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Making a Small World Smaller: Path
Optimization in Networks

Sourav Medya, Petko Bogdanov, and Ambuj Singh

Abstract—Reduction of end-to-end network delay is an optimization task with applications in multiple domains. Low delays enable
improved information flow in social networks, quick spread of ideas in collaboration networks, low travel times for vehicles on road
networks and increased rate of packets in the case of communication networks. Delay reduction can be achieved by both improving the
propagation capabilities of individual nodes and adding additional edges in the network. One of the main challenges in such network
design problems is that the effects of local changes are not independent, and as a consequence, there is a combinatorial search-space
of possible improvements. Thus, minimizing the cumulative propagation delay requires novel scalable and data-driven approaches.
We consider the problem of network delay minimization via node upgrades. We show that the problem is NP-hard and prove strong
inapproximability results about it (i.e. APX-hard) even for equal vertex delays. On the positive side, probabilistic approximations for a
restricted version of the problem can be obtained. We propose a greedy heuristic to solve the general problem setting which has good
quality in practice, but does not scale to very large instances. To enable scalability to real-world networks, we develop approximations
for Greedy with probabilistic guarantees for every iteration, tailored to different models of delay distribution and network structures. Our
methods scale almost linearly with the graph size and consistently outperform competitors in quality. We evaluate our approaches on
several real-world graphs from different genres. We achieve up to 2 orders of magnitude speed-up compared to alternatives from the
literature on moderate size networks, and obtain high-quality results in minutes on large datasets while competitors from the literature
require more than 4 hours.

Index Terms—Shortest Paths, Network Design, Sampling
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1 INTRODUCTION

Given a communication network, how can one minimize the
end-to-end communication delay by upgrading networking
devices? Similarly, how to minimize the travel time on an
airline network by increasing the personnel and infras-
tructure at key airports? How to recruit users who can
quickly re-post updates enabling fast global propagation
of information of interest in a social network? There is a
common network design problem underlying all the above
application scenarios: for a large network with associated
node delays, identify a set of nodes (within budget) whose
delay reduction will minimize the path delays between any
pair of nodes.

Network design problems, including planning, imple-
menting and augmenting networks for desirable properties,
have a wide range of applications in communication, trans-
portation and information networks as well as VLSI de-
sign [1], [2], [3], [4], [5], [6]. Challenges in this area are posed
by the rapidly growing sizes of real-world networks, leading
to the need for scalable, data-driven approaches. In particu-
lar, some network design problems involve local changes to
an existing large network such as adding/modifying links
or nodes as a means to improve its global properties [3], [5],
[7], [8], [9], [10]. In this paper we address a problem from the
above category, namely, minimizing the overall end-to-end
network delay.

• S. Medya and A. Singh are with the Dept. of Computer Science, Univer-
sity of California, Santa Barbara. E-mails: {medya,ambuj}@cs.ucsb.edu

• P. Bogdanov is with the Dept. of Computer Science, University at
Albany—SUNY. E-mail: pbogdanov@albany.edu

Fig. 1: Airports with maximum impact on the overall network
delay in the American Airlines network as discovered by our
methods. If airline-caused delays are removed in these airports,
the overall network delay decreases by 96% and 55% when
the accumulated airline-caused flight delays (Total) and Average
airport flight delays are considered respectively (data from US
Dept. of Transportation).

The end-to-end delay in a network affects propagation
speeds and is a function of the network link connectivity
and the throughput capabilities of individual nodes. The
majority of previous work focuses on delay minimization
by augmenting network edges [3], [6], [10], [11], [12]. Less
attention has been devoted to the complementary, but algo-
rithmically non-equivalent setting in which the propagation
capabilities of individual nodes are “upgraded” under bud-
get [9]. In this paper we address the node-version of the
delay minimization problem. A toy example instance and
possible solutions for the problem are presented in Fig. 2.
All nodes start with a delay of 1. The objective is to select
a set of two nodes whose delay reduction will minimize
the overall network delay (sum of pairwise delays). For
instance, selecting nodes c, d (Fig. 2b) is a better solution
than selecting nodes a, f (Fig. 2a).

Depending on the domain, low end-to-end delay en-
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ables improved information flow in social and collaboration
networks [13], reduced travel time for airline and road
networks [14] and increased throughput for communication
networks [9]. Consider, for example, the air transportation
network of a major US carrier presented in Fig. 1, where
edges correspond to flights offered by the carrier between
endpoint cities. Based on historical information on past
flights one can associate airports with airline-caused delays.
An important question for an airline is then how to min-
imize overall delays by improving the number of person-
nel and available infrastructure (e.g. luggage handling) in
problematic airports that affect multiple routes. In Fig. 1 we
show the airports with highest delay-reduction potential,
determined based on both historical delays and their posi-
tion in the network. When the cumulative historical delays
are considered (Total), hub airports like Chicago, Dallas and
Miami constitute the best solution, while “fringe” airports
make it to the list when the Average delay is considered1.

Another important application comes from online social
networks where user behavior—activity and interest in a
specific topic—determines the node delay for information
propagation. In this domain, the objective is to speed up the
global propagation of information by decreasing individual
response time [15]. A social media strategist of an election
campaign, for example, would be interested in recruiting
social network users who can re-post campaign updates
immediately, enabling faster propagation of relevant cam-
paign information. Both the position in the network and the
current delay in propagating information should be taken
into account in selecting recruits. While information and
influence propagation are traditionally modelled as diffu-
sion processes (i.e., using all possible paths) [16], multiple
recent approaches (including the current work) focus on the
most probable (shortest) paths in order to allow scalable
solutions [17], [18].

Given a network with node delays, our goal is to identify
a set of nodes whose delay reduction will minimize the sum
of shortest path delays between a given set of pairs of nodes.
We term this problem the Delay Minimization Problem (DMP),
and demonstrate that it is NP-hard in a general network,
even when the initial node delays are equal. Intuitively, the
challenge stems from the fact that the global effect of a single
node upgrade is dependent on the remaining nodes in the
solution. We prove strong inapproximation result that DMP
with initial equal delays remains APX-hard. On the positive
side, we show approximation guarantees for other variants
of the problem based on Vapnik-Chervonenkis theory [19].

Due to the strong inapproximation results of the DMP,
we propose a Greedy heuristic which is optimal for restricted
graph structures (e.g. trees) and has a good quality in
practice for general graphs. However, Greedy does not scale
to large networks due to its high computational complexity.
Hence, we develop sampling-based algorithms that make
similar selection of node upgrades with high probability
using knowledge of only a small fraction of the network.
The underlying delay model, uniform or arbitrary delays,
plays an important role in the design and solution qual-
ity of our corresponding sampling schemes. We provide

1. Extended discussion of the findings in this data is available in the
Experimental section.

Symbols Definitions and Descriptions
G(V,E) A graph with a vertex set V and edge set E
n = |V | Number of nodes in the graph
m = |E| Number of edges in the graph
l(v) Delay value of node v
d(s, t) Shortest path (s.p.) distance between s and t

Γ Candidate set of possible vertices for delay reduction
k A budget of number of vertices to improve / upgrade

T ⊂ Γ Selected target set of vertices to improve, |T | = k
Ω ⊆ V × V Set of pair-wise delays to reduce
RS(T ) Reduction in total s.p. distance after improving nodes in T
RS(v|S) Reduction in total s.p. distance by node v

given that nodes in S are already upgraded / improved

TABLE 1: Frequently used symbols

theoretical and experimental analysis of our algorithms for
different network structures and node delay distributions
and demonstrate their real-world utility.

