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Abstract—Subgraph discovery in a data graph (finding subsets
of vertices and edges satisfying a user-specified criteria) is an
essential and general graph analytics operation with a wide spec-
trum of applications. We present Nuri, a general subgraph dis-
covery system that allows users to succinctly specify subgraphs of
interest and criteria for ranking them. Given such specifications,
Nuri efficiently finds the k most relevant subgraphs. It prioritizes
(i.e., expands earlier than others) subgraphs that are more
likely to expand into the desired subgraphs (prioritized subgraph
expansion) and proactively discards irrelevant subgraphs from
which the desired subgraphs cannot be constructed (pruning).
Nuri can also efficiently store and retrieve a large number of
subgraphs on disk without being limited by the size of main
memory. We demonstrate using both real and synthetic datasets
that Nuri only on a single core outperforms the closest alternative
distributed system running on 40 cores by more than 2 orders
of magnitude for clique discovery and 1 order of magnitude for
subgraph isomorphism and pattern mining.
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I. INTRODUCTION

Social networks, the World Wide Web, transportation net-
works and protein-protein interaction (PPI) networks are com-
monly modeled as graphs in which vertices represent entities,
edges represent relationships between entities, and vertex/edge
labels represent certain properties of the entities/relationships.
Given such a graph, the problem of finding subgraphs (subsets
of vertices and edges) that meet specific user-defined criteria
arises in a variety of applications. For example, prominent
star and clique structures of high homophily (i.e., sharing
attributes) in social networks have been shown instrumental
to understanding the nature of society [1]. In the biological
domain, subgraphs in a PPI network of highest gene expres-
sion disagreement across phenotypes (e.g., healthy/sick) are
essential for identifying target pathways and complexes to
manipulate a condition [2]. Other applications include com-
puter network security [3], financial fraud detection [4], and
community discovery in social and collaboration networks [5].

In response to the aforementioned demand, researchers have
developed custom solutions for specific types of subgraph
discovery problems. Examples include subgraph isomorphism
search algorithms [6], [7], [8] and techniques for discovering
frequent subgraphs [9], [10], cliques [11], [12], [13], [14],
quasi-cliques and dense subgraphs [15], as well as communi-
ties [5]. The above techniques, however, are one-off solutions
for specific problems and are usually difficult to use/extend
for different subgraph discovery computations.

Systems specifically targeted to subgraph discovery have
recently been proposed [16], [17], [18]. These systems initially
construct one-vertex (or one-edge) subgraphs and then repeat-
edly expand subgraphs into larger ones by adding a vertex or
an edge at a time. As discussed later in this paper, however,
these systems often exhibit limited performance (even when

they employ a large number of servers) mainly due to the
sheer number of subgraphs that they have to examine. They
may also produce an extremely large result set (e.g., millions
of subgraphs) which a human analyst cannot easily deal with.

We propose a new subgraph discovery system, called Nuri,
that overcomes the above limitations. Nuri supports various
computations (i) conveniently (as opposed to the complexity of
developing custom solutions) via an API that enables succinct
implementation of these computations and (ii) more efficiently
when compared to the closest existing alternative systems [16],
[17], [18] by quickly finding the k£ most relevant subgraphs
according to user-provided specifications.

The key advantageous features of Nuri are as follows:
APIL Our API allows users to enable the desired subgraph
discovery computation as soon as they implement only one
function which determines whether or not a given subgraph
matches their interest. They do not need to write code for
creating and expanding subgraphs as well as dealing with
situations where there are too many subgraphs to fit into the
memory. To speed up the computation, users may implement
additional functions for the optimizations explained below.
Prioritization. Users can implement a function in our API to
assign a higher priority to subgraphs that are more likely to
expand into subgraphs of interest than others (e.g., cliques with
the potential to expand into larger cliques). Given this function,
Nuri expands subgraphs with a higher priority before other
subgraphs, thereby quickly finding the desired subgraphs. The
previous subgraph discovery systems [16], [17], [18] lack this
feature and thus have inherent performance limitation.
Pruning. As soon as the result set contains k entries, it
becomes unnecessary to expand subgraphs whose expansions
cannot lead to subgraphs that are more relevant than these &
entries (e.g., in the case of finding the largest cliques, when
the result set already contains a clique of size 4, no need to
consider cliques that can only expand into cliques of up to
size 3). Nuri can detect and safely discard such subgraphs
according to a user-specified function.

Targeted Expansion. Users can implement a function in our
API to specify whether or not it is adequate to expand a
subgraph by adding a vertex or an edge. This feature enables
Nuri to create and examine only the necessary subgraphs
in contrast to Arabesque [16] which exhaustively creates
subgraphs and then filters out irrelevant ones.

Efficient Top-k Aggregate Subgraph Discovery. While some
key subgraph discovery computations require grouping of
subgraphs (e.g., by their patterns) and aggregation of certain
properties (e.g., calculation of pattern frequency) [9], [10],
previous subgraph discovery systems such as NScale [17] and
G-Miner [18] cannot support such aggregate computations.
In contrast to Arabesque [16] that must expand all smaller
subgraphs before any larger subgraph, Nuri can expand a
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Fig. 2: Clique Discovery (on the graph in Fig. 1a)

group of subgraphs before other smaller subgraphs (prioritized
expansion) thereby facilitating early and effective pruning.
On-Disk Subgraph Management. The number of subgraphs
that Nuri manages usually grows exponentially with the size
and density of the data graph and may even surpass the
capacity of the main memory. Nuri has the ability to manage
high-priority subgraphs in memory and low-priory subgraphs
on disk in a highly efficient manner where the use of disk
causes only a slight degradation in performance.

