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Abstract—Structural models for network dynamics typically
assume a discrete timeline of network events (node activation or
link creation) and a stochastic generative process giving rise to
new events based on the event history and the network structure.
In order to employ these models for prediction, observational
data is often aggregated at a fixed temporal resolution (e.g.,
minutes or days). However, the underlying network processes
may “speed up” or “slow down” at different points in time,
rendering observations unlikely and predictions incorrect. The
challenge is to optimize the timescale for the analysis of network
event data, which in turn is based on structural models of the
underlying network processes.

We introduce the general problem of inferring the optimal
temporal resolution for network event data. The goal is to map
observed network events to discrete time steps by aggregation
and/or disaggregation of their original timeline such that they
are collectively well-explained by structural dynamics models.
We unify network growth and information diffusion models
and differentiate between short- and long-memory processes.
We demonstrate that while optimal temporal aggregation can
be performed in polynomial time, disaggregation—and thus, the
general timescale inference problem—is NP-hard. We propose
scalable heuristics for the problem, some with approximation
guarantees, and employ them for missing event recovery and tem-
poral link prediction, demonstrating significant improvements
(absolute increase of 10% in F1 measure for event recovery and
of 5% in AUC for link prediction) compared to employing the
same algorithms on the default timescale of data collection.

Index Terms—Temporal networks, Network clock, Timeline
reconstruction, Structural network models

I. INTRODUCTION

Abundant socio-behavioral event data is continuously gen-
erated online: posts in social media, creation of follower and
friendship links, reactions to posts in the form of likes and
comments, and more. Individual events are not independent
of each other. For example, friends-of-friends are more likely
to become friends than arbitrary pairs [1] [2], and a user is
more likely to post a meme if their friends have recently posted
it [3] [4]. A number of structural models have been proposed
for such dependencies, inspired both by empirical evidence
and longstanding theory from sociology and economics [5]
[6]. Such models and data have been employed to study and
improve product marketing [7], increase participation in the
political process [8], improve social recommendations [9],
study the financial markets [10], and detect insurgent net-
works [11], among others.

A key challenge in employing such models is the need to
select a discrete timescale, a common assumption in many of
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Fig. 1. (a) An information cascade. (b) The same cascade mapped onto a new
timeline, producing a higher likelihood according to the Independent Cascade
model [18]. Original timestep 3 has been disaggregated into three timesteps,
while timesteps 5, 6, 7 have been aggregated into a single timestep.

the models [10]. A typical approach is to define a fixed window
(e.g. minutes, hours, days) and aggregate events into temporal
snapshots before employing structural dynamics models. It has
been realized, however, that in-network process rates may vary
across time [12] [13] [14], thus limiting the accuracy of trained
models [15] [16] [17]. How can we infer an optimal temporal
resolution for network event data that accounts for the varying
rate of the underlying processes?

An example information cascade is presented in Fig. 1. Un-
der the Independent Cascade (IC) model [18], a node activated
at time t has a chance to activate neighbors at time t + 1
but not later. The original timeline (Fig. 1(a)) includes some
periods that have low likelihood under IC. At t0 = 3 there
are four activations which would have higher likelihood if
occurring in consecutive time steps. Meanwhile, the activations
at t0 = {5, 6, 7} could all be explained as a consequence of
the activation of node H at t0 = 4 if they were simultaneous.
Intuitively, the cascade “sped up” during the third time period
and “slowed down” during t0 = {5, 6, 7}. Such effects could
be observed at different time scales in real-world data due
to cooperation or competition of interacting cascades [19] or
due to committed nodes in opinion dynamics [20]. An optimal
timeline (Fig. 1(b)) should (i) increase the resolution at t0 = 3
by disaggregation, i.e. spreading observed events over multiple
time steps; and (ii) decrease the resolution at t0 = {5, 6, 7}
by aggregation of all events into a single time step.