Our contributions in this paper include:

• We consider the node delay minimization problem
(DMP) and show that it is NP-hard even for equal
delays. Besides showing that DMP with equal initial
delays is APX-hard, we provide probabilistic approx-
imation guarantee using VC dimension theory for a
restricted problem formulation.

• We propose a greedy heuristic and sampling-based
algorithms of similar quality that scale almost lin-
early with the network size. In million-node net-
works we obtain high-quality solutions within 1
hour, while non-trivial alternatives are infeasible.

• We show that the solutions produced by our algo-
rithms in real-world datasets are consistently better
than those of competitors (up to 10% higher delay
reduction).

This paper extends our previous work [20]. A short
summary of the new material is as follows:

• Theory: A more general problem formulation includ-
ing non-trivial and in-depth approximability anal-
ysis, sampling algorithm in a restricted setting and
its complexity analysis, omitted (from short version)
and new proofs.

• Methods: An exact solution for the new formulation
based on mixed integer programming as well as
relevant quality comparisons.

• Experiments: (a) comparing Greedy method with the
sampling counterparts, (b) varying different param-
eters and (c) comparing against the approximation
results from Theorem 3.

• Related work: Significantly extended.

2 PROBLEM DEFINITION AND COMPLEXITY

A network is modeled as an undirected graph G(V,E, l),
where V and E are sets of vertices and edges respectively
and l is a function l : V → R>0 over V that specifies
the delay/latency l(v) of individual nodes. The delay (or
length) of a path is defined as the cumulative delay of the
vertices along the path, excluding that of the destination.
More formally, if Ps,t = (vs, v1, v2, ..., vr, vt) is a path from
vertex vs to vt, its length is defined as l(vs) + Σri=1l(vi).
Delay at the destination node in a path is excluded since our
targeted applications consider information/traffic flow and
the destination node does not add any delays. The shortest
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(a) {a,f}, SPD=48 (b) {c,d}, SPD=20

Fig. 2: Illustrative example of the reduction of all pair shortest
path delays by removing the delays of two vertices (budget of
2). Initially every vertex has a delay of 1. (a) and (b) represent
examples of a non-optimal and the optimal Target Set selection
respectively.

path between vertices s and t is that of minimum length
(delay) among all such paths and its length is denoted as
d(s, t). By convention, d(s, s) = 0 for all s ∈ V . Let Ω be
a given set of pairs of vertices. We define the shortest path
delays (SPD(Ω) ) as the sum of shortest path lengths between
the pairs of vertices in Ω, i.e., SPD(Ω) = Σ(s,t)∈Ωd(s, t).

The DMP asks for a subset of vertices whose upgrade,
i.e. reducing their delay, minimizes the overall SPD. In the
process, from a given candidate set of vertices Γ, the delay
of a fixed (small) number of vertices T ⊂ Γ is reduced to
a small value ψ ≥ 02. We call this subset T a Target Set
(TS) and its size |T | = k the budget. The upgrade of the
TS reduces the lengths of shortest paths in the network. We
denote the resulting (effective) shortest path length between
s and t given the upgrade of T as d(s, t|T ). Our goal is to
find a T that minimizes Σ(s,t)∈Ωd(s, t|T ).

Definition 1. Delay Minimization Problem (DMP): Given a
network G = (V,E, l), a candidate set of vertices Γ, a set of pairs
of vertices Ω and a budget k, find a target set T ⊂ Γ, such that
|T | = k and Σ(s,t)∈Ωd(s, t|T ) is minimized.

As defined above, the general design problem considers
a subset of vertices Γ ∈ V that can be upgraded and a subset
of pairs Ω ∈ V × V whose pairwise delays are of interest
for the minimization. This general definition allows focused
design in a subnetwork of interest, however, for simplicity
we will present our algorithms in the context of the global
version of the problem, i.e. Γ = V , Ω = V × V and ψ = 0
(unless specified otherwise). All results and algorithms are
applicable to the general case.

Figure 2 shows two possible TS solutions of size k = 2
for a small network. Initially all vertices have a delay of
1 corresponding to an SPD of Σ(s,t)∈V×V d(s, t) = 58.
The reduction due to any TS T is defined as the dif-
ference between the initial and the upgraded SPD, i.e.
Σ(s,t)∈V×V d(s, t)−Σ(s,t)∈V×V d(s, t|T ). An optimal TS max-
imizes the reduction (and minimizes the upgraded SPD).
Thus, Figure 2a shows a sub-optimal TS {a, f} with reduc-
tion of 10, while Figure 2b shows an optimal TS {c, d} with
maximum SPD reduction of 38. Our goal is to minimize the
SPD by finding the optimal TS of budget size at most k.

2. Reduction by units of delay can be approached with simple
changes in our algorithms.

2.1 Hardness and Inapproximability

In this section we study the complexity of node delay
minimization (DMP) under two models for delay distribu-
tion in the network. Under the general model, node delays
can be arbitrary non-negative values, while the restricted
uniform model assumes equal delays (for simplicity, delay of
1) associated with all nodes. We show that DMP is NP-hard
in the special case of the uniform model, and hence, NP-hard
under the general model as well. To show this hardness result
we reduce the Set Cover problem to DMP.

Theorem 1. DMP is NP-hard even if the delay of all vertices is
1, i.e. under the uniform model.

Proof. We outline a reduction from the Set Cover problem.
Consider an instance of the NP-complete Set Cover prob-
lem, defined by a collection of subsets S1, S2, ..., Sm for a
universal set of items U = {u1, u2, ..., un}. The problem
is to decide whether there exist k subsets whose union is
U . To define a corresponding DMP instance, we construct
an undirected graph with n + m + mp nodes: there are
nodes i and j corresponding to each set Si and each element
uj respectively, and an undirected edge (i, j) whenever
uj ∈ Si. Every Si is connected to Sj when i 6= j and
i, j ∈ 1, 2, ...,m. Every ui is connected to other uj when
i 6= j and i, j ∈ 1, 2, ...,m. There are p vertices (with
degree 1) attached to each Si. The j-th vertex (among these
p vertices) attached with every Si makes the set Aj . All
vertices have delay of 1. Intuitively, the construction makes
the vertices in set S more likely to be chosen in TS.

Vertices in Ai will not be in the target set TS, as they
are of degree 1. Next we prove that the minimum reduction
(say quantity A) by any vertex from S is larger than the
maximum reduction (say quantity B) by vertices from U .
As the delays are 1, the reduction depends on the number
of shortest paths that pass through a vertex. The maximum
number of shortest paths (quantity B) that pass through
any vertex in U after being chosen in TS is less than the
minimum (quantity A) of the same through any vertex in S.
Quantity B is exactly (n−1)(m+pm), while A is p(m+n+
p(m−1)). A choice of p = mnmakesA larger thanB. Hence
a choice of nodes from S is always preferable. Tables 2 and
3 show SPD computation between nodes in the sets S,U,
and Ai in two different cases. The quantities are as follows:
W1 = k(2(m− k) + k− 1) + (m− k)(3(m− k− 1) + 2k),W2 =
k(2(m− k) + k− 1 + 1) + (m− k)(3(m− k− 1) + 2k+ 2),W3 =
kn+ 2(m− k)n,W4 = k(m− k) + (m− k)(1(k+ 1) + 2(m− 1−
k)),W5 = km+ 2(m− k)(m− 1) + 1(m− k).

