
that the common interval prefix exceeds a fixed fraction of the
length of all group members: t′−t

t′′−t ≥ β. Given a partitioning
{[ti, t′i]} of the group prefix [t, t′], we define the group lower
bound as φc(Gτ) = η(t, t′′)

∑k
i=1 minu∈V

vol(u,ti,t
′
i)

vol(u,t,t′′) λ2(Ni).
The differences from the composite bound of the prefix
φc(G

[t,t′]) is in (i) the denominator of the fraction and (ii)
the normalization η(t, t′′) on the RHS.

Theorem 6. [Group composite bound] Let τ = (t, t′, t′′)
be a group of shared-prefix intervals, then φc(G

τ) ≤
φc(G

[t,t∗]),∀t∗ ∈ [t′, t′′].

Proof. Available in the Appendix. �
D. PHASR: Prune, HASh and Refine

The steps of our overall method PHASR are detailed in Alg.
1. We first pre-compute the eigenvalues for a set Φ of O(T)
intervals as outlined in Sec. IV-C (Step 1) and find an estimate
φ∗ of the solution by probing a constant number of promising
periods of small λ2 in Φ (Step 2). We employ a light-weight
version of hashing in those periods. Then we prune groups by
composing their bounds φc(Gτ) based on Φ (Step 3), and for
unpruned groups we compute composite bounds of individual
intervals and attempt to prune them (Step 4). We next hash
neighborhoods N t

u of nodes, targeting all possible scales s for
collision that include unpruned intervals (Steps 5-11). To target
a particular time scale s, we select the appropriate number of
time pivots k∗(s) according to Thm. 2(Step 8). Next, we pro-
cess collision buckets B containing sets of neighborhoods N t

u

ordered by a decreasing fill-factor, quantifying the consistency

Algorithm 1: PHASR
Require: G(V,E,W), α, LSH rows r, bands b, pruning res. l
Ensure: A set of temporal communities C = {(Ci, ti, t′i)}

1: Compute bounds Φ at scales li, i = 0 . . . dlog(T)e
2: Compute an estimate φ∗ using Φ
3: Prune intervals [t, t′] ∈ τ based on φc(Gτ) ≥ φ∗

4: Prune remaining intervals [t, t′] based on φc(G[t,t′]) ≥ φ∗
5: for all (u, t) ∈ (V, [1 . . . T]) do
6: for all scales s ∈ 1 . . . T/2 do
7: if ∃ an unpruned [l, r] ∈ [t− s, t+ s], then
8: Hash(Ntu, k∗(s), r, b)
9: end if

10: end for
11: end for
12: for ∀ Buckets B sorted by fill-factor do
13: [l, r] = interval of B
14: if φc(G[l,r]) < φ∗ then
15: (C, t, t′) =Refine(B)
16: φ∗ = min(φ∗, φ(C, t, t′))
17: Add (C, t, t′) to C
18: end if
19: end for
20: RETURN C

of node sets in the timestamps with the bucket (Steps 12-19).
If the interval spanned by the current bucket’s timestamps
cannot be pruned, we form the aggregated graph G[l,r] and
we compute the lowest temporal community C around the
seed nodes in the bucket using the spectral sweep method
by Anderesen et al. [3] (Step 15); briefly, this operates by
considering just the top-ranking node in the bucket, then the
top two, then the top three, and so on. We maintain the
best estimate in φ∗ to enable more pruning of buckets to be
processed (Step 16) and add C to the result set C (Step 17).
Finally, we report C. Note that we can easily maintain and
report multiple top communities in Steps 12-20.
Complexity analysis: Precomputing Φ requires O(T) eigen-
value computations, since we consider non-overlapping in-
tervals of exponentially increasing sizes. The group pruning
requires O(T log2 T |V |) time, since when ensuring overlap of
at least β < 1 among interval group members in the grouping,
we get O(log T) groups for every starting position and a total
of O(T log T) groups. To compute the composite group bound
we need at most O(log T) precomputed eigenvalue intervals
and a scan over the node volumes, arriving at the final group
pruning complexity. It is important to note that the eigenvalue
computations, pruning and candidate verification can all be
trivially parallelized on common MapReduce-like systems.
The time spent in the remainder of the algorithm depends on
the effectiveness of the pruning steps which, as we show in the
evaluation, are able to filter most intervals given the existence
of outstanding local temporal communities.