The example from Fig. 1 focuses on a diffusion process un-
der a short-memory model (IC). Similar sub-optimal timescale
challenges are also present in models for network growth (e.g.
[21]), especially where acceleration and deceleration patterns
have been observed [22] [23] [24]. In addition, the dependency
structure among events that the model imposes could be less
rigid than the IC; that is, diffusion activation or link creation
may depend on events older than a single time step.



Fig. 2. Network models on the continuum of memory, i.e. the temporal range
of dependencies among events. Event age has a higher impact on likelihood
of new events in short-memory models compared to long-memory ones.

In this paper we formalize the problem of inferring the
optimal temporal resolution (OTR) for network event data.
We unify network growth and diffusion processes and cor-
responding models, considering both long- and short-memory
dependencies among events. We prove that OTR is NP-hard
and propose scalable heuristics for the problem, some with
theoretical approximation guarantees.

Our contributions in this paper are as follows:
• Generality: We propose the novel problem of optimal tem-
poral resolution for network event data, study its complexity
and unify both network growth and diffusion processes within
the same optimization framework.
• Accuracy: Our solutions for OTR exhibit good accuracy in
reconstructing the order of events both in terms of likelihood
maximization and comparison to ground truth.
• Applicability: The optimal resolution learned by our algo-
rithms enables significant quality improvements in temporal
link prediction (5% increase in AUC) and cascade recon-
struction (10% improvement in F1).

II. PRELIMINARIES: NETWORK PROCESS MODELS

In all cases, we examine a set of timestamped events X|∆o

that each have a discrete timestamp according to a timeline (or
clock) ∆o = [1, T ]; the events occur on a graph G(V,E). Let
M(Φ,X,∆) be a probabilistic model, parametrized by a set
of parameters Φ (e.g., diffusion probabilities or edge creation
probabilities), which quantifies the likelihood of observed
events x ∈ X timestamped according to a timeline ∆ = [1, T ].
The likelihood of observations LM(X|∆) depends critically on
the timeline ∆ (see Fig. 1), and finding an optimal timeline
∆? for a given model is the main objective of our work.

This general setting encompasses a variety of network
process models in which the likelihood of events can be
expressed as a function of pasts events and their timeline. One
distinctive feature of relevant models from the literature is the
degree to which the age of prior events impacts future ones.
In long-memory models such as Barabási and Albert’s classic
preferential attachment (PA) model [25], age is irrelevant; all
past edge creation events contribute equally to future edges.
In short-memory models like IC [3], an event’s influence lasts
only for a single timestep. In between are models such as the
one introduced by Sun et al. [26] in which events’ influence
decays as a function of time.

Figure 2 maps some existing models on the continuum
between short- and long-memory. While our work on optimal
temporal resolution is applicable to all of them, we concen-
trate our discussion on several example models which are
commonly adopted in the literature and also span two main

groups of network processes: network growth, or the process
of edge creation from which the evolving network structure
arises [25], and network diffusion, modeling the spread of
information or other contagions from node to node along the
static network structure [3], [4]. We focus on demonstrating
the importance and applicability of optimal timelines for
several representative models, laying the foundations for a
more general and exhaustive evaluation of our methods as
future work. A comprehensive discussion of additional model
variants is available in several detailed surveys on network
process models: [2], [6], [27].
Network Diffusion Models. In this setting, X represents
adoption/infection events. In terms of models M, we restrict
our discussion to linear threshold (LT) [4] and independent
cascade (IC) [18]. Both are progressive in that once a node
becomes active, it remains in this state.

LT is a long-memory diffusion model. Let A represent
the set of neighbors of v activated before time t. Then
the likelihood of a node v activating at time t is given by
L(v, t) = pn if |A| ≥ θv . Since it does not matter how long
ago the neighbors were activated, LT is a long-memory model.

On the other hand, IC is a short-memory model because
only the neighbors activated in the immediately preceding
timestep have any impact on a node’s activation. Let At−1
represent the neighbors of v activated precisely at time
t − 1. The likelihood of activation under IC is then given by
L(v, t) = 1− (1− pn)|At−1| if |At−1| > 0.