This paper makes the following contributions:

« Two new computational models that efficiently support
various top-k subgraph discovery computations through
prioritized subgraph expansion and pruning

o An API that allows users to easily implement diverse sub-
graph discovery computations (and examples demonstrat-
ing succinct implementation of representative subgraph
discovery algorithms)

o Design and implementation of a system, Nuri, that en-
ables fast top-k subgraph discovery just on a single
computer

o In-depth analysis of experimental results which demon-
strate between 1 to 2 orders of magnitude reduction of
subgraph discovery time for our system running on a
single core, compared to the closest alternative distributed
system utilizing 40 cores.

II. BACKGROUND

In this section, we discuss three popular subgraph dis-
covery computations that we adopt to describe and evaluate
our general system (Sec. II-A). We also explain previous
systems/solutions that are closely related to our work and their
limitations (Sec. II-B).

A. Subgraph Discovery Computations

Our goal is to enable efficient discovery of the most relevant
subgraphs that meet user-specified criteria within a large data
graph. For demonstrative purposes, we adopt the following
example discovery computations:

Clique Discovery. A clique is a subgraph in which every pair
of vertices are adjacent [11], [12], [13], [14]. The data graph
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in Fig. la contains 9 cliques of sizes 1 to 3, depicted as s,
S2, S3, S4, S5, S¢» ST, S8, and sg in Fig. 2 (details of this figure
are explained in Sec. II-B and III-A).

Subgraph Isomorphism. The goal of subgraph isomorphism
search is to find, in a labeled data graph, all subgraphs isomor-
phic to a query graph [6], [7], [8]. A subgraph G4(Vs, Es, L)
in a data graph is isomorphic to a query graph G,(V,, E,, L;)
if there exists a bijection u Vo — Vs such that (1)
Yo € Vg, Ly(v) = Lg(p(v)) (e., vertex v in G4 and the
corresponding vertex u(v) in G4 have the same label) and
(2) Y(v,v") € By & (u(v), p(v')) € Es (i.e., vertices v and
v’ are adjacent in G, if and only if the corresponding vertices
w(v) and p(v') are adjacent in G,). For example, the graph
in Fig. 1b contains four subgraphs (depicted as sg, S7, S11,
and spo in Fig. 3) that are isomorphic to the query graph in
Fig. lc. Subgraph sg is isomorphic to the query graph since
a bijection such that p(0) = vy, (1) = ve, and u(2) = vs
satisfies the conditions mentioned above.

Pattern Mining. The goal of pattern mining is to find
subgraph patterns that appear at least as frequently as a
user-specified threshold in the data graph. For example, the
subgraph pattern in Fig. lc appears in the data graph from
Fig. 1b (the subgraphs depicted as sg, s7, S11, and sjo in
Fig. 3 are isomorphic to the pattern in Fig. 1c).

Among several pattern frequency definitions, for the pur-
poses of this example, we consider the minimum image-
based support, which is defined as the minimum number of
mappings for any vertex in the pattern to the corresponding
vertices in the data graph [19]. According to this definition,
the frequency of pattern p; in Fig. 3 is 2 since (i) subgraphs
s1 and s; match (i.e., are isomorphic to) p; and (ii) the
first vertex of p; (vertex 0) maps to vertices v; and wvs
in Fig. 1b, (iii) the second vertex of p; (vertex 1) maps
to vertices vp and v4, and thus (iv) the frequency of pi,
denoted f(p1), is min(|[{v1, vs}|, [{ve, va}|) = min(2,2) = 2.
The other patterns in Fig. 3 have the following frequencies:
f(p2) = min([{va,vs,va}|, {v2,vs,04}]) = 3, flps) =
min(|{v1, vs}], {v2, va}], [{v2, v3,v4}[) = 2, and f(ps) =
min(|{vz, v3, va}|, [{va, vs, va}|, [{v2, vs, v4}]) = 3.



TABLE I: User Functions

Function Optional | Description Default

expandable(s, ) yes returns true if it is adequate to expand subgraph s by adding a vertex or an edge § | returns true

relevant(s) no returns true if subgraph s matches the user’s interest N/A

priority(s) yes returns the application-specific priority of subgraph s returns null

dominated(s, s") yes returns t rue if all subgraphs into which s can expand are guaranteed to have a lower | returns false
priority than subgraph s’

Top-k Semantics. The above computations may return an
enormous number of subgraphs, overwhelming the user. Our
goal is to allow (i) users to specify the desired size k of
the result set and a criterion for ranking subgraphs and (ii)
the system to obtain such top-k results more efficiently than
exhaustively acquiring all results and then ranking them.

B. Limitations of Current Graph Systems

TLV (Think Like a Vertex) graph processing systems such
as Pregel [20], GraphLab [21], TurboGraph [22] iteratively
update the state (i.e., variables) of each vertex in a man-
ner that eventually computes quantities of interest, such as
PageRank [23]. Subgraph discovery computations, however,
cannot be succinctly expressed using vertex variables since
the number of subgraphs grows exponentially with the size of
the graph and there is typically a many-to-many relationship
between vertices and subgraphs. For this reason, TLV systems
cannot adequately support subgraph discovery computations.

Systems specifically targeted to subgraph discovery have
recently been proposed [16], [17], [18]. These subgraph dis-
covery systems initially construct one-vertex subgraphs (e.g.,
S1, S2, 83, and s4 in Fig. 2) or one-edge subgraphs (e.g., s1,
S2, S3, S4, and s5 in Fig. 3) and then expand subgraphs into
larger ones by adding a vertex or an edge at a time (e.g., in
Fig. 3, 51 into sg by adding edge {v2,v3}). The limitations
of these systems are as follows: (i) As further explained
in Sec. III-A, they cannot perform prioritized expansion of
subgraphs according to user-specified criteria, inherently los-
ing the opportunity to quickly fill the result set and start
pruning out irrelevant subgraphs whose expansions cannot
affect the result set. (ii) NScale [17] and G-Miner [18] cannot
support aggregate computations (e.g., finding the frequency
of a pattern based on the subgraphs having that pattern). (iii)
Arabesque [16] adopts exhaustive expansion (i.e., constructs
all subgraphs that can be obtained by adding a vertex/edge
to an existing subgraph) and post-expansion filtering (i.e.,
discards irrelevant subgraphs), and thus may create a large
number of unnecessary subgraphs (e.g., non-clique subgraphs
such as s19, s11, and s1o in Fig. 2).