The Set Cover problem is equivalent to deciding if there is
a set of k vertices whose upgrade leads to SPD ≤ X (where
X = (m+n− 1)(−k+m+n) +mp2(3m− 2k) + p(k(4− 3m) +
m(4m − 5)) + 2p(2mn − kn), sum of all the elements in Table
2). For a “yes”-instance of the Set Cover problem, we show that
all k TS vertices correspond to selected sets in the set cover and
we achieve the effective SPD of X . For a “no”-instance of the
corresponding Set Cover problem, the argument is as follows.
For the TS we choose k nodes from set S as we have already
proved, no vertex from set U or Ai can be in TS. For a “no”-
instance Table 3 shows the desired SPD. Comparing both two
tables, it is evident that the SPD in Table 3 is greater than X . If
the corresponding Set Cover problem has a set cover ≤ k, then
only the SPD is reduced to X . Hence the claim is true and the
problem is NP-hard. In conclusion, DMP is NP-hard under the
general model.
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∗ ∗ ∗ A1 A2 ... Ap S U
A1 W1 W2 ... W2 W5 W3

A2 W2 W1 ... W2 W5 W3

... ... ... ... ... ... ...
Ap W2 W2 ... W1 W5 W3

S W4 W4 ... W4 (m− 1)(m− k) n(m− k)
U W3 W3 ... W3 mn (n− 1)n

TABLE 2: Sum of shortest path delays when the size of the set
cover is ≤ k and delays of nodes in the set cover are reduced
to 0. The cell [K,L] denotes the sum of shortest path delays
between nodes of set K and those of set L.

∗ ∗ ∗ A1 A2 Ap S U
A1 W1 W2 W2 W5 ≥ W3

A2 W2 W1 W2 W5 ≥ W3

... ... ... ... ... ...
Ap W2 W2 W1 W5 ≥ W3

S W4 W4 W4 (m− 1)(m− k) > n(m− k)
U ≥ W3 ≥ W3 ≥ W3 > mn (n− 1)n

TABLE 3: Sum of shortest path delays when size of set cover
is > k and delays of arbitrary k nodes from S set to 0. The cell
[K,L] denotes the sum of shortest path delays between nodes
of set K and those of set L.

Theorem 1 establishes that the problem is NP-hard and
finding a brute-force optimal TS of size k would involve
considering all O(|V |k) subsets of V .

Since DMP is NP-hard, we next investigate the existence
of approximations with guarantees. The following theorem
shows that the general DMP is also APX-hard under uni-
form model. More specifically, it is NP-hard to approximate
within a factor greater than 1− 1

e .

Theorem 2. DMP under the uniform model is APX-hard and it
is NP-hard to approximate it within a factor greater than 1− 1

e .

Proof. We use Maximum Coverage (MSC) problem for re-
duction. Given a collection of subsets S1, S2, ..., Sm for a
universal set of items U = {u1, u2, ..., un}, the problem
is to choose at most k sets to cover as many elements
as possible. We show an L-reduction [21] from the MSC
problem, parameterized by the multiplicative factors x and
y, such that the following two equations are satisfied:

OPT (IDMP ) ≤ xOPT (IMSC) (1)

OPT (IMSC)− s(TM ) ≤ y(OPT (IDMP )− s(TD)) (2)

where IMSC and IDMP are corresponding problem in-
stances, and OPT (Y ) is the optimal value for an instance
Y . s(TM ) and s(TD) denote any solutions of the MSC and
DMP instances respectively. If the conditions hold and DMP
has an ε approximation, then MSC has a (1 − xy(1 − ε))
approximation. However, MSC is NP-hard to approximate
within a factor greater than (1 − 1

e ). It then follows that
(1 − xy(1 − ε)) < (1 − 1

e ), or, ε < (1 − 1
xye ) [22]. So, if the

conditions are satisfied, DMP is NP-hard to approximate
within a factor greater than (1− 1

xye ).
To define a corresponding DMP instance, we construct

an undirected graph with m + n + 2 nodes: a node i
corresponds to each set Si in MSC and similarly a node
j corresponding to each element uj . There is an undirected
edge (i, j) whenever uj ∈ Si. We add two extra nodes a
and b connected to each other and b is connected to all
nodes i where Si ∈ S, i.e. edges (b, i) are added to the
graph. Consider the DMP instance of the graph constructed
as described above. Let the pairs of interest to upgrade be

a

S U

b

Fig. 3: Example of reduction from MSC to DMP, where |U | = 4
and |S| = 3. Ω = {(a, v)|v ∈ U} and candidate set of vertices
Γ = S.

Ω = {(a, j)|uj ∈ U} and the candidate set of possible ver-
tices to upgrade be Γ = {i|Si ∈ S}. The delays associated
with all vertices are 1. Figure 3 illustrates the construction
with |S| = 3 and |U | = 4.

Let the solution of IDMP be s(TD) by choosing k nodes
from Γ = S. It is easy to see that the achieved reduction
of delay will be s(TD) in Ω as the delays on the nodes are
1. Hence, s(TD) = s(TM ), where s(TM ) is the solution
for MSC problem. It follows that both the conditions are
satisfied when x = y = 1. As a result, DMP is NP-hard to
approximate within a factor grater than (1− 1

e ).

As the theorem suggests, it is computationally infeasible
to get approximation within a factor greater than (1− 1/e).
It is an open question whether DMP has an approxima-
tion of any constant smaller than (1 − 1/e). Maximizing
a non-negative, monotone and submodular function using
a greedy approach leads to a well known constant time
approximation of (1 − 1/e) [23]. The underlying objective
function in DMP under uniform model does not have the
submodular property.
Lemma 1. The objective function in DMP is monotone but not
submodular, even under the uniform model.

Proof. The objective function f(T ) in DMP is “delay reduc-
tion” defined as f(T ) = Σs,t∈V d(s, t) − Σs,t∈V d(s, t|T ),
where T is the target set. The function f(T ) is monotone in
the size of TS. To prove non-submodularity, we consider the
example of a ring graph G of six vertices with unit delays:
vertex x1 is connected to x2, x2 to x3 and so on, and finally
x6 is connected to x1. The intuition is the following: a super-
set of nodes as TS might force more shortest paths through
the newly added vertex than its sub-set as TS. Let set A = φ,
B = {x2, x4}. In our example, f(B ∪ {x3}) = 54− 21 = 33,
f(B) = 54−34 = 20, f(A∪{x3}) = 54−43 = 11, f(A) = 0.
So, f(B ∪ {x3}) − f(B) > f(A ∪ {x3}) − f(A). So, f(·) is
not submodular.