Both models include a (small) probability pe of a sponta-
neous node activation to avoid assigning a zero probability
to observed events. WLOG, we keep the parameters constant
across the entire network.
Network Growth Models. Events X in this case are edges
e ∈ E stamped by the time of their creation, τ(e). The
model M we consider for experiments is a generalized version
of preferential attachment (PA) [28] which further allows a
decaying contribution of an edge to adjacent nodes’ effective
degrees similar to the decaying-relevance from [29]. The
probability of an edge forming is given by:

L(v1, v2, t) = pn(
dλ(v1, t)dλ(v2, t)

(dλ(V, t))2
)α. (1)

dλ(v, t) tracks the effective (i.e. time-decayed) degree of v at
time t; the parameter λ controls the decay. When λ = 0 we
get standard PA (a long-memory model); large values of λ
produce a short-memory model analogous to IC, where only
recently-formed edges drive the creation of new ones.

III. PROBLEM FORMULATION AND ANALYSIS

A. Optimal temporal resolution (OTR)

Consider again Figure 1 which depicts a cascade following
the short-memory IC model. In the original timeline, the
activation of node E is a low-probability spontaneous event:
L(E, 3) = pe. The same is true of nodes F , G, K, L, and
M : none have a neighbor activated in the timestep before their
own activation. Thus, the overall likelihood L(X|∆0) of the
cascade under IC in the original timeline is relatively low.



There are two kinds of opposite “derangements” driving this
low likelihood. Activations D through G (shown in red) form
an IC-explainable chain of events, but they appear simulta-
neous in the original timeline. To maximize their likelihood,
we need to disaggregate this “accelerated” period of the
timeline by recovering a high-likelihood ordering of the events.
Conversely, activations I through L (shown in blue) could all
have likely been influenced by H; however they are dispersed
in time and in this case aggregating this “decelerated” period
will improve their likelihood. Overall L(X|∆?), the likelihood
of the timeline in Fig. 1b, is much higher than L(X|∆0), since
the only spontaneous activation is that of node A; ∆? is the
optimal timeline for this cascade.

Based on the above observations, we formalize the general
timeline optimization problem as follows:

Definition 1. Optimal Temporal Resolution (OTR): Find the
optimal timeline ∆? ∈ D which maximizes the likelihood
L(X|∆?) of X according to model M. ∆? is one of all
possible timelines D obtained by recursively aggregating or
disaggregating periods of the original timeline ∆0.

Our analysis examines the two core subproblems of OTR:
(a) OD, the separation of simultaneous events into two or
more timesteps, and (b) OA, the combination of two or more
consecutive timesteps into a single one.

B. Optimal disaggregation (OD)
We begin by formulating disaggregation as a decision

problem to facilitate analysis of hardness:

Definition 2. Optimal Disaggregation (OD): Given G, X|∆o,
a model M, and a target timeslice t ∈ ∆o, find a disaggre-
gation ∆o → ∆n that maps t onto {t(1), . . . , t(j)} such that
L(X|∆n) ≥ L?.

An example disaggregation is depicted in Fig. 1, where the
(red) activations D − F from t0 = 3 in the original timeline
are disaggregated into t? = {3, 4, 5} in the optimal timeline.
Note that the events are mapped to specific new time steps in
a way that will maximize their likelihood.

Theorem 1. OD, and thus general OTR, is NP-hard for all
settings considered herein. (Proof available in [30])

Given the above, we must turn to approximations in our
solutions. Fortunately, the process of splitting a timestep into
two (hereinafter called 2-OD) is submodular. Let Xt be the
set of events to be disaggregated. Let L(Y ), where Y ⊆ Xt,
represent our likelihood function when the events in Y are
assigned to t(1) and Xt \ Y are assigned to t(2). Then:

Theorem 2. L(Y ) is a submodular set function. (Proof
available in [30])

This process is also non-monotonic, since reassigning an
event from t(2) to t(1) may reduce the overall likelihood.