III. COMPUTATIONAL MODEL

We present the computational model (Sec. III-A) and its
extension for aggregate computations (Sec. III-B).

A. Basic Computational Model
Our computational model aims to quickly find the k-most
relevant results according to user-specified functions. Its key
principles are as follows:
o Targeted expansion: our computational model allows
users to specify if it is adequate to expand subgraph s by

adding a vertex or an edge 0 (see the expandable(s,?)
function in Table I). For example, users can avoid creation
of non-clique subgraphs by making expandable(s,?)
return true only if adding § to s leads to a clique.

e Result ranking: by implementing the relevant(s) func-
tion (Table I), users can specify whether or not subgraph
s matches their interest (e.g., s is a clique) and thus may
be added to the result set. Users can also incorporate their
criteria for ranking results into the priority(s) function
(e.g., larger cliques assigned a higher priority value).

e Pruning: as explained below, it may be possible to
calculate an upper bound on the priorities of all possible
subgraphs into which a subgraph s can expand (e.g., ex-
pansions of s would only lead to cliques of size 3 or less).
In this case, users can instrument the dominated(s,s’)
function to return true if all supergraphs that s can
expand into are guaranteed to have a lower priority
than s’. When s’ is the k-th entry in the result set
and dominated(s, s’) returns true, it is safe to ignore
subgraph s since expansions of s can never affect the
result set (i.e., all of the subgraphs obtained through these
expansions would have a lower priority than s’ and thus
never be included in the result set).

o Prioritized expansion: our model expands highest priority
subgraphs first. This feature allows users to implement
the priority(s) function in a manner that quickly fills
the result set and facilitates pruning.

Algorithm 1: Basic Computational Model

1 for vertex v : V or edge e : E do
2 create a subgraph s containing only vertex v or edge e;
| insert s into @;

while |Q] > 0 do

subgraph s < remove_mazx(Q);

if relevant(s) and

(|R| < k or priority(s) > priority(k-th(R))) then
insert s into R;
if |R| > k then

10 remove from R each entry e such that

| priority(e) < priority(k-th(R));

11 if |R| < k or !dominated(s, k-th(R)) then

“w

R B Y

12 for each neighboring vertex (or edge) § of s do

13 if expandable(s, ) then

14 create subgraph s’ by adding J to s;

15 if |R| < k or !dominated(s’, k-th(R)) then
16 | insert s’ into Q;

Algorithm 1 illustrates how our computational framework
carries out subgraph discovery computations. It first creates,



for each vertex (or edge) in the data graph, a subgraph s
containing that vertex (or edge) and inserts s into a priority
queue @ (lines 1-3). Next, as long as () contains subgraphs
(line 4), it repeatedly dequeues and processes the subgraph s
with the highest priority (lines 5-16). If s matches the user’s
interest (line 6) and if the result set R is not yet full or s has
no lower priority than the k-th entry in R (line 7), it adds s to
R (line 8) and removes unnecessary entries from R (lines 9
and 10). Furthermore, it examines if subgraph s can be safely
ignored (i.e., unnecessary to expand s) (line 11). If not, it
considers each neighboring vertex (or edge) J of s (line 12).
If adding ¢ to s is adequate (line 13; e.g., this expansion will
lead to a clique), it expands s into s’ by adding ¢ (line 14). If
s’ cannot be ignored (line 15), it inserts s’ into @ (line 16).
Example: Maximum Clique Discovery. Assume that a user
wants to quickly find the largest clique(s) given a data graph
in Fig. la. For each clique s, the user can consider the set
Py of vertices that can be added to s while forming a larger
clique [11] (for details of P, refer to Listing 1). For example,
in Fig. 2, Py, = {v2, v3} since adding vs and its edge {v1,v2}
to s; leads to clique s5 and adding vs and {vi,vs} to s;
leads to sg. On the other hand, Ps, = {v3z} because so
has only one such neighboring vertex (vs) (note that, just
like Arabesque [16], our framework does not consider adding
vertex v; to sp since this expansion would result in a duplicate
generation of s5 which is to be obtained by adding vertex v
to s1). The user can enable the desired computation as follows
(for the actual implementation of the custom functions, refer
to Sec. IV-A):

o Targeted expansion: the user can avoid creation of non-
clique subgraphs by making expandable(s,d) return
true only when vertex 0 is in P (i.e., adding ¢ and
its relevant edges to s surely leads to a clique). In this
case, every subgraph s obtained through expansion is
a clique (i.e., matches the user’s interest) and therefore
relevant(s) needs to always return true.

e Prioritized expansion: the user can implement
priority(s) so that it returns (|Vj|,|Ps|) where Vj
is the set of vertices in s and P is the set of vertices that
can be added to s while forming a larger clique. When
lexicographic ordering is applied to such priority values,
our framework expands larger cliques before smaller
cliques and, for cliques of the same size, expands a more
promising clique (i.e., clique that is likely to expand into
larger cliques) before others.

e Pruning: the user can enable pruning by instrumenting
dominated(s, s’) to return true if |Vi| + |Ps| (the
maximum possible size of the cliques into which s can
expand) is smaller than |Vy/| (the size of clique s).!