V. EXPERIMENTAL EVALUATION

We evaluate the quality and scalability of our approach in
both synthetic and real-world networks. Of main interest are
the running time savings due to the pruning enabled by our
bounds and the quality of candidate communities produced
by hashing. We conduct all experiments on a 3.6GHz Intel
processor with 16GB of RAM. All algorithms are implemented

as single-thread Java programs.To compute eigenvalues, we
employ the implementation of the Lanczos algorithm from the
Matrix Toolkit Java1

A. Datasets and competing techniques

Datasets: We use preferential attachment synthetic net-
works [5] of sizes between 1k and 15k nodes and average
degree of 20. We replicate the unweighted network structure
over T = 1000 timestamps and assign Poisson random weights
with mean 5 on edges in time independently. We inject a
strong temporal community (C, t, t′) of length t′ − t = 10
by increasing the average weight on the internal edges. The
community contrast is defined as the ratio of the mean weight
in (C, t, t′) and the global average of 5; we used a contrast
value of 8 in synthetic data unless otherwise specified.

We also use real-world datasets of various length, number
of nodes and density listed in Tab. I. The Road traffic dataset
is a subnetwork of the California highway system. Edge
(road segments) are weighted based on the average speed
at 5m intervals. In this dataset we aim to detect contiguous
subnetworks of abnormal speeds over time. To detect high-
and low-speed temporal subgraphs we assign weights as V2

or (85 − V)2 respectively, where V is the speed in mph at
a given time. Execution times for both weighting schemes
are similar. The Internet traffic data is a 2h trace of all p2p
web traffic at the level of organizations (first three bytes of
host IPs) from June 2013 on a backbone link in Japan, where
weights are assigned as the number of packets between a pair
of organizations at 1m resolution [10]. Our densest dataset is
a Call graph among sectors of the city of Milan, Italy over
24h period [12]. Edge weights correspond to the number of
calls between sectors within an hour.
A note on data sizes and parallelization opportunities: It
is important to note that while the real-world networks we
employ for experimentation are in the order of thousands of
nodes, the search space over all possible intervals requires
consideration of O(T 2) differently weighted graphs of that
size. For example, in our Call dataset all-interval graphs
contain cumulatively 208 million edges while in the largest
Synthetic dataset the cumulative number edges exceeds 1.4
billion. This large search space is the reason why exhaustive
baselines do not scale to instances of such sizes. In addition,
our technique can be easily parallelized employing a bulk
synchronous processing system (BSP) such as Hadoop 2, since
the underlying building blocks of eignevalue computations,
hashing and aggregation of colliding neighborhoods fit natu-
rally the BSP programming paradigm. A parallel implemen-
tation and corresponding scalability experiments are beyond
the scope of this work, but we plan to included them in an
extended version of this work.
Baselines: We compare PHASR to three baselines: (1) ex-
haustive (EXH) temporal extension of the spectral sweep
method by Andersen et al. [3]; (2) a temporal extension of
the hashing community detection (H+RW) [23]; and (3) the

1Matrix Toolkit Java from https://github.com/fommil/matrix-toolkits-java.
2Hadoop. http://hadoop.apache.org/

https://github.com/fommil/matrix-toolkits-java.
http://hadoop.apache.org/

PHASR EXH [3]∗ H+RW [23]∗ L-metric [29]
Dataset |V | ¯|E| T Time φ Time φ Time φ Time φ

Synth. 1k-15k 20k-300k 1k 76s 0.017 days n/a days n/a 6486s 0.042
Road 100 128 1k 118s 0.039 days n/a > 24h n/a 1s 0.099
Internet 2542 12699 120 2.3h 0.008 days n/a > 24h n/a > 6h n/a
Call 1333 756k 24 28m 0.0032 days n/a > 24h n/a 3.5h 0.215

TABLE I
DATA SETS USED FOR EXPERIMENTATION AND COMPARISON TO THE L-METRIC DYNAMIC COMMUNITY METHOD [29]. ∗COMPARISONS TO OTHER

BASELINES WERE INFEASIBLE ON THE FULL DATASETS. SEE FIG. 4 FOR RESULTS ON SMALLER VERSIONS OF THESE DATASETS.

T = 100 T = 400 T = 700 T = 1000
Timeline length

P
ru

ni
ng

 %
0.

00
0.

50
1.