Corollary 1. A probabilistic greedy maximization of the
likelihood of 2-OD will yield a 1

2 -approximation algorithm
to the optimal solution. (Due to [31])

C. Optimal Aggregation (OA)

The goal in aggregation is to maximize the likelihood of
events in consecutive timesteps by combining them, effectively
rendering events in them simultaneous. An example of such
aggregation is depicted in Fig. 1, where the original steps
t0 = 4 . . . 7 are aggregated into a single new step t? = 7. A
recent work [17] focused on aggregation of IC diffusion events
and demonstrated that optimal aggregation can be performed
via dynamic programming in O(|X|4) time. In Section IV,
we discuss a faster solution for long-memory processes and
generalize to network growth in addition to diffusion.

IV. SOLUTIONS

A. Disaggregation

Here we assume that the input data is over-aggregated, i.e.
the observed events are grouped in large windows in which
the expected ordering by the process model is partially lost.
While optimal disaggregation of even a single timestep (2-
OD) is NP-hard, the submodularity property discussed above
allows us to employ the optimization framework from [31]
for 2-OD to obtain a randomized greedy heuristic with a 1

2 -
approximation ratio. To disaggregate the whole timeline, we
apply the greedy 2-OD approximation recursively on steps of
the original timeline in chronological order. The chronological
order is driven by the observation that events are only affected
by preceding events; therefore, it makes sense to disaggregate
the timeline in order from earliest to latest.

Our proposed disaggregation scheme is presented in Alg. 1.
We first initialize ∆? with the default timeline. Then we
perform a forward sweep in time attempting to disaggregate
earlier time steps first (Steps 3-20). For a time step t, we
first create a candidate split into two time steps t(1) and t(2)
and save the events currently mapped to this time step in X
(Steps 4, 5). Next we apply the randomized greedy heuristic
for submodular functions [31] on the likelihood L() of events
from X being assigned to the candidate time t′ (Steps 6-
16). This function was introduced for the 2-OD problem in
Sec. III-B—L(A) is the likelihood of the timeline if events in
A are mapped to the first of the new candidate steps t(1) and
the complement X \A to t(2).

The greedy heuristic initializes temporary sets A and B
as empty and the full set of events as X respectively (Step
6). It proceeds by evaluating the likelihood gains of adding
consecutive members of x ∈ X to A: ∇A, or removing x
from B: ∇B (Steps 8, 9). One of the respective actions, add
x to A or remove it from B, is performed with probability
proportional to its likelihood gain (Steps 10-13). When all
events x ∈ X are processed, A and B are equivalent, and
the proposed split places events from A into t(1) and the
complement into t(2) (Steps 15, 16). If the likelihood of the
new candidate timeline is better than the current one, the
new timeline is kept and t remains at the same position (i.e.
an attempt to further disaggregate t(1) will be made in the
next iteration), otherwise the t-th step is kept as is and t is
incremented (Steps 17-19). In the worst case, this process is



Algorithm 1 Forward greedy disaggregation
Require: Graph G, model M, set of events on an input timeline X|∆n

Ensure: Disaggregated timeline X|∆?

1: ∆? = ∆n

2: t = 1
3: while t < len(∆?) do
4: Let ∆

(t)
? be ∆? with time step t split in two: t(1) and t(2)

5: Let X be the events at time t in ∆?

6: A = ∅, B = X
7: for Events x ∈ X do
8: ∇A = L(A ∪ x)− L(A)
9: ∇B = L(B \ x)− L(B)

10: p = ∇A
∇A+∇B

11: if rand(0, 1) ≤ p then A = A ∪ x
12: else B = B \ x
13: end if
14: end for
15: Map events from A to step t(1) in ∆

(t)
?

16: Map events from {X \A} to step t(2) in ∆
(t)
?

17: if L(X|∆(t)
? ) > L(X|∆?) then ∆? = ∆

(t)
?

18: else t = t+ 1
19: end if
20: end while
21: return X|∆?

O(|X|2), as the process could conceivably start with a single
timestep containing all of the events of X and end with every
event in its own timestep; this would require |X| iterations of
the loop in Step 3, and iterations would, on average, have to
consider a number of events equal to c|X| for some constant
fraction c.