Fig. 4 illustrates how our framework can efficiently find
the maximum clique (sg in Fig. 2) given the above custom
functions and the data graph in Fig. la. Our framework first
creates unit cliques s1, S92, s3, and s4 while assigning priorities
to them (1). It then dequeues s; (i.e., the clique with the

I'This pruning condition was first introduced by Carraghan et al. [11]. The
original work by Carraghan et al., however, does not specify any criterion for
prioritizing cliques.

top-1 list top-1 list top-1 list top-1 list
subgraph | size subgraph | size subgraph | size subgraph | size
S1 1 Ss 2 So 3
priority queue priority queue priority queue priority queue
subgra. | priority subgra. | priority subgra. | priority subgra. | priority
S1 (1,2) S5 2,1) So (3,0) Se (2,0)
s2 (1, 1) S6 (2,0) S6 (2,0) s2 (1, 1)
S3 (1, 1) S2 1,1 S2 (1, 1) S3 (1, 1)
Sa (1,0) S3 1,1 S3 (1, 1) Sa (1,0)
Sa (1,0) S4 (1,0)
Q)] @) 3) (4)

Fig. 4: Maximum Clique Discovery

highest priority), adds s; to the result set, expands s; into
s5 and sg, and then enqueues s5 and sg (2). Next, it dequeues
S5, adds s to the result set, removes s; from the result set,
and expands s5 into sg (3). Then, it dequeues sg, and replaces
S5 in the result set with sg (4). At this point, s2, S3, S4, and
s¢ can be pruned out since they cannot expand into cliques as
large as sg.

Discussion. To the best of our knowledge, our subgraph
discovery framework is the first one that supports prioritized
subgraph expansion, an ability to expand more promising
subgraphs (i.e., subgraphs whose expansions are more likely to
quickly fill the result set with high-priority subgraphs) before
others, thereby facilitating early and effective pruning. The
benefits of our framework over the prior subgraph discovery
systems [16], [17], [18] are evident in Figs. 2 and 4. For
example, Arabesque [16] must expand all smaller subgraphs
(e.g., all subgraphs of size 1) before any larger one (e.g., s5),
inherently limiting pruning opportunities (as opposed to ours
that can expand s5 before ss, s3, s4, and sg and then prune out
the latter subgraphs). Also, in contrast to ours that performs
targeted expansion, Arabesque has to create all subgraphs
(exhaustive expansion) and then filter out irrelevant ones such
as non-clique subgraphs si1g, s11 and sio (post-filtering).

B. Aggregate Computation

Some subgraph discovery computations require grouping
subgraphs according to a certain feature (e.g., pattern) and
then obtaining an aggregate value (e.g., frequency) from all of
the subgraphs within each group. Our aggregate computational
model for these computations have the following differences
compared to the basic framework (Algorithm 1):

1) A new user-specified function, key(s), returns the
grouping key (e.g., pattern) of subgraph s. Our com-
putational model associates each grouping key with the
group of subgraphs having that grouping key.

2) Prioritization, insertion into the result set, and pruning of
subgraph groups are specified by functions priority(S),
relevant(S), and dominated(S,S’) where each of S
and S’ is a subgraph group (i.e., a group of subgraphs
having the same key) as opposed to a subgraph in
the basic (non-aggregate) framework. As in the basic
framework, expandable(s, ) is applied to a subgraph s
and a vertex (or edge) .

Example: Top-k Frequent Pattern Mining. Consider the
problem of finding the most frequent 2-edge patterns. A user



priority queue priority queue top-1 list

group key |subg. | priority group key |subg. priority group key | frequency
V2-v3 V2-V3,V3-v4 P4 3
Vo-va V2-V4,V4-v3 priority queue
V3-v2 V3-V2,V2-V4 group key |[subg. | priority
p2 (1,3) pa (2,3) Viva
- V3-V4,V4-v2 B
V3-v4 3-V4,V4 P (1‘ 2)
va-v2 Va-v2,v2-v3 vsva
va- - - ®)
4-v3 V4-V3,V3-v2
Vi-v2 Vi-v2
p1 (1,2) p1 (1,2)
V5-V4 V5-V4

) @
Fig. 5: Most Frequent Pattern Mining

can efficiently solve this problem by implementing custom
functions as follows:

o Subgraph expansion: to obtain all subgraphs consisting
of up to two edges, the expandable(s,§) function needs
to return true if s contains less than two edges. To
include 2-edge patterns in the result set, the relevant(S)
function needs to return true if the grouping key (i.e.,
the pattern) of .S has two edges.

e Prioritized expansion: the user can implement
priority(S) so that it returns (m(S), f(S)) where
m(S) denotes the number of edges in the pattern
associated with subgraph group S and f(S) denotes the
frequency of that pattern. If lexicographic ordering is
applied to such priority values, our framework processes
larger patterns before smaller patterns, and, for patterns
of the same size, processes more promising (i.e.,
frequent) patterns before others.

e Pruning: the user can enable pruning by (i) using a
pattern frequency metric with anti-monotonicity (e.g.,
minimum image-based support [19]) which guarantees
that any super-pattern p’ of p cannot have a higher
frequency than p (i.e., f(p') < f(p)), and (ii) by making
dominated(S, S") return true if f(S) < f(S’). When
S’ is the k-th entry in the result set and dominated(S, S”)
returns true, all subgraphs in S can be safely ignored
since expansions of them cannot affect the result set
(due to anti-monotonicity, all subgraph patterns obtained
through these expansions would have a lower frequency
than the pattern associated with S”).

Fig. 5 illustrates how our framework can efficiently find the
most frequent pattern (p4) given the above custom functions
and the graph in Fig. 1b. In contrast to the examples shown
in Fig. 3 where each subgraph expansion adds an edge to a
subgraph (edge-oriented expansion) and Fig. 2 where each
subgraph expansion adds, to a subgraph, a vertex and its
edges connected to a vertex in that subgraph (vertex-oriented
expansion), this example uses a different subgraph expan-
sion approach which we call pattern-oriented expansion. The
pattern-oriented expansion approach expresses each subgraph
as a series of directed edges and expresses each subgraph
pattern using the DFS code [24]. It constructs a subgraph s
only if the DFS code of its pattern is minimal [24], which
provides a guarantee that all of the subgraphs matching a
pattern (e.g., p4) can be obtained by choosing only one sub-
pattern (e.g., p2) and then expanding the subgraphs matching
that sub-pattern. Due to space limitations, we refer the reader

to our extended version of this paper [25] for further details
of pattern-oriented expansion and our aggregate computational
model.