00

73.7% 95.2% 97.3% 98.1%

Composite

Grouping

(a) Pruning % (Synthetic)

100 400 700 1000
0

20
00

40
00

Timeline length (T)
P

ru
ni

ng
 e

xe
cu

tio
n

tim
e

●

PRUNE−FULL
PHASR−NG
PHASR

(b) Pruning time (Synthetic)

T = 100 T = 400 T = 700 T = 1000
Timeline length

P
ru

ni
ng

 %
0.

00
0.

25
0.

50
0.

75
1.

00

16.0% 20.3% 44.4% 56.7%

Composite

Grouping

(c) Pruning % (Road)

100 400 700 1000

0
25

0
50

0

Timeline length (T)

P
ru

ni
ng

 e
xe

cu
tio

n
tim

e

●

PRUNE−FULL
PHASR−NG
PHASR

(d) Pruning time (Road)

T = 30 T = 120
Timeline length

P
ru

ni
ng

 %
0.

00
0.

25
0.

50
0.

75
1.

00

(e) Pruning % (Internet)

30 120

0
10

00
20

00

Timeline length (T)

P
ru

ni
ng

 e
xe

cu
tio

n
tim

e

●

PRUNE−FULL
PHASR−NG
PHASR

(f) Pruning time (Internet)

0.0 0.1 0.2 0.3 0.4 0.5
α

0

20

40

60

80

100

P
ru

ni
ng

 %
Composite Grouped

(g) Effect of η(α)

0 20 40 60 80 100
Starting Time

0

20

40

60

80

100

Le
ng

th

Grouping
Composite
Full

(h) Heatmap of pruned intervals

Fig. 3. (a) Percentage of all pruned intervals using the group and then composite pruning in PHASR. (b) Comparison of the time taken for pruning with
(PHASR) and without grouping (PHASR-NG), and full calculation of all Cheeger bounds (PRUNE-FULL). Similar comparisons for the Internet (e),(f) and
Road (c),(d) networks. (g) Pruning power in synthetic data for different levels of temporal normalization α. (h) Heatmap representation of the pruned intervals
in one of the synthetic datasets for T = 100 where each pixel represents an interval with horizontal coordinate its starting point and vertical coordinate its
duration. Colors encode the kind of bound that enabled pruning the specific interval.

incremental L-Metric for local communities in dynamic graphs
by Takaffoli et al.[29]. EXH performs spectral sweeps in all
possible intervals and starting from all nodes. H+RW hashes
neighborhoods in the graphs of all possible time intervals
(thus can be viewed as naive dynamic extension of [23]),
and then performs a sweep from seeds identified by hashing.
Hashing candidates do not form low-conductance communities
on their own since [23] does not consider cuts. L-Metric [29]
incrementally extends local communities in time, by using the
connected components of communities from the previous time
step as seeds. Since it allows communities to change over time,
we implement a post-processing step in which we maintain the
largest node intersections for all possible intervals of a con-
tiguous community in order to obtain dynamic communities of
fixed membership. We also consider two versions of PHASR:
explicit computation of all interval bounds for pruning, termed
(PRUNE-FULL) and our method using composite and group
bounds PHASR. We evaluate the pruning power for different
pruning strategies, the scalability of competing techniques and
the effect of parameters for PHASR in what follows.

B. Pruning power
We evaluate the pruning power of our bounds in both

synthetic and real world datasets Fig. 3(a) shows the average
pruning percentage of all intervals in the synthetic data for
increasing T and an injected community of a fixed length of
10. We prune more than 95% of the possible intervals across

all lengths. The fast grouping phase prunes the majority of
the intervals ranging from 73% when the injected community
is 1/10-th of the timeline to more than 98% of the intervals
for T = 1000. The execution time is presented in Fig. 3(b).
Since most intervals are pruned at the group stage, PHASR’s
pruning time grows almost linearly with T , while the time
for pruning based on composite bounds without grouping
(PHASR-NG) grows faster, resulting in more than an order of
magnitude savings at T = 1000 due to grouping. Computing
all-interval eigenvalues (Full) does not scale beyond 100 time
steps, requiring two orders of magnitude more time then
composite and group pruning due to the expensive eigenvalue
computations.