B. Aggregation

Some portions of the timeline may be at too high a
resolution—that is, events are overly dispersed in time. (See
timesteps 5-7 in Fig. 1.) In this case, we must aggregate the
timeline, merging two or more adjacent timesteps to make their
events simultaneous. This problem was addressed in [17] for
the specific setting of IC diffusion. We extend that dynamic-
programming approach to network growth and long-memory
models; details are available in [30].

The DP algorithm, however, is not scalable to real-world
datasets, and so we fall back upon a greedy approach. Starting
from a fully aggregated timeline, we add back the divisions
which have the most explanatory power according to M; i.e.,
those that produce the largest increase in likelihood. The
intuition is that if two related events are simultaneous, then
neither can help explain the other; we ideally would like one
(the “cause”) to precede the other (the “effect”). However, if
the first event precedes the second one by too much, we will
also lose explanatory power. (The precise definition of “too
much,” of course, is controlled by the memory length of our
model M.)

C. Full algorithm for OTD: disaggregate, then aggregate

Our complete procedure, Full, applies both aggregation and
disaggregation, similar to our motivating example from Fig. 1.
We first disaggregate the whole timeline as needed according
to Alg. 1, and then aggregate using either the DP algorithm or
the greedy heuristic. Applying disaggregation first ensures that

we never reverse any pair of ordered events in the input data.
We believe there are opportunities for speedup by carefully
interspersing these actions; this is a direction for future work.

An important note is that the same implementation of
the algorithm can be used for both diffusion and growth
problems, as network growth problems can be transformed
into a diffusion-like form by using the line graph of G; details
of this process are omitted due to space constraints.

A summary of solutions for each (sub)problem and setting
is presented in Table I.

Problem Memory Optimal Greedy APX

OD Short NP-hard O(|X|2) 1/2
Long NP-hard O(|X|2) 1/2

OA Short [17] DP: O(|X|4) O(|X|log|X|) -
Long DP: O(|X|3) O(|X|log|X|) -

OTR Both NP-hard O(|X|2) -
TABLE I

SUMMARY OF SOLUTIONS FOR OTR AND SPECIAL CASES OD AND OA,
COMPLEXITY AND APPROXIMATIONS FOR 2-OD.

V. EXPERIMENTAL EVALUATION

A. Data

We produce synthetic PA networks and, for diffusion, we
produce cascades according to the IC model. We then remove
divisions from the ground truth timeline and add the same
number of new divisions uniformly at random at different
positions. The distortion factor is the ratio of the number of
changed divisions to the timeline length.

We also use a pair of real-world datasets to evaluate our
methods. In the diffusion setting, we employ the Flickr data
published in [32], using the friendship graph as our static
network and photos marked as favorites as the cascades. For
network growth, we selected a connected subgraph of the
MPI Facebook friendship network published in [33]. In each
case, we first apply a regular aggregation (roughly hourly for
Flickr and weekly for Facebook) that produces a timeline of
approximately 100 timesteps. We then apply the same type of
distortion (with compression and expansion) described above.

B. Direct measurements of timeline reconstruction

As a first-cut measure of effectiveness, we count how
many pairs of events have been deranged—either simultaneous
events that have been separated in time or ordered events that
now appear simultaneous. We calculate three decision rates in
relation to these: the fraction of derangements fixed correctly,
the fraction “fixed” incorrectly (that is, our algorithm changes
the order in a way that does not match the original timeline),
and the net rate, which is simply the difference between these.

Figure 3 shows our results for these measures. We distort the
timeline by artificially expanding and compressing it and then
see how well we can recover the deranged pairs. Interestingly,
in synthetic data the amount of distortion has little effect on
this measure - we correctly identify over 20% (growth) or 30%
(diffusion) of the pairs with very low error rates. Furthermore,
we compare favorably with the baseline: the aggregation-only
approach proposed in [17].