In Fig. 5, our framework first forms two subgraph groups

from 8 one-edge subgraphs (1). Next, it selects the group of
subgraphs matching pattern p» (i.e., the group with the highest
priority), expands the subgraphs in that group, and obtains a
new group of subgraphs matching pattern py (2). Since py
has two edges (i.e., matches the user’s interest), it includes
the subgraph group for pattern p4 in the result set (3). It then
discards the subgraphs matching pattern p; since f(p;) <
f(psa) (i.e., the patterns that can be obtained by expanding
these subgraphs are less frequent than py).
Discussion. To the best of our knowledge, our work above is
the first top-k aggregate subgraph discovery framework which
supports both prioritization and pruning. Among the existing
subgraph discovery systems [16], [17], [18], NScale [17]
and G-Miner [18] do not support aggregate computations.
Arabesque [16] expands all smaller subgraphs before any
larger subgraphs (Fig. 3), thereby inevitably limiting prioriti-
zation and pruning opportunities. In contrast, due to its use
of pattern-oriented expansion, our framework can perform
early and effective pruning (e.g., no expansion of subgraphs
matching p; and no creation of subgraphs matching ps).

IV. API

We introduce our basic API (Sec. IV-A) and its extension for
aggregate computation (Sec. IV-B) and indexing (Sec. IV-C).

A. API for Non-Aggregate Computation

For a non-aggregate subgraph discovery computation
(Sec. III-A), users need to choose a subgraph expan-
sion approach between vertex-oriented expansion (Fig. 2)
and edge-oriented expansion (Fig. 3). Then, they need
to create a new class, in Java, that extends either the
VertexOrientedSubgraph or EdgeOrientedSubgraph
type according to the chosen expansion approach. In that
class, implementing only the relevant () method which
corresponds to the relevant(s) function in Table I enables
the most preliminary form of subgraph discovery (without
result ranking, pruning, and prioritization). The user can
implement expandable (Vertex v) Or expandable (Edge
e) for targeted expansion, priority () for result ranking and
prioritization, and dominated (S o) for pruning, where s is
a Java generic type referring to the class being created. These
methods correspond to the expandable(s, 0), priority(s), and
dominated(s, s") functions in Table L
Example: Maximum Clique Discovery. Listing 1 shows the
implementation of a method that returns the set of vertices that
can be added to a clique while forming a larger clique [11].
For the first vertex in the current clique (line 7), it adds to a
set p the neighbors of that vertex (i.e., the vertices that can
be added to the clique while forming a 2-vertex clique) (line
8). For every vertex v in the current clique except the first
vertex, p needs to exclude v (line 10; since v is already in that
clique) and retain only the vertices connected to v (line 11; i.e.,
vertices that can belong to a clique containing v). As explained
in Sec. III-A, the maximum clique discovery computation
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Listing 1: Clique Discovery (SubgraphCD)

public HashSet<Vertex> p = null;

HashSet<Vertex> p() {
if (p == null) {
p = new HashSet<Vertex>();
for (Vertex v : vertices())
if (v.equals(seed()))
p.addAll (neighbors (v));
else {
p.remove (V) ;
p.retainAll (neighbors(v));
}
}
return p;

}

Listing 2: Subgraph Isomorphism Search (VertexIS)

public void initialize() {

for (int h = 1; h <= D; h++)
for (Vertex n : neighbors(h)) {
Integer i = (Integer) get(n.label(), h);
put (n.label(), h, i == null ? n.degree()

Math.max (i, n.degree()));
}
}

can be implemented as follows: (i) expandable (Vertex
v) returns p().contains (v); (ii) relevant () returns
true; (ili) dominated (S o) returns (vertexCount () +
p().size()
turns new double[] {vertexCount (), p().size()}.

< o.vertexCount ()); (iv) priority () re-

B. API for Aggregate Computation

An aggregate subgraph discovery computation (Sec. I1I-B)
requires creation of two classes, one extending the
SubgraphGroup type which contains the key (Subgraph
s), relevant (), dominated (S o), priority () methods
(corresponding to the custom functions key(s), relevant(S),
dominated(S,S’), and priority(S) in Sec. III-B) and an-
other class for representing subgraphs. To enable pattern-
oriented expansion (Sec. III-B), the latter class must extend
the PatternOrientedSubgraph type which includes the
expandable (Edge e) method. Due to space limitations, we
refer the reader to our extended version of this paper [25] for
an example implementation of top-k frequent pattern mining.

C. API for Indexing

Indexing techniques for subgraph discovery typically add
index entries for each vertex [7], [26]. To support such
techniques for Nuri, users need to create a class extending
the Vertex type and implement the initialize () method
which is invoked automatically for every vertex when the
data graph is loaded into the system. To create and read
index entries for each vertex, our API supports the two
methods: (i) put (k1, k2, ---, kn, v) which associates a
key comprising k1, k2, ---, and kn with a value v as an

attribute of the vertex and (ii) get (k1, k2, ---, kn) which
returns the value associated with the key comprising k1, k2,
-+, and kn.

Example: Top-k Subgraph Isomorphism. Top-k subgraph
isomorphism discovery [7] aims to find, in the data graph, the
k highest-scored subgraphs which are isomorphic to a query
graph. In this example, we define the score of each subgraph
as the sum of the degree (e.g., the number of citations of each
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article) of the vertices in that subgraph. To facilitate pruning,
we create an index entry for every vertex in the data graph
in a way similar to the work by Gupta et al. [7]. The index
stores, for each hop count A such that h < D (where D is the
maximum diameter of the query graphs to support) and label [,
the maximum degree over all vertices that have label [ and are
h-hop away from the vertex under consideration (Listing 2).