We perform similar pruning evaluation for the Road
Figs. 3(c), 3(d) and Internet Figs. 3(e),3(f) datasets. We
prune more than 75% of the intervals in Road and 55% in
Internet. Grouping is less effective here as there are multiple
temporal intervals with good temporal conductance, though
still providing increased effectiveness reflected in the widening
gap between the running times of PHASR and PHASR-NG
for Road Fig.3(d). The savings of grouping are smaller for
Internet as there exist communities of hosts of low con-
ductance persisting over most of the 2h span. Exhaustive
computation of eigenvalues, in comparison is at least an order
of magnitude slower for the longest timespans of both datasets.
The pruning percentage in the Call dataset is more than 75%

0 500 1000

0
30

00
60

00
90

00

Timeline length (T)

E
xe

cu
tio

n
T

im
e

(s
ec

)

●

●

EXH [2]
H+RW [22]
L−Metric [28]
PRUNE−FULL
PHASR

(a) Scalability Synthetic

100 400 700 1000

0
37

50
0

75
00

0

Timeline length (T)

E
xe

cu
tio

n
T

im
e

(s
ec

)

●

●

EXH [2]
H+RW [22]
L−Metric [28]
PRUNE−FULL
PHASR

(b) Scalability Road

30 120

0
20

00

Timeline length (T)

E
xe

cu
tio

n
T

im
e

(m
in

)

●

●

EXH [2]
H+RW [22]
L−Metric [28]
PRUNE−FULL
PHASR

< estimated

(c) Scalability Internet

0 5000 10000 15000

0
30

00
60

00
90

00

Number of vertices |V|

E
xe

cu
tio

n
T

im
e

(s
ec

)

●

●

EXH [2]
H+RW [22]
L−Metric [28]
PRUNE−FULL
PHASR

(d) Scalability in |V |
Fig. 4. Comparison of PHASR’s total running time with that of alternatives for increasing T in (a) Synthetic (|V | = 1000); (b) Road; and (c) the Internet
datasets. (d): Scalability with the graph size (T = 100) on the Synthetic dataset.

when considering all 24 time intervals, allowing for fast overall
time regardless of its density (no figure due to the short
T = 24).

We also study the effect of temporal normalization on
pruning effectiveness. The temporal normalization η(t, t′) =
(t′ − t)−α is controlled by the exponent parameter α, where
higher values of α decrease the temporal conductance of
longer intervals and thus make them more preferable. As we
discussed earlier α = 0 amounts to no normalization and
in this case solutions tend to reside in a single timestamp.
Alternatively, if α is very large solutions that span the whole
timeline are preferred, though for such settings, simply ag-
gregating the graph over all timestamps and employing static
graph solutions will work better. We show the effect of tar-
geting medium interval-length solutions (the most challenging
setting) on the effectiveness of our pruning in Fig. 3(g). The
total pruning decreases from 98% to 83% for values of α up
to 0.5 and the fraction of both intervals pruned by the group
bound (blue) and composite bound (red) reduce proportionally.
Nevertheless, this level of pruning ensures significantly more
efficient overall processing than employing hashing for all
times and temporal scales in an exhaustive manner.

A detailed visualization of the pruning effectiveness in
Synthetic is presented as a heatmap in Fig. 3(h). The space of
all possible intervals is represented in a lower triangular matrix
of pixels, where the pixel position encodes an interval start
time (horizontal) and length (vertical axis). Grouping (darkest
shade) prunes most of the long intervals and the majority of
intervals of size less than 20 are pruned by the composite
interval bound. Employing the Full eigenvalue computation
may prune only a small percentage of additional intervals at
the cost of lengthy eigenvalue computations (lightest shade).
Intervals of significant overlap with the injected community
(times 20-30) remain unpruned and considered for hashing.

C. Scalability.

PHASR scales well with increasing timeline length T .
Particularly, its pruning phase is very efficient as evident in
Figs. 3(b),3(f),3(d). The naı̈ve approach of directly calculating
all possible Cheeger bounds is quadratic and quickly becomes
infeasible. The use of pruning groups here is key in Synthetic,
Road and Call—while composite bounding without groups
(PHASR-NG) is much better than the naı̈ve approach, only

the full algorithm with pruning groups produces the near-linear
scaling that is necessary for very long timelines.

The last 4 columns of Tab. 1 show the total running time and
conductance of the best solutions for PHASR and L-Metric
for the full datasets. In all cases except the Road dataset,
PHASR completes much faster than the L-Metric: 10x, > 6x
and 7x faster for Synthetic (|V | = 1k), Internet and Call
respectively. L-Metric does not complete in more than 6 hours
on Internet (T = 120). In all cases in which L − Metric
completes, the discovered communities are of significantly
worse conductance: 2.5 times worse in Synthetic and Road,
and 67 times worse in Call. The reason for this lower quality is
that L-Metric considers only adjacent time steps when trying
to reconcile communities in time, while PHASR considers the
full evolution of the graph at different scales.