2.2 Approximability for “long” paths
In theorem 2, we establish an inapproximability result about
uniform (equal) weights DMP and as a result the general
(arbitrary) weights setting is at least as hard. This leads
us to explore the existence of approximation for DMP in
restricted or special cases. One such directions is: Can we
reduce with guarantees the most latent (longest) paths? We show
that there exists an approximation for a restricted variant
of DMP under the uniform model targeting long paths for
delay reduction. Focusing on long paths, as opposed to
all lengths, is useful in applications where delays up to a
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given threshold do not affect the overall system operation.
For example, participants in a multi-way video conference
need to receive frames in at most 0.1s to ensure good video
quality, but improving the delay for pairs that meet this
requirement does not provide further benefit. To model this,
instead of SPD, we consider the sum of “long” shortest
paths as an optimization metric. We show a probabilistic ap-
proximation of 1/k based on VC-dimension theory [19] and
random sampling. We exploit a relationship between the set
of shortest paths in a network and their VC-dimension to
prove the stated approximation.

Let (U,R) be a set system, where U is a finite set and R
is a collection of subsets of U . A set W is shatterable in R if
and only if for any subset W ′ of W , there exists Ri ∈ R such
that W ∩ Ri = W ′. The VC-dimension of the set system is
defined as the largest integer d such that no subset of U of
size d + 1 can be shattered. In addition, given a parameter
ε ∈ [0, 1], a set U ′ ⊂ U is called an ε-net on (U,R) if for any
set Ri ∈ R, |Ri| ≥ ε|U |, U ′ ∩ Ri 6= ∅. Intuitively, an ε-net
is a set such that any sufficiently large subset (parametrized
by ε) in the set system has common elements with. Next, we
introduce some established results from VC theory that we
use in our analysis.

Lemma 2. ε-net [24]: For any set system with bounded VC-
dimension d, a randomly drawn sample of sizeO(dε log

d
ε+ 1

ε log
1
δ )

is an ε-net with probability δ.

We analyze the VC dimension of the shortest paths in
a graph. Given a graph G = (V,E), a shortest path can
be uniquely defined by a source vertex s and a destination
vertex t. we consider set system (V,R) where V is the set
of vertices and each element of R corresponds to the set of
vertices on a shortest path. We refer to such collection of sets
for graphs with unique shortest paths as USP systems [25].
This set is defined as follows:

Definition 2. USPS [25]: Given a graph G(V,E) and a collec-
tion R of shortest paths from G, we say R is a unique shortest
path system (USPS) if: any vertex pair u and v is contained in
two shortest paths ps1,t1 , ps2,t2 ∈ R, then u and v are linked by
the same path, i.e., pu,v = p′u,v , where pu,v(p′u,v) is the subpath
of ps1,t1(ps2,t2).

Next, we introduce two important lemmas:

Lemma 3. Dimension [26], [27]: For a graph G = (V,E), the
set system (V,R), where R is a unique shortest path system, has
a VC-dimension of 2.

Lemma 4. Existence of USPS [25]: There exists a unique
shortest path system for every graph.

We next show an approximation for “long” paths. First
we define “long” paths as the following:

Definition 3. Long path: A long path (shortest path) is defined
as the path that has a delay of εn or higher, where |V | = n and
0 < ε < 1.

Our optimization objective for “long” paths is
SPDε(G) = Σ(s,t)∈V×V,d(s,t)≥εnd(s, t). Let Rεopt(k) repre-
sent the reduction in SPDε by the optimal TS of size k
and Rεrand(kb), the reduction due to kb randomly chosen
vertices. The relationship between k, b and ε is captured

in the following theorem. The intuitive sketch of the proof
is the following: if the set system (V,R) has bounded
(constant) VC-dimension and the shortest paths are long
enough (insideR) then the size of the ε-net (the set of nodes)
reside on those paths are bounded by Lemma 2.

Theorem 3. Given a confidence parameter δ,
Rεopt(k)

Rεrand(kb) ≤ k

with probability δ, where kb = ( 2
ε log

2
ε + 1

ε log
1
δ ).

Proof. We develop an upper bound for Rεopt(k). In the best
case scenario, all k nodes of the TS are present in a set S
of all different shortest paths. So, the maximum reduction is
k|S| (as every vertex has a delay of 1). From Lemma 3 and
4, the USPS of a graph always exists and its VC-dimension
is 2. A random sample of b′( 2

ε log
2
ε + 1

ε log
1
δ ) vertices will be

an ε-net with probability δ by Lemma 2 (b′ is the constant in
the asymptotic bound in Lemma 2 and 1/b′ = b). In other
words, at least one vertex from every shortest path (of length
≥ εn) of the USPS will be included in the sample. If these
vertices are selected as a target set, the resulting reduction
will be |S∗|, where S∗ is the set of shortest paths of length
≥ εn in USPS. It is clear that |S∗| ≥ |S|. So,

Rεopt(k)

Rεrand(kb) =
k|S|
|S∗| ≤ k.

The theorem shows that the problem of minimizing the
delay of long paths under the uniform model has an approx-
imation of 1/k. As the bound on path length εn increases,
we need a smaller number of samples to “cover” every path.
Through experiments, we compare our proposed algorithm
PCS (Algorithm 3) against the theoretical upper bound on
the restricted metric involving only long paths. Table 4
summarizes the hardness results.

Problem Model NP-hard? APX-hard?
DMP Uniform X X
DMP General X X

DMP (Long paths) Uniform X ?
DMP (on Tree) General × ×

TABLE 4: Summary of hardness results.

In summary, we have established that it is infeasible to
get a constant factor approximation for the general DMP
beyond a constant (Thm. 2) and that approximations exist
for only restricted variants (Thm. 3) and special graph
structures (Lemma 5, proved in Section 3). Due to the in-
aproximability result and inspired by solutions in restricted
scenarios, we next focus on a practical greedy heuristic to
solve DMP and sampling-based variants that scale to large
problem instances.

3 ALGORITHMS

We present a greedy approach for DMP that selects the
vertex that minimizes the SPD in each iteration. Such an
approach is optimal for k = 1. It also produces optimal
results for networks with simple structures (Lemma 5) and
works well in practice for general instances. It is, how-
ever, expensive as it requires re-computation of all shortest
paths at every iteration. To make the approach scalable,
we employ sampling techniques and introduce probabilistic
approximations for every single step of Greedy for different
delay models.
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Algorithm 1: Greedy (GR)
Require: Network G = (V,E, L), Vertex delays l(v), Budget k
Ensure: A subset of k nodes, T
1: Initialize Matrix A with 0 and T as ∅
2: Compute all pair shortest paths
3: Store d(s, t) in Matrix position As,t
4: while |T | ≤ k do
5: for v′ ∈ V do
6: Compute RS(v′|T ) when l(v′) > 0
7: end for
8: v ← maxv′∈V {RS(v′|T )} and then set l(v) as 0
9: Update d(s, t) for s, t ∈ V as l(v) becomes 0

10: T ← T ∪ {v}
11: end while
12: Return T

3.1 Greedy Construction of the Target Set

While finding the optimal TS is NP-hard, in the case of
only one target vertex, an exact solution can be obtained
by computing the reduction of all individual nodes in poly-
nomial time. Therefore, a greedy algorithm, which selects a
vertex that optimally reduces SPD at each step, is a natural
approach to solve DMP. Before presenting the algorithm,
we introduce some additional notation. We define the delay
Reduction (RS) by a target set S as:

RS(S) = Σs,t∈V d(s, t)− Σs,t∈V d(s, t|S).