If a subgraph s is obtained by repeatedly expanding a
subgraph containing a seed vertex «, it is possible to derive
an upper bound on the scores of the subgraphs that sub-
graph s can expand into. This upper bound is defined as
the sum of (1) the current score of subgraph s and (2) an
upper bound on the score that can be further added (i.e.,
> ver, index(a, label(v), hop(v)), where My denotes the
vertices in the query graph that are not yet matched to any ver-
tex in subgraph s, hop(v) denotes the distance of v in the query
graph from the vertex that corresponds to vertex «, label(v)
denotes the label of vertex v, and index(«, !, h) denotes the
value in the index entry for vertex «, label [, and hop count
h. Pruning and prioritization can then be supported by mak-
ing dominated (S o) and priority () return (score() +
u() < o.score()) and new double[] {edgeCount (),
score() + u()}, where score () and u() return the score
and the score upper bound of the current subgraph, respec-
tively. Due to space limitations, we refer the reader to our
extended version of this paper [25] for the details of our top-
k subgraph isomorphism implementation.

V. SYSTEM ARCHITECTURE

Fig. 6 illustrates the architecture of our system. When a
user submits an implementation of subgraph discovery, the
execution engine carries out the computation according to an
appropriate computational model (Sec. III) while inserting the
subgraphs (or subgraph groups) matching the user’s interest
into the result set, whose updates are notified to the user. The
communication component enables such interactions between
the user and the system. For each subgraph discovery com-
putation, the execution engine loads the data graph from the
disk into the main memory. The number of subgraphs kept in
the priority queue may increase significantly with the size and
density of the data graph. For this reason, we implemented
an external priority queue that can store a large number of
entries on disk without being limited by the size of the main
memory [27, Chapter 6]. This implementation manages high-
priority subgraphs in memory and low-priory subgraphs on
disk in a highly efficient manner where the use of disk causes
only a slight degradation in the speed of enqueue/dequeue
operations (Sec. VI-F).
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TABLE II: Datasets

V] [E] distinct labels
Email [28] 986 16K -
CiteSeer [29] 3.3K 4.5K 6
MiCo [29] 100K  1.1M 29
YouTube [5] 1.IM  29M -
Patents [30] 2. M 14M 37
VI. EVALUATION

In this section, we explain our setup (Sec. VI-A) for eval-
uating the effectiveness of Nuri in comparison to alternative
systems for clique discovery (CD), pattern mining (PM), and
subgraph isomorphism (SI) computations (Sec. VI-B, VI-C,
and VI-D). We also discuss the impact of the result set size
(k) on subgraph discovery computations (Sec. VI-E) as well
as the space overhead of Nuri and the performance of our
external priority queue implementation (Sec. VI-F).

A. Experimental setup

Datasets. We employ five graph datasets from diverse domains
and at different scales as shown in Table II. Vertices in
the Email dataset represent people and each edge between
two vertices indicates that at least one email message was
sent between the people corresponding to the vertices. The
CiteSeer dataset represents a citation network in which
each publication is labeled by its research area. The MiCo
dataset expresses a co-authorship network where authors are
labeled by their research interests and a pair of authors
is connected if they have co-authored at least one paper.
YouTube represents a social network among users of the
service and Patent s represents a citation network among US
patents between 1963 to 1999, where each vertex is labeled
by the year the patent was granted.

Systems Compared. We compare two versions of our system,
Nuri (supporting targeted expansion, pruning, and prioriti-
zation) and Nuri-NP (supporting only targeted expansion),
and Arabesque [16] as a representative of the prior subgraph
discovery systems [16], [17], [18]. In contrast to NScale [17]
and G-Miner [18], Arabesque supports aggregate subgraph
discovery (e.g., pattern mining) and its implementation is
openly available. Both Nuri and Nuri-NP are implemented
as single-threaded programs using the standard Java 8 distri-
bution. In our experiments, each of these versions was run
on a single core at 1.90GHz of an Intel(R) Xeon(R) E5-4640
server (256G B memory) running Red Hat Enterprise Linux
Server release 7.5. In contrast, Arabesque was executed on a
total of 40 cores from 5 Intel(R) Xeon(R) E5430 servers (each
with 8 cores at 2.66GHz and 16G B memory), benefiting from
its distributed computing capability. In this section, the results
obtained from Arabesque are labeled “Abg40”.

Fig. 8: Clique Discovery (MiCo)
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(b) time
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Fig. 9: Clique Discovery (YouTube)

Evaluation Metrics. In terms of convenience, Nuri has a clear
advantage over custom subgraph discovery solutions [31], [26],
[32], [9], [7], [11]. For example, Nuri requires only tens
of lines of user-provided code to perform CD, PM, and IS
computations (Sec. IV). On the other hand, to create custom
solutions for these computations, programmers would have
to write at least thousands of lines of code for creating
and expanding subgraphs, managing subgraphs on disk if
they cannot be kept in memory, and, in the case of PM,
grouping and aggregating subgraphs. To compare Nuri and
Arabesque from the performance point of view, we use the
following metrics: (1) number of candidate subgraphs: Both
Arabesque and Nuri examine candidate subgraphs created
through expansion until the desired result is obtained. Hence,
we consider the number of candidate subgraphs as the basic
cost metric which represents the inherent computational load
of each system without being affected by the differences
in the implementation of the systems. (2) completion time
of subgraph discovery: This metric allows us to compare
different systems/techniques from the user’s point of view. It
also compensates for the limitation of the first metric, which
cannot incorporate the cost of optimization (e.g., time spent for
prioritizing subgraphs and evaluating pruning conditions) and
Arabesque’s ability to speed up subgraph discovery through
distributed computing.

B. Clique Discovery Evaluation

To obtain clique discovery (CD) results from Arabesque, we
instrumented it to find all cliques and then select the largest
clique(s) among them?. We created increasingly denser data
graphs using the Email, MiCo, and Youtube datasets by
repeatedly adding batches of randomly chosen edges to an
empty graph. Denser graphs tend to include more and larger
cliques, increasing the complexity of clique discovery.