The bottom two figures show the results on our two real-
world datasets. For diffusion, the distortion factor again has
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Fig. 3. Decision rates in both the diffusion (left) and network growth (right)
settings, with synthetic data at the top and real-world data below. The baseline
in the top two figures is [17]. In all cases, we maintain a very low incorrect
decision rate.

very little impact. In the network growth data, larger distortion
rates lead to an increase in opportunities to fix the timeline.
Our algorithm takes increasing advantage of these through
df = 0.7; beyond this, too much temporal information has
been removed and the problem becomes too difficult.

C. Cascade completion

The application we use to test our method in the information
diffusion setting is the prediction of missing cascade activa-
tions, using the algorithm of Zong et al. [34]. In both synthetic
and real datasets, we generate test cases by simply removing
some of the activations; the dropped activations are chosen
uniformly at random excluding those in the first or last time
step, as those cannot be predicted by Zong’s algorithm. We
use F1 as our quality metric; results are shown in Figure 4. In
all cases, the full OTR algorithm using both aggregation and
disaggregation outperforms using only one or the other.

The first three plots show three different ways of increas-
ing problem difficulty on synthetic data. The full algorithm
maintains its advantage over both the default timeline (None)
and the all-aggregation baseline of [17] across all settings.
The final two plots show results on the real-world Flickr data.
Notably, as shown in the final plot, our approach works best
precisely when the default timeline is useless.

D. Link prediction

We test our method using a tensor-factorization link pre-
dictor from Dunlavy et al. [35] whose output is a matrix
of similarity scores, reflecting the likelihood of a link in the
future. We use AUC (area under the ROC curve) as our metric,
with results shown in Fig. 5.

By varying α in the synthetic dataset we found that a greater
simulated preferential attachment made link prediction more
difficult across all timelines. When all edges are linking to
the same popular node, it is likely increasingly difficult to
disentangle which nodes linked to said popular node first. In
contrast, when nodes have variety in degree, more information

can be gleaned from the patterns of attachment. Thus we
limited α to a lower range of values.

For the full OTR algorithm, the level of improvement was
approximately 0.1 (12-15%) for all parameter settings on
synthetic data and 0.05 (7%) or more on real-world data. Given
the inherent difficulty of the link prediction task, these gains
represent a substantial improvement over the default timeline.

VI. RELATED WORK

The authors of references [15], [36] were among the first
to demonstrate the critical importance of using the correct
temporal resolution for various predictive tasks on networks.
Variations in the speed of network process was also demon-
strated empirically in several prior works [13], [14]. Despite
these observations, very little work has been done that explores
the idea of learning a variable temporal resolution. Once such
work is [37], but it considers continous-time processes as
opposed to discrete time processes which are predominantly
studied in the network context.

The closest to this work is [17] which is limited to short
memory diffusion and does not consider disaggregation. While
we use the above as a baseline in some experiments for
severely disaggregated data, it cannot handle over-aggregation
or network growth processes directly. We generalize [17] by
considering both long-memory and short-memory processes as
well as network growth in addition to diffusion.

VII. CONCLUSION

We have presented a method for optimizing a timeline of
observed network events in order to maximize their overall
likelihood. This optimized timeline can be used to recover the
order of events when the data collection process has distorted
the temporal information; it can also be used to enhance any
process that heavily depends upon the temporal nature of
network event data. We have shown that an optimized timeline
can produce significant improvements in the solution of two
very common tasks: link prediction and detection of missing
cascade activations.

Our theoretical contributions included a very general prob-
lem framework that can be applied to any probabilistic model
of temporal network event creation. We proved the NP-
hardness of the overall problem and provided an optimal
algorithm for one key subproblem and an approximation
guarantee for another one.

Perhaps most importantly, we have laid the groundwork
for future investigation into optimal inhomogeneous-resolution
timelines. Directions for further exploration include improve-
ments of the algorithms presented herein, especially exploring
the possibility of alternating aggregation and disaggregation
actions, and application of the OTR framework to other tasks
using data from temporal network processes.
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