We further define RS by a vertex v, given that a subset S
has already been included in TS (assuming v /∈ S) as:

RS(v|S) = Σs,t∈V d(s, t|S)− Σs,t∈V d(s, t|S ∪ {v}).

The reduction of adding vertex v to a set S in TS can
be expressed as RS(S ∪ {v}) = RS(v|S) +RS(S). The RS
of a vertex depends on: (i) its delay and (ii) the number of
unique shortest paths passing through it after removing its
delay. Maximizing RS(v|S) takes both these properties into
account. Next, we present an algorithm which iteratively
selects the vertex of maximum reduction RS(v|S).

GR (Alg. 1) is a greedy TS selection strategy. It takes a
network G (|V | = n and |E| = m) and a budget k as input.
First it pre-computes all pairs of shortest paths and stores
them in an n× n matrix A (steps 2-3). Then it computes the
TS of k vertices in k iterations. In each iteration, it selects
the vertex with maximum RS conditioned on the current TS
(step 5-8). When probing each vertex, the algorithm assumes
its delay as 0, updates the stored distances accordingly and
estimates the reduction of the vertex. It chooses the vertex of
maximum RS, makes its delay permanently 0, and adds it
to the TS. GR also updates the stored shortest path distances
accordingly.
Example: We provide a running example of GR in Fig. 2b.
The first selected vertex is either c or d as RS(c) = RS(d) =
19 and the RS of any other vertex is 5. Assuming that
GR chooses c at the first step, the next best vertex is d as
RS(d|{c}) = 19. RS(v|{c}), when v is any other vertex,
remains 5. In the example, GR produces the optimal TS as
the network structure is a tree. GR is optimal for certain
families of networks with simple structure. The following
lemma outlines such families.

Lemma 5. Greedy (Alg. 1) produces an optimal TS in restricted
structures such as trees, cliques and complete bipartite graphs
under the general model.

Shortest paths between any pair of nodes in trees are unique
and, hence, they do not change after upgrading the delay
of any vertex. Intuitively, this fact about trees helps the
greedy algorithm (Algorithm 1) to produce an optimal TS
of size k. In a clique, since there is an edge between any pair
of vertices, selecting k vertices in descending delay order
produces an optimal result and this is exactly the selection of
GR. In a complete bipartite graph, if the delay of one vertex
is updated then all vertices from the opposite partition will
use this vertex to reach other vertices in their own partition,
hence GR will again produce an optimal solution.
Complexity: GR runs in time O(kn3) which is dominated
by the computation of shortest paths in steps 2, 6 and 9.
Finding the next “best” vertex by evaluating the reduction
of all possible vertices requires O(n3) time, where n is the
number of vertices. Moreover, updating the distances after a
vertex is included in TS takes O(n2). The space complexity
of computing all pairs shortest paths is O(n2). The high
complexity of GR introduces a scalability challenge, render-
ing the algorithm infeasible for large real-world networks.
Hence, we develop sampling-based versions of GR for large
graphs and provide approximation guarantees w.r.t. every
step of GR.

3.2 General Model: Approximate Target Set

The main drawback of GR is that it is not scalable. We
address its computational and storage bottlenecks using a
sampling scheme. The main idea behind our approach is as
follows: instead of computing and optimizing the sum of
distances between all pairs of vertices, we can estimate it
based on a small number of sampled vertex pairs.

In what follows, we bound the difference in quality of
our sampling solution GS (presented in Alg. 2) and Greedy
(Alg. 1). In this case, the absolute value of the reduction
RS is not a suitable metric as the initial sum of shortest
path distances (SPD) varies across input graphs. Hence, we
choose Relative Reduction (RR) as a quality metric where we
normalize RS by the initial SPD. We define the measure RR
of a set S as RR(S) = RS(S)

SPD . The RR of a vertex v given
a set S comprising the current TS is defined in a similar
manner, RR(v|S) = RS(v|S)

SPD .
As part of GS, we sample uniformly with replacement

a set of ordered vertex pairs P of size p (|P | = p) from
the set of all vertex pairs U = {(s, t)|s ∈ V, t ∈ V, s 6=
t}, |U | = n(n − 1). The samples can be viewed as random
variables associated with the selection of a pair of vertices
and the distance between a sampled pair is the value of the
random variable. When uniform random sampling is used,
each pair is chosen with probability 1

n(n−1) and the choice of
one sample does not affect that of any other sample. Thus,
the samples are independent and identically distributed
random variables.

We first show that the estimate of SPD based on samples
is unbiased. Namely, for any target set of nodes S, the
average of the sum of distances between pairs in P is an
unbiased estimate of that between all pairs of vertices, the
latter being defined as µ =

Σs,t∈V d(s,t|S)
n(n−1) . The vertex whose

inclusion in TS optimizes this estimate is chosen in each step
of GS.
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Lemma 6. Given a sample of node pairs P, |P | = p, the expected
average distance among the sampled pairs is an unbiased estimate

of the average of all-pair distances (µ): E[ 1
p

p∑
i=1

Xi] = µ where

Xi represents the distance between the i-th pair of vertices in the
sample.

Proof. The random variable, Xi is the the distance between
the i-th pair of vertices in the sample. The probability of a
pair in the selection is 1

n(n−1) . E[Xi] = 1
n(n−1)Σs,t∈V d(s, t).

We sample pairs independently with replacement. So, the

variables, Xi’s are i.i.d. Now, E[ 1
p

p∑
i=1

Xi] = 1
p

p∑
i=1

E[Xi] =

1
p ·

p
n(n−1) · Σs,t∈V d(s, t) = µ.

We employ Hoeffding’s inequality [28] to bound the
error produced by our sampling method in a single greedy
step. Hoeffiding’s inequality provides a sample-size depen-
dent bound for the difference between the estimated mean
(based on samples) and the actual mean of a population. The
requirement for the applicability of Hoeffiding’s inequality
is that the summed variables are chosen independently from
the same distribution, which is the case in our setting.
Similar independent node pair sampling analysis using
Hoeffding’s inequality has been previously employed by
Yoshida et al. [29] to estimate the group betweenness of
vertices, whereas we estimate the reduction in the sum
of shortest paths upon node upgrades. In what follows,
we demonstrate that the estimate has low error with high
probability, thus requiring only a small number of samples.
Furthermore, we show the same quality guarantee with
even smaller number of samples in small-world networks.

Theorem 4. Given a target set S and a sample P of size p, if vg
and va are the next vertices chosen by GR and GS respectively,
the difference in delay reduction due to these choices is bounded
as follows:

Pr[|RR(vg|S)−RR(va|S)| < ε] > 1− 1

n2
,

where p is O( c
2logn
ε2 ), c = diam

lmin
, diam and lmin are the diameter

and minimum delay respectively.

Proof. Let Mg = Σs,t∈V d(s, t|S ∪ {vg}) and Ma =
Σs,t∈V d(s, t|S ∪ {va}). Let also µg and µa denote the cor-
responding mean distances and Y g and Y a be the corre-
sponding expected means computed using the samples.

Since the samples provide an unbiased estimate
(Lemma 6) and are i.i.d., we can use Hoeffding’s inequal-
ity [28] to bound the error of the mean estimates:

Pr[|Y g − µg| ≥ β] ≤ δ

where δ = 2 exp(− 2p2β2

Λ ), Xi represents the distance be-
tween the i−th pair of vertices in the sample, ai ≤ Xi ≤ bi,

and Λ =
p∑
i=1

(bi − ai)2. Similarly, Pr[|Y a − µa| ≥ β] ≤ δ.
Applying union bound, Pr[(|Y g − µg| ≥

β) ∪ (|Y a − µa| ≥ β)] ≤ 2δ. By construction, µg ≥ µa as
GR selects the best next vertex at each step. On the other
hand, since GS selects va, it must be that Y a ≥ Y g . As,
the sampled best node is probabilistic, we need to apply
union bound over n possible nodes. As a consequence,
we get Pr[|µg − µa| ≥ 2β] ≤ 2nδ, or alternatively

Algorithm 2: Greedy with Sampling (GS)
Require: Network G = (V,E, L), Approximation error ε, Sampling factor c,

Budget k
Ensure: A subset of k nodes, Target Set T
1: Choose p = O(clogn/ε2) pairs of vertices in P
2: T ← ∅
3: while |T | ≤ k do
4: for (s, t) ∈ P do
5: Compute d(s, t′|T ) and s.target[t′]← d(s, t′|T ) ∀t′ ∈ V
6: Compute d(s′, t|T ) and t.source[s′]← d(s′, t|T ) ∀s′ ∈ V
7: end for
8: for v′ ∈ V do
9: if l(v′) > 0 then

10: Rv′ ← Σ(s,t)∈P d(s, t|T )− Σ(s,t)∈P d(s, t|T ∪ {v′})
11: end if
12: end for
13: v ← maxv′∈V {Rv′}
14: l(v)← 0 and T ← T ∪ {v}
15: end while
16: Return T

Pr[|µg − µa| < 2β] > 1− 2nδ.

Now, Pr[|RR(vg|S)−RR(va|S)| < ε]
= Pr[|Ma −Mg| < ε.SPD]

= Pr[|µa − µg| < ε.SPD
n(n−1) ] > 1− 4n exp(− 2p2( ε.SPD

2n(n−1) )2

Λ )

But, 1−4n exp(− 2p2( ε.SPD
2n(n−1) )2

Λ )> 1−4n exp(−p(ε.lmin)2

2diam2 ),
since SPD > n(n − 1)lmin and (bi − ai) < diam and
as a consequence, Pr[|RR(vg|S) − RR(va|S)| < ε] >

1− 4n exp(−p(ε.lmin)2

2diam2 ).

Thus, by choosing p = 2diam2log(4n3)
(ε.lmin)2 , we have

Pr[|RR(vg|S)−RR(va|S)| < ε] > 1− 1
n2

Note that, in the theorem, we assume lmin > 0 without
loss of generality. If lmin = 0, one can delete any node of
zero delay, add all possible edges among its neighbours and
consider the resulting network as an input. For small-world
networks (where the diameter is ≤ lmaxlogn), a property
exhibited in many domains, we show that the number of
samples needed to obtain the same quality is much smaller.

Corollary 5. Given a small-world network in which
diam ≤ lmaxlogn, the error of GS using p = O( log

3n
ε2 )

samples can be bounded as:

Pr[|RR(vg|S)−RR(va|S)| < ε] > 1− 1

n2

Proof. Let the network have a small-world property [30],
diam ≤ lmaxlogn, where lmax is the maximum delay. Now
c in above theorem can be replaced by lmaxlogn

lmin
, where lmin

is the minimum delay. lmaxlmin
is assumed to be constant.

GS (Alg. 2) takes as input a network G, a target approx-
imation error ε, a sampling factor c and a budget k. The
algorithm outputs a target set of vertices constructed based
on optimizing the sum of the distances between each of
the sampled pair paths. The approximation error, ε, defines
the difference between the approximate and the optimal
reduction at each step. The number of samples p depends on
the number of vertices n, the error ε, and the sampling factor
c. In theory c should be chosen as shown in the theorem
based on the input graph G. But in practice, we use a small
constant c, requiring small number of samples (see Sec. 4).
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The algorithm first samples pairs from the population
of all pairs (step 1). Note that, although we present the
algorithm with sampling pairs once, sampling new p pairs
in each iteration does not change the quality bounds or
running time of the algorithm. The algorithm runs for k
iterations. It computes the sum of distances between each
of the sampled pairs and selects the best vertex which
reduces this sum the most. To achieve this, in each iteration,
we computes the desired shortest path distances and store
them (step 5-6 ). Next we select the vertex with maximum
reduction in the sum of distances of the sampled pairs
(step 8-12). The selection is conditioned on already selected
vertices in TS.
Complexity: The running time of GS is dominated by the
computation of shortest paths. Running Dijkstra’s algorithm
for each sampled pair takes O(m + nlogn). The algorithm
has k iterations. This leads to the time complexity of
O(kp(m+nlogn)). We need to store only the distances from
the end vertices of the pair to all other vertices. This leads
to a space complexity of O(pn).

3.3 Uniform Model: Approximate Target Set
In some applications, instances of our design problem may
feature uniform (equal) or close-to-uniform initial delays.
For example, many routing devices in a computer network
might have similar hardware configuration and hence fea-
ture comparable delays. Similarly, intersections with the
same number of lanes within a road network allow for
similar rate of cars to propagate during congestion periods.
Such homogeneous instances offer more structure to the
design problem and allow for a better (faster and higher-
quality) sampling scheme than our general-case algorithm
GS. Hence, we develop and analyze a superior sampling
based-method, called PCS (Path Count with Sampling),
targeted for the uniform model.

We relate the delay reduction due to a vertex to the
number of shortest paths passing through it. Let ζv(S) (
or ζv , we are omitting S for simplicity) denote the number
of shortest paths passing through a vertex v assuming that
S is the target set.

Theorem 6. In the uniform model, for a given set S and v /∈ S,
RS(v|S) = ζv + (n− 1).

Proof. There are three different cases to consider based on
the kind of shortest paths. First, for shortest paths where v
is start vertex, updating its delay results in a reduction of
n− 1. Second, for shortest paths that go through v (but v is
not the start vertex), the reduction is ζv . Finally, for shortest
paths where s is not on the path, the change in its delay does
not result in any reduction (due to equal delays). Therefore,
RS(v|S) = ζv + (n− 1).

With the above result, a greedy algorithm only needs to
know the values of ζ for each vertex. The main bottleneck
of computing ζ involves shortest path computation between
all pairs of vertices. We address this complexity by a dif-
ferent sampling scheme. We estimate ζ for a vertex based
on the shortest paths among p pairs of vertices sampled
independently with replacement. Let Xv be a random vari-
able denoting the number of times v belongs to SPs,t for
all sampled pairs (s, t), where SPs,t (s, t /∈ SPs,t) denotes

the set of vertices on the shortest path(s) between s and t.
The expected value of the random variable is computed as
follows:

Lemma 7. For any vertex v, E[Xv] = p
n(n−1)ζ

v.

The lemma holds due to the additive property of expec-
tation and the fact that the pairs are sampled independently.
Next, we show that the difference in quality of GR and PCS
is small with high probability in a single greedy step.

Theorem 7. Given a sample P, |P | = p = O( lognε2 ), if vg and
va are the vertices chosen by GR and PCS respectively, then

Pr[|RR(vg|S)−RR(va|S)| < ε] > 1− 1

n2
.

Proof. If X1, X2, ..., Xp are independent random variables

in [0, 1] and X̄ = 1
p

p∑
i=1

Xi, then from Hoeffding’s inequal-

ity [28]: Pr[|X̄ − E[X̄]| ≥ β] ≤ 2 exp(−2β2p).
Using Lemma 7 and Hoeffding’s inequality, Pr[| ζ

vg

N −
1
pX

vg | ≥ β] ≤ 2 exp(−2β2p), and similarly Pr[| ζ
va

N −
1
pX

va | ≥ β] ≤ 2 exp(−2β2p). The optimal vertex chosen
by PCS is va and hence Xva ≥ Xvg . Since Xva ≥ Xvg , and
ζvg

N ≥ ζva

N (by construction), we apply the same logic of
union bound as in Theorem 4 to achieve Pr[| ζ

vg

N −
ζva

N | <
2β] > 1− 4n exp(−2β2p).

Now, we use this inequality to derive the following:
Pr[|RR(vg|S)−RR(va|S)| < ε]

= Pr[|RS(vg|S)−RS(va|S)| < ε.SPD]

= Pr[|ζvg − ζva | < ε.SPD] (from Theorem 6)

= Pr[| ζ
vg

N −
ζva

N | <
ε.SPD
N ]

> 1− 4n exp(−2p( ε.SPD2N )2)

> 1− 4n exp(−pε
2

2 ), Since SPD > N .

If we choose p = 2log(4n3)
ε2 , then

Pr[|RR(vg|S)−RR(va|S)| < ε] > 1− 1
n2 .

Theorem 7 shows that the error of PCS w.r.t. GR is
bounded by ε with probability 1 − 1

n2 at a single step.
The number of samples needed by PCS is O( log(n)

ε ); this
is a factor of O(log2n) less than the number of samples
needed in GS for small-world networks and a factor of
O(diam

2

l2min
) less in general networks. Table 5 summarizes the

number of samples varying different structures and delay
distributions.

Model/Algo. Sample Running Time
Uniform/PCS p = O( log(n)

ε
) p(m+ n)

Small-world/GS p = O( log
3(n)
ε

) p(m+ nlog(n))

General/GS p = O( diam
2

l2min
× log3(n)

ε
) p(m+ nlog(n))

TABLE 5: Samples and running times (at a single step) vary-
ing different delay distribution and structures. The error is
within ε with probability (1− 1

n2 ).

Algorithm 3 (PCS) computes TS based on estimates of
number of shortest paths through each vertex. The approx-
imation error ε bounds the difference between reduction
by PCS and Greedy (GR) in each iteration. In each of the
k iterations, PCS first samples p pairs of nodes from the
population of all pairs (the proven approximation still holds
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Fig. 4: Uniform model: (a-b) Execution time and relative reduction of Greedy (GR) and Path Counting (PCS); General model: (c-d)
Greedy (GR) and sampling-based Greedy (GS) for Traffic.

Algorithm 3: Path Count with Sampling (PCS)
Require: G = (V,E, L), Approximation error ε, Budget k
Ensure: A subset TS of k nodes, T
1: while |T | ≤ k do
2: Choose p = O(logn/ε2) pairs of vertices in P
3: for (s, t) ∈ P do
4: if l(s) = 1 and l(t) = 1 then
5: Perform BFS from s to t and add vertices to SPs,t
6: end if
7: if (l(s) = 1 and l(t) = 0) or (l(s) = 0 and l(t) = 1) then
8: If (l(s) = 0 and l(t) = 1) then swap s and t
9: Perform BFS from s to {u|u ∈ t.gateway}

10: Add vertices of SPs,u to SPs,t;
u ∈ {u′|d(s, u′) ≤ d(s, u1) ∀u1 ∈ t.gateway}

11: end if
12: if l(s) = 0 and l(t) = 0 then
13: Perform BFS from u ∈ s.gateway to u′ ∈ t.gateway
14: Add v1, v2 and vertices of SPv1,v2 to SPs,t;

(v1, v2) ∈ {(u, u′)|d(u, u′) ≤ d(u1, u2), ∀u, u1 ∈
s.gateway, ∀u′, u2 ∈ t.gateway}

15: end if
16: ζv′ ← ζv′ + 1 if v′ ∈ SPs,t
17: end for
18: v ← maxv′∈V {ζv′}
19: l(v)← 0 and T ← T ∪ {v}
20: Edit G: Delete vertex v and add edges (if absent) between

its neighbors
21: Update the gateway list for each u ∈ T if necessary
22: end while
23: Return T

when the samples are obtained before the iteration starts as
in Algorithm 2). It computes the shortest distances between
the vertices of each pair in the sample and thus finds an
approximate measure of number of shortest paths through
each vertex. If both the vertices of a pair have delay 1,
they both are present in edited graph (step 20). The edited
graph is obtained by deleting the vertex with delay 0 and
by adding all the edges between its neighbours. Computing
BFS explores the vertices on all possible shortest paths. If
one of them has delay 0, we compute BFS from the other
vertex to its gateway vertex (For each such vertex v added
to TS, we maintain a list of vertices, called gateway, where
v.gateway = {u | d(v, u) = 0, l(u) = 1}). If both of them
have delay 0, we compute BFS between each of the gateway
vertices of them. We choose the pair(s) of minimum dis-
tance. The shortest paths between them explore the desired
vertices (with delay 1). The vertex with the maximum ζ is
chosen in each iteration. Next we explain that the overall
complexity is O(kp(m+ n)).

For steps 5, 9, 13, PCS performs BFS. The probability of
picking vertices with delay 0 is x2

n2 , where x is number of
vertices in the current TS. So, the expected time complexity
for one of these steps is p((1 − x2

n2 )(m + n) + g x
2

n2 (m +

n)) = p(m + n)(1 + (g − 1) x
2

n2 ) where g ≤ xdm is the

maximum size of gateway list. dm is maximum degree
among the degree of the vertices in TS. Step 20 can take
O(d′2m), where d′m is maximum degree of vertex among
the vertex and its neighbors. Step 21 takes O(x2d2

m) as it
accumulates vertices from gateway of the neighbors. So, the
running time for one step when the TS has x vertices is
O(p(m+n)(1 +

x3d2m
n2 ) + d′2m + x2d2

m). As x(x ≤ k) is small,
and the running times of step 20 and 21 are not tight, the
running time is dominated by p(m+n). So, the overall time
complexity is O(kp(m+ n)).

4 EXPERIMENTAL RESULTS

We evaluate the quality and scalability of our algorithms
in both synthetic and real-world networks. We conduct all
experiments on 3.30GHz Intel cores with 30 GB RAM. All
algorithms are implemented in Java.