Fig. 7 shows the CD results obtained for the Email dataset.
As expected, both the number of candidate subgraphs and
completion time increase with the density of the data graph
for all of the systems. In the figure, the difference between
Nuri and Nuri-NP demonstrates the benefits of pruning and
prioritization (for 16K edges, Nuri examines only 1/26 of
subgraphs and is 29x faster compared to Nuri—-NP). The gap
between Nuri—-NP and Abg40 is due to rargeted expansion,
which allows Nuri to explore only relevant subgraphs (cliques)
in contrast to Arabesque. Benefiting from targeted expansion
and pruning/prioritization, for 15K edges, Nuri can find the
largest clique(s) by examining only a small fraction (1,/400) of

2The original implementation finds cliques of a predefined size.
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subgraphs compared to Arabesque (Nuri vs. Abg40), result-
ing in 2 orders of magnitude improvement in completion time
although Nuri uses much less computing resources (1 core
vs. 40 cores). For 16K edges, Nuri completes its computation
within 2 minutes while Arabesque cannot within 10 hours.

Figs. 8 and 9 show the CD results obtained for the MiCo and
YouTube datasets. Given 500K edges from the MiCo dataset,
Nuri examines only 1/85 of subgraphs compared to Arabesque
(Fig. 8a), resulting in a 65x improvement in completion time
(Fig. 8b). On 600K edges from the MiCo dataset, Arabesque
does not finish its computation within 10 hours whereas Nuri
(with pruning and prioritization) completes within 47 minutes.
Given 2.8M edges from the YouTube dataset, compared
to Arabesque, Nuri examines 2 orders of magnitude fewer
candidate subgraphs (Fig. 9a) and is 1 order of magnitude
faster (Fig. 9b). Given 2.9M edges, Arabesque does not
complete within 10 hours while Nuri finishes in less than 1
hour.

C. Pattern Mining Evaluation

Our pattern mining (PM) implementation (Sec. III-B) finds,
given a number M, the most frequent patterns of size M
(i.e., M-edge patterns) in the data graph. To obtain the same
result, we instrumented Arabesque to (1) find all of the M-
edge patterns whose frequency is no lower than a threshold
T [16] and then (2) select the most frequent one(s) among
these patterns. In real-world use cases, however, it is difficult
to appropriately set T' for Arabesque since the maximum
frequency (denoted p) over patterns of size M is not known
in advance. If T' is assigned a value lower than p, Arabesque
examines subgraphs that are unnecessary for the purpose of
finding the most frequent pattern(s). If 7" is greater than p,
every pattern of size M is ignored (not reported) since its
frequency is lower than 7.

Fig. 10 shows the PM result obtained for the Patents
dataset. When 7' is set to p, Nuri and Arabesque explore a
similar number of subgraphs (Nuri and Abg40-p in Fig.
10a). The difference in the number of subgraphs between these
systems is due to their use of different expansion approaches
(Sec. ITII-B). In Fig. 10b, the gap between Nuri and Abg40-pu
shows the benefits of pattern-oriented expansion (Nuri) over
edge-oriented expansion (Arabesque). Under pattern-oriented
expansion (Sec. III-B), when subgraph s expands into s’, the
pattern of s’ can be quickly obtained by appending only one
edge to the pattern of s (incremental pattern generation).
On the other hand, under edge-oriented expansion, the pat-
tern of each subgraph is always computed from scratch by
converting that subgraph into its canonical form with high
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Fig. 11: Pattern Mining (CiteSeer)
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overhead [16]. When T is set to u/3, Arabesque examines
subgraphs unnecessary for the purpose of finding the most
frequent patterns, in contrast to Nuri which automatically
prunes out such subgraphs. When M is 4 and T is p/3,
Arabesque explores 2.5x more subgraphs than Nuri (Fig. 10a).
The benefits of Nuri over Arabesque (particularly, pruning
and prioritization) become more evident as the pattern size
increases. In Figs. 11 and 12, similar trends can be seen for the
CiteSeer and MiCo datasets, respectively. When T is set
to 1/3, Arabesque does not complete due to its high memory
demand when the pattern size is 4 for CiteSeer and 6 for
MiCo.

D. Subgraph Isomorphism Evaluation

Our top-k subgraph isomorphism (SI) implementation dis-
covers, in the data graph, the k highest-scored subgraphs that
are isomorphic to a given query graph, where the score of each
subgraph is defined as the sum of the degree of the vertices
in that subgraph (Sec. IV-C). This implementation adopts
Ullman’s algorithm [8] to efficiently find the subgraphs that
match the query graph (targeted expansion). Since Arabesque
does not support targeted expansion, our SI implementation
for Arabesque exhaustively explores subgraphs while filtering
out subgraphs that do not pass a subgraph isomorphism test (a
user-provided implementation). We also extended Arabesque
so that it can maintain the k highest-scored subgraphs.

To conduct SI computations, we obtained query graphs of
sizes from 2 to 5 by running a sampling algorithm [33] on
each data graph constructed from the CiteSeer and MiCo
datasets. For 4-vertex subgraphs (and 5-vertex subgraphs),
we considered three different types, namely path, clique, and
general that are labeled “4P”, “4C”, and “4G” (and “5P”,
“5C”, and “5G”). We considered, for 3-vertex subgraphs,
the path and clique types (labeled “3P” and “3C”) and,
for 2-vertex subgraphs, only one type (labeled “2”) which
corresponds to both the path and clique types. For each type of
query graph, we ran 10 SI computations each with a different
query graph and then calculated the mean values for the
number of subgraphs and completion time. For the graph from
CiteSeer, we did not consider cliques of size 5 since the
graph is sparse and thus contains few cliques of size 5.