Fig. 4 shows the complete running time of PHASR
algorithm—pruning, hashing, and refinement via random
walks—versus competing techniques over increasing T
(Figs. 4(a),4(b),4(c)). Large numbers of vertices or time peri-
ods quickly render the exhaustive competitor methods infeasi-
ble, with runtimes of many hours or even days (estimated).
The pruning and hashing segments of our approach scale
well in both time and graph size; for large T , only about
two percent of total execution time is spent on pruning, and
the remainder on hashing and refinement. It is important to
note that the running time of hashing and refinement can be
reduced by considering smaller number of hash functions and
bands at the expense of possibly worse-conductance results.
A faster push-based local RW estimation, as described in [3],
will enable scaling to larger network sizes as well. Our current
implementation features only a naive full-network RWR, since
scalable implementation of spectral sweeps is not the main
focus of this work. L-Metric’s running time grows quickly
with T and the graph size (Fig. 4(d)) and is dominated by
our approach on all datasets, but the small Road dataset in
which it completes faster, but discovers a worse community
(Tab. 1). PHASR equipped with group pruning is the only
alternative that scales with the graph size (Fig. 4(d)) and
can be further improved by trivial parallel implementation as
discussed earlier.

D. Case studies: Call and Internet

We obtained several low-conductance communities in the
Milan telecom (Call) data; their locations are shown in Fig. 2.
Multiple small communities formed at various times during the
day in the circled region; their size suggest they may simply
be coincidental. However, a larger, more coherent community
was discovered in the area marked with a rectangle. Because
it appears near the A50 highway during the early morning
hours, we speculate it may be the result of calls from vehicles
in commuter traffic.

The dominant community in the Internet traffic data covered
much of the timeline we examined. The nodes involved all
represented major telecom companies in a variety of countries:
Japan, Saudi Arabia, Korea, Israel, and the United Kingdom;
the low conductance here appears to be because of extremely
high traffic rates between what we speculate are backbone
Internet providers.

E. Effect of parameters
We also evaluate the effect of hashing parameters on the

quality of obtained seeds. Our experiment demonstrate that
higher number of hashing bands and neighborhood hashing
functions increases the quality of obtained seeds; however, we
observe diminishing returns past 7 bands in Synthetic. Details
omitted due to space limitations.

VI. CONCLUSIONS

We proposed the problem of local temporal communities
with the goal of detecting a subset of nodes and a time interval
in which the nodes interact exclusively with each other.
We generalized the measure of conductance to the temporal
context and proposed a method PHASR for the minimum
conductance temporal community. To scale the search in time
we employed a novel spectral pruning approach that is sub-
quadratic in the length of the total timeline. To scale the search
in the graph space we proposed a time-and-graph locality
sensitive family for neighborhoods of nodes which effectively
spots cores of good communities in time.

We evaluated PHASR on both real and synthetic datasets
and demonstrated that it scales better than alternatives to large
instances, achieving two orders of magnitude running time
reduction in Synthetic and 3 to 7 times reduction on big real
instances compared to alternatives. PHASR also discovered
communities of 2 to 67 times lower conductance than those
obtained by a dynamic community baseline from the literature.
This performance and accuracy is enabled by pruning as much
as 95% of the possible time intervals in Synthetic and between
55% and 75% in real-world datasets; and due to our effective
temporal hashing scheme for spotting good seeds in unpruned
intervals.

REFERENCES

[1] Rezwan Ahmed and George Karypis. Algorithms for
mining the evolution of conserved relational states in
dynamic networks. In ICDM, 2011.

[2] Reid Andersen and Yuval Peres. Finding sparse cuts
locally using evolving sets. In Proceedings of the

Forty-first Annual ACM Symposium on Theory of Com-
puting, STOC ’09, pages 235–244, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-506-2. doi:
10.1145/1536414.1536449. URL http://doi.acm.org/10.
1145/1536414.1536449.

[3] Reid Andersen, Fan Chung, and Kevin Lang. Local graph
partitioning using pagerank vectors. In Foundations of
Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, pages 475–486. IEEE, 2006.

[4] Haim Avron and Lior Horesh. Community Detection Us-
ing Time-Dependent Personalized PageRank. In ICML,
2015.

[5] Albert-László Barabási and Réka Albert. Emergence of
scaling in random networks. Science, 1999.

[6] Tanya Berger-Wolf, Chayant Tantipathananandh, and
David Kempe. Dynamic community identification. In
Link Mining: Models, Algorithms, and Applications,
pages 307–336. Springer New York, 2010. doi: 10.1007/
978-1-4419-6515-8 12.

[7] Petko Bogdanov, Misael Mongiovi, and Ambuj K. Singh.
Mining heavy subgraphs in time-evolving networks. In
ICDM, 2011.

[8] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert
Görke, Martin Hoefer, Zoran Nikoloski, and Dorothea
Wagner. Maximizing modularity is hard. arXiv preprint
physics/0608255, 2006.

[9] Andrei Z Broder, Moses Charikar, Alan M Frieze, and
Michael Mitzenmacher. Min-wise independent permu-
tations. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 327–336.
ACM, 1998.

[10] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic
data repository at the wide project. In Proceedings of the
Annual Conference on USENIX Annual Technical Con-
ference, ATEC ’00, Berkeley, CA, USA, 2000. USENIX
Association.

[11] Fan RK Chung. Spectral graph theory, volume 92.
American Mathematical Soc., 1997.

[12] Dandelion. Open big data. https://dandelion.eu/datamine/
open-big-data/.

[13] Santo Fortunato. Community detection in graphs.
Physics Reports, 486(3-5):75 – 174, 2010. ISSN 0370-
1573.

[14] Noé Gaumont, Clémence Magnien, and Matthieu Latapy.
Finding remarkably dense sequences of contacts in link
streams. Social Network Analysis and Mining, 6(1):87,
2016.

[15] S. Goel, A. Baykal, and D. Pon. Botnets: the anatomy of
a case. Journal of Information Systems Security, 2006.

[16] Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: towards removing the curse of dimensionality.
In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 604–613. ACM, 1998.

[17] Sergey Ioffe. Improved consistent sampling, weighted
minhash and l1 sketching. In Data Mining (ICDM), 2010.
Tenth IEEE International Conference on, pages 246–255.

http://doi.acm.org/10.1145/1536414.1536449
http://doi.acm.org/10.1145/1536414.1536449
https://dandelion.eu/datamine/open-big-data/
https://dandelion.eu/datamine/open-big-data/

IEEE, 2010.
[18] Min-Soo Kim and Jiawei Han. A particle-and-density

based evolutionary clustering method for dynamic net-
works. VLDB Endow., 2, 2009.

[19] Jon Kleinberg. Bursty and hierarchical structure in
streams. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’02, pages 91–101, New York, NY,
USA, 2002. ACM. ISBN 1-58113-567-X. doi: 10.
1145/775047.775061. URL http://doi.acm.org/10.1145/
775047.775061.

[20] Jure Leskovec, Kevin J Lang, and Michael Mahoney.
Empirical comparison of algorithms for network commu-
nity detection. In Proceedings of the 19th international
conference on World wide web, pages 631–640. ACM,
2010.

[21] Yu-Ru Lin, Yun Chi, Shenghuo Zhu, Hari Sundaram, and
Belle L. Tseng. Facetnet: a framework for analyzing
communities and their evolutions in dynamic networks.
In WWW, 2008.

[22] Siyuan Liu, Shuhui Wang, and Ramayya Krishnan. Per-
sistent community detection in dynamic social networks.
In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 78–89. Springer, 2014.

[23] Kathy Macropol, , and Ambuj Singh. Scalable discovery
of best clusters on large graphs. In Proceedings of the
VLDB Endowment, pages 693–702. VLDB, 2010.

[24] Giulio Rossetti, Luca Pappalardo, Dino Pedreschi, and
Fosca Giannotti. Tiles: an online algorithm for com-
munity discovery in dynamic social networks. Machine
Learning, pages 1–29, 2016.

[25] Polina Rozenshtein, Nikolaj Tatti, and Aristides Gio-
nis. Discovering dynamic communities in interaction
networks. In Proceedings of ECML/PKDD, 2014.

[26] Umang Sharan and Jennifer Neville. Temporal-relational
classifiers for prediction in evolving domains. In Data
Mining, 2008. ICDM’08. Eighth IEEE International Con-
ference on, pages 540–549. IEEE, 2008.

[27] Jianbo Shi and Jitendra Malik. Normalized cuts and
image segmentation. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 22(8):888–905, 2000.

[28] Daniel a Spielman. Algorithms, Graph Theory, and
Linear Equations in Laplacian Matrices. International
Congress of Mathematicians, 1(2):1–23, 2010. ISSN
0308-1087.

[29] Mansoureh Takaffoli, Reihaneh Rabbany, and Osmar R
Zaı̈ane. Incremental local community identification in
dynamic social networks. In Proceedings of the 2013
IEEE/ACM international conference on advances in so-
cial networks analysis and mining, pages 90–94. ACM,
2013.

[30] Jiřı́ Šı́ma and Satu Elisa Schaeffer. On the np-
completeness of some graph cluster measures. In Pro-
ceedings of the 32Nd Conference on Current Trends in
Theory and Practice of Computer Science, SOFSEM’06,
pages 530–537, Berlin, Heidelberg, 2006. Springer-

Verlag. ISBN 3-540-31198-X, 978-3-540-31198-0. doi:
10.1007/11611257 51. URL http://dx.doi.org/10.1007/
11611257 51.

[31] Yen-Chuen Wei and Chung-Kuan Cheng. Towards
efficient hierarchical designs by ratio cut partitioning.
In Computer-Aided Design, 1989. ICCAD-89. Digest of
Technical Papers., 1989 IEEE International Conference
on, pages 298–301. IEEE, 1989.

[32] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski.
Overlapping community detection in networks: The state-
of-the-art and comparative study. ACM Computing Sur-
veys (csur), 45(4):43, 2013.

[33] Weiren Yu, Charu C Aggarwal, Shuai Ma, and Haixun
Wang. On anomalous hotspot discovery in graph streams.
In Data Mining (ICDM), 2013 IEEE 13th International
Conference on, pages 1271–1276. IEEE, 2013.
APPENDIX: PROOFS OF THEORETICAL RESULTS.

Proof of Theorem 1: Temporal locality.
Proof. Consider two timestamps, t ≤ t′. Their hash values
with respect to a k-partitioning τk(t) and τk(t′) will differ
only when ∃pi|t < pi ≤ t′. Since every pivot pi was chosen
uniformly at random from the full timeline, the probability
that it falls between t and t′ is proportional to the duration
between the timepoints divided by the timeline length: t′−t

T .
The probability that a specific pivot is not selected between the
two timepoints is 1− t′−t

T . The two hash values match if none
of the k pivots is selected between them, and the probability of
this event is (1− t′−t

T)k since all pi are chosen independently.
When t′ − t ≤ ∆1 this probability is greater than (1− ∆1

T)k,
and the analogous relationship holds for t′ − t ≥ ∆2. �
Proof of Theorem 2: Optimal Number of pivots.
Proof. Observe that the probability of a pivot landing in a
perfect bracketing position (on the left or the right) is 1

T . The
probability of landing anywhere outside our target community
is 1 − ∆∗

T . Any of the
(
k
2

)
pairs of pivots could be the

”bookends”, and these could occur in either order (left-right
or right-left). Thus, the probability of a perfect partition is:

2

(
k

2

)(1

T

)2(
1− ∆∗

T

)k−2
=
(1

T

)2(
1− ∆∗

T

)k−2(
k2 − k

)
.

Since we want to find the k that maximizes the probability
of perfect partition, we find ∂p

∂k :(
1− ∆∗

T

)k−1[
(2k− 1)(1− ∆∗

T
)k−1 + (k2− k) log(1− ∆∗

T
)
]

Since 0 < ∆∗

T < 1, one of the roots of ∂p
∂k = 0 is strictly

smaller than 1, and the only feasible solution is:

k∗ =
log(1− ∆∗

T)− 2−
√

log2(1− ∆∗
T) + 4

2 log(1− ∆∗
T)

.

This is well approximated by 2T
∆∗ for 2T

∆∗ ∈ [0, 1]. �

Proof of Lemma 2.
Proof. We have a convex minimization function over a convex
set: min fTAf , such that f ⊥ (d+ ε). The Lagrange form is:
L(f, λ) = fTAf + λfT (d + ε). Setting the gradient w.r.t.

http://doi.acm.org/10.1145/775047.775061
http://doi.acm.org/10.1145/775047.775061
http://dx.doi.org/10.1007/11611257_51
http://dx.doi.org/10.1007/11611257_51

f to zero gives us: ∂L
∂f = 2Af + λ(d + ε) = 0 ⇒ f∗ =

−λ2A
−1(d+ε). Note that A−1 exists since A is positive semi-

definite. By an analogous development, g∗ = −λ2A
−1d. Next

we substitute f∗ into the objective to obtain the inequality of
interest:

min
f⊥d+ε

fTAf = f∗TAf∗

=
λ2

4
(A−1(d+ ε))TA(A−1(d+ ε))

=
λ2

4
(d+ ε)TA−1(d+ ε))

=
λ2

4

(
dTA−1d+ εTA−1d+ dTA−1ε+ εTA−1ε

)
≥ λ2

4
dTA−1d = g∗TAg∗ = min

g⊥d
gTAg

�

Proof of Theorem 5: Composite bound.
Proof. Let Di denote the degree matrix of G[ti,t

′
i] and D̂ the

degree matrix of G[t,t′]. According to the Min-max theorem the
second eigenvalue of N̂ can be characterized as the minimum
of the Rayleigh quotient in the subspace orthogonal to the
first eigenvector d̂1/2 [28]: λ2(N̂) = ming⊥d̂1/2

gT N̂g
gT g

=

minf⊥d̂
fT L̂f
fT D̂f

, where d̂ is a vector of the node volumes in
[t, t′] and f and g are column vectors. The second equality is
obtained by variable change g = D̂1/2f and has the form of
a generalized eigenvalue problem. We can then show:

λ2(N̂) = min
f⊥d̂

fT L̂f
fT D̂f

= min
f⊥d̂

k∑
i=1

fTLif
fT D̂f

(1)

= min
f⊥d̂

k∑
i=1

fTDif

fT D̂f
fTNif (2)

≥ min
f⊥d̂

k∑
i=1

fTDif

fT D̂f
λ2(Ni) (3)

= min
g⊥d̂1/2

k∑
i=1

gT (D̂−1/2DiD̂
−1/2)g

gT g
λ2(Ni) (4)

= min
g⊥d̂1/2

k∑
i=1

∑
u∈V g

2
u
vol(u,ti,t

′
i)

vol(u,t,t′)

‖g‖2
λ2(Ni) (5)

≥
k∑
i=1

min
u∈V

vol(u, ti, t
′
i)

vol(u, t, t′)
λ2(Ni) (6)

For (1) we use the fact that L̂ =
∑k
i=1 Li. In (2) we

multiply all summands by fTDif/f
TDif . (3) follows from

Lem. 2 and in (4) we have substituted back the vector variables
g = D̂1/2f . In (5) we have applied the definitions of the sub-
interval volume for nodes and have unfolded the quadratic
form for the diagonal matrix gT (D̂−1/2DiD̂

−1/2)g. Finally,
since:∑

u∈V
g2
u

vol(u, ti, t
′
i)

vol(u, t, t′)
≥= ‖g‖2minu∈V

vol(u, ti, t
′
i)

vol(u, t, t′)
,

we obtain the inequality in (6). �

Proof of Theorem 6: Group composite bound.
Proof. Let t∗ be the end-point of one of the subintervals
in the group, i.e. t ≤ t′ ≤ t∗ ≤ t′′. Then, since η()
is monotonically decreasing as long as α ≥ 0, we have
η(t, t∗) ≥ η(t, t′′). In addition, since the aggregated weights in
super-intervals dominate those in sub-intervals we have that:
minu∈V

vol(u,ti,t
∗
i)

vol(u,t,t∗) ≥ minu∈V
vol(u,ti,t

∗
i)

vol(u,t,t′′) . Using the above
we have:

φc(G
[t,t∗]) = η(t, t∗)

k∑
i=1

min
u∈V

vol(u, ti, t
∗
i)

vol(u, t, t∗)
λ2(Ni)

≥ η(t, t′′)

k∑
i=1

min
u∈V

vol(u, ti, t
∗
i)

vol(u, t, t′′)
λ2(Ni)

= φc(G
τ)

�

	I Introduction
	II Related work
	III Problem definition
	IV Methods
	IV-A Preliminaries
	IV-B Temporal Neighborhood LSH to spot seeds
	IV-C Spectral bounds for pruning time intervals
	IV-D PHASR: Prune, HASh and Refine

	V Experimental evaluation
	V-A Datasets and competing techniques
	V-B Pruning power
	V-C Scalability.
	V-D Case studies: Call and Internet
	V-E Effect of parameters

	VI Conclusions