4.1 Datasets
The real-world datasets for evaluation are listed in Table 6.
The air transportation (http://www.rita.dot.gov) data consist
of airline flight networks with delays at airports set accord-
ing to historical flight delays due to circumstances within
the airline’s control (e.g. maintenance or crew problems, air-
craft cleaning, baggage loading, fueling, etc.). We consider
average and total delay of flights originating from an airport
in the period 01/13-09/15. Our road Traffic data is from the
highway network of Los Angeles, CA [31], where the delay
at an intersection is defined as the scaled inverse of the
observed speed at a given point in time (1500 ∗ 1/speed).
According to this definition the delay values range between
15 and 80 (similar to that of the original speeds). The Twitter
dataset is a social network in which edges correspond to
follower relationships among users. We disregard the direc-
tion of edges for our analysis. Node delays in this network
represent the average inter-arrival time between posts on a
given topic. We experiment with different topics described
in [32]. The vertices in the DBLP network are authors and
the edges represent co-authorship on at least one paper. For
DBLP, we assign delays randomly, with values uniformly
distributed in multiples of ten between 10 to 100. Our goal
is to evaluate the scalability of our algorithms on a large
real-world network structure.

4.2 Quality of sampling compared to Greedy
We report the number of samples in PCS and GS as c ∗ logn,
where c is related to the expected error ε in Thms. 4 and 7.
Unless stated otherwise, we use c = 10.

http://www.rita.dot.gov
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name value |V | |E|
Jetblue (JB) carrier delay 63 172

Southwest (SA) carrier delay 89 716
American (AA) carrier delay 100 363

Delta (DA) carrier delay 160 553
Traffic inverse speed 2K 6K

Twitter-Celeb posting delay 28K 240K
Twitter-Politics posting delay 100K 7.4M
Twitter-Science posting delay 100K 3.3M

DBLP random 1.1M 5M

TABLE 6: Dataset description and statistics.
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Fig. 5: Comparison of baselines on Traffic: (a) PCS in the
Uniform Model; and (b) GS in the General Model.

First, we compare our sampling schemes GS and PCS
with Greedy (GR) in order to evaluate the effect of sampling
on quality, which we theoretically analyze in Theorems. 4,
7. To enable the comparison, we use small real datasets due
to the limited scalability of GR. The quality of the compared
algorithms is quantified as the Relative Reduction (RR) of
SPD, while efficiency—in terms of wall-clock time. We use
3.5logn samples for GS and PCS in these experiments.

In all experiments, our sampling schemes achieve similar
quality as that of Greedy (GR), while taking close to two
orders of magnitude less time. In the uniform model, the
difference in quality between our sampling scheme PCS and
GR does not exceed .05% in the traffic dataset (Figure 4b),
while PCS takes only 2% of the time taken by GR (Figure 4a).
This trend persists in the case of the general delay model
for which we employ our sampling-based Greedy (GS). We
compare GS and GR on multiple snapshots of the Traffic
dataset and report average completion times and quality in
Figures 4c,4d. GS is 200 times faster than GR and its solu-
tion’s RR is only 0.1% worse than that of GR Figures 4c,4d.

Quality RR(%) Time [sec.]
Airlines GR GS High-Delay GS GR

JB 68.3 68.2 63.9 0.1 0.22
SA 58.5 58.3 58.5 0.4 0.53
AA 55 54.3 5.45 0.06 0.9
DA 48.9 48.4 4.44 0.4 0.8

TABLE 7: Comparison on the airlines dataset. For budget
5, columns 2-4 show the RR for GR, GS, and High-Delay
respectively and columns 5-6 show running times.

In the airline data we assign node delay as the average
airline-induced delay of all historical flights originating
from an airport. Table 7 summarizes our results. GS matches
the quality of GR in a fraction of the computation time. For
AA, our solution selects important nodes which are cen-
tral and also have significant delays. The solution contains
hub airports like those in Dallas, Charlotte and Phoenix,
since improving these airports makes them more central in
the network and collectively improves the total end-to-end
delay by 55% 1. Surprisingly, considering only node de-
lay (baseline ”High-Delay”) has significant disadvantages.

Some non-central airports in the AA and DA networks
have significant average delays and hence disregarding the
network position results in a 10-fold worse quality of the
High-Delay baseline. All other baselines do not exceed the
quality of GS for varying budgets and airlines.

Algs. Selection Uniform General
Random 10 trials O(n) O(n)
Deg-Cen Degree O(nlogn) O(nlogn)
High-
Delay

Delay O(nlogn)) O(nlogn)

Path-Cen
[9]

Delay×#SPs O(n(m+n)) O(n(m+nlogn))

It-Path-
Cen [9]

Delay×#SPs
w. updates

O(kn(m+n)) O(kn(m+nlogn))

PCS Alg. 3 O(kc(m+n)logn)
GS Alg. 2 O(kc(m+nlogn)logn)
GR Alg. 1 O(kn3) O(kn3)

TABLE 8: Theoretical complexity of compared algorithms.

4.3 Comparison to baselines

Next we evaluate the performance of our algorithms in
comparison to alternatives. We consider several baseline
methods, listed in Tab. 8 along with their theoretical running
times and those of our algorithms. Some baselines select
TS vertices based on local properties: degree (Deg-Cen) or
delay (High-Delay); while others—based on the product
of global path centrality and delay (Path-Cen and It-Path-
Cen [9]). It-Path-Cen updates the number of shortest paths
through a vertex after each selection of a target vertex.

Fig. 5a presents the RR of competing techniques on the
Traffic network with uniform delays using 50log(n) samples
for PCS. The baseline algorithm It-Path-Cen for the setting
of uniform delays is equivalent to the exhaustive greedy GR
and this comparison is already available in Fig. 4. On this
relatively small network, PCS produces at least 6% better RR
than the best alternative Path-Cen. Note, that in this setting
simple alternatives such as Random and Deg-Cen, although
fast, have unacceptably low quality.

Next we associate the delays (general model) at road
intersections (nodes) measured at different times, and com-
pare with competing techniques. As the results on differ-
ent snapshots are similar, we show a representative figure
on quality (fig. 5b). Using 10log(n) samples, GS produces
higher RR than both Path-Cen and It-Path-Cen, with up to
1 and 2 orders of magnitude running time improvement
respectively (plots omitted due to space constraint). Unlike
It-path-Cen, GS does not target nodes only based on the
number of shortest paths through them, but estimates the
improvement of nodes given those already in the target set
and achieves a better quality.

In larger graphs computing the exact quality (reduction
of SPD) has high computational cost as it requires com-
puting all-pair shortest paths. Hence, in order to evalu-
ate the competing techniques, we estimate RR based on
a representative sample of pairwise shortest path lengths.
We randomly sample 1000 pairs 10 times and average the
quality results. We evaluate the competing techniques on
DBLP and the Twitter datasets.

First we evaluate the running time in comparison to the
best-quality competing techniques in Tab. 9. As expected
based on their theoretical complexity, Path-Cen and It-Path-
Cen [9] do not scale well for large datasets. Our algorithms
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Data PCS GS Path-Cen It-Path-Cen
DBLP-100K (unif.) 2 m − 4.5 h DNF
Twitter-50K (gen.) − 36 m DNF DNF