For pruning and prioritization, our SI implementation uses
an index computed for every vertex in the data graph up to D-
hops, where D is the maximum diameter of all query graphs.
The index construction time for all 5-vertex query graphs
(i.e., for 4-hops) was 1 second for the CiteSeer dataset.
For the MiCo dataset, the index construction for all 4-vertex
query graphs took 300 minutes using a single core. The index
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TABLE III: Maximum Memory Usage

Fig. 15: Impact of Selectivity

computation CD PM SI
dataset Email MiCo  YouTube Patents CiteSeer MiCo CiteSeer MiCo
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construction time was reduced to 600 seconds when the index
entries for each vertex were created in parallel on 32 cores.

As evident in Figs. 13a and 14a, as the query graph size
increases, both Arabesque and Nuri explore more subgraphs
for each query type. In the CiteSeer graph, due to the spar-
sity of the graph, clique queries are very selective and usually
explore a smaller number of subgraphs than path and general
subgraph queries of the same size. In Figs. 13a and 14a, the
difference between Nuri-NP and Abg40 demonstrates the
benefits of targeted expansion. Figs. 13b and 14b show that
Nuri is substantially faster than Arabesque taking advantage
of pruning, prioritization, and targeted expansion despite its
use of much less resources (1 core vs. 40 cores).

Fig. 15 illustrates how the selectivity of query graphs affects
the SI computation for the CiteSeer dataset. In the figure,
Q1 is a non-selective query for which several million matches
exist in the data graph. Q2 is a mildly selective query and Q3
is a highly selective query with fewer than 400 matches in
the data graph. Fig. 15a shows that, due to prioritization and
pruning, Nuri explores much fewer subgraphs than Arabesque
(e.g., 4 orders of magnitude fewer subgraphs for Q1) as the
query graph has more matches in the data graph. For this
reason, Nuri on a single core runs much faster than Arabesque
on 40 cores (Fig. 15b). In Fig. 15b, Arabesque’s time costs
for Q2 and Q3 are mostly caused by its distributed operation
(particularly, coordination of multiple workers) rather than
actual exploration of subgraphs.

E. Effect of the Result Set Size (k)

The previous evaluations focused on top-1 computations. As
the result set size (k) increases, Nuri tends to explore more
subgraphs since it can start pruning out subgraphs only after its
result set contains & entries. We measured the effect of k£ on the
number of candidate subgraphs and completion time. Fig. 16

shows our results obtained from clique discovery on the
Email dataset and pattern mining and subgraph isomorphism
computations on the CiteSeer dataset. In the figure, as long
as k is smaller than 1000, the number of candidate subgraphs
and completion time vary insignificantly. When k is greater
than 1000, the number of candidate subgraphs and completion
time increase modestly with k.

F. Space Overhead and External Priority Queue

Table III shows the memory usage results from our ex-
periments when all subgraphs are kept in memory. When
subgraphs no longer fit into the memory, our external priority
queue implementation can efficiently manage them on disk
(Sec. V). In our experiments, despite disk usage, its overall
enqueue/dequeue time costs were only at most 1.8 times higher
compared to the standard Java PriorityQueue implemen-
tation which was given a much larger memory space and
managed all of its elements in that space. For further details,
we refer the reader to an extended version of this paper [25].

VII. RELATED WORK

Existing subgraph discovery systems are discussed in
Sec. II-B. This section summarizes additional related work.
Maximum Clique Discovery. Our maximum clique discovery
implementation (Sec. III-A and IV-A) is based on the CP
algorithm [11] which calculates, for each clique s, an upper
bound on the size of the cliques that s can expand into and
then prunes out s if its size upper bound is smaller than
the size of largest clique(s) discovered. Researchers have also
developed algorithms that can outperform CP by finding a
tighter upper bound [13], [14]. We leave the implementation
of these algorithms for Nuri as our future work.

Top-k Pattern Mining. Given a graph, our top-k pattern
mining implementation finds the k& most frequent patterns of
a certain size (Sec. III-B and IV-B). The closest work that
we are aware of [10] instead finds the k largest patterns
that are as frequent as a given threshold. An earlier work
called GRAMI [9] seeks, in contrast to our implementation,
all patterns whose frequency is no less than a threshold. Han
et al. also developed a threshold-based frequent pattern mining
solution for a different frequency metric [34].

Top-k Subgraph Isomorphism. Our top-k subgraph isomor-
phism implementation is motivated by Gupta et al.’s work [7]



which uses an index to quickly identify subgraphs whose
expansions cannot produce any of the desired subgraphs. Zou
et al. developed another indexing solution [26]. We intend to
implement and evaluate this solution for Nuri.

Custom Top-k Subgraph Discovery. There are also subgraph
discovery techniques that are designed to quickly obtain the &
subgraphs of highest preference according to a user-specified
criterion [31], [32], [7], [35], [36], [37]. Our future work
includes implementation of these techniques for Nuri.

Top-k Query Processing. In the context of database systems,
various techniques for top-k queries have been developed [38].
These techniques cannot adequately support subgraph discov-
ery computations since they are mainly designed for queries
on relations rather than a large collection of subgraphs that
need to be expanded according to their priorities.

VIII. CONCLUSIONS

We presented Nuri, a new system for efficient top-k sub-
graph discovery in large graphs. Nuri’s API allows users to
specify application-specific criteria for exploring and prioritiz-
ing subgraphs. Nuri also proactively discards subgraphs from
which the desired subgraphs cannot be obtained (pruning). For
discovery computations with high space overhead, it provides
efficient on-disk management of subgraphs. We evaluated Nuri
on real-world datasets of various sizes for three example com-
putations: maximum clique discovery, subgraph isomorphism
search, and pattern mining. Nuri consistently outperformed the
closest state-of-the-art alternative, achieving at least 2 orders
of magnitude improvement for clique discovery and 1 order
of magnitude improvement for subgraph isomorphism search
and pattern mining, while utilizing 1/40 of the computational
resources compared to the closest alternative.
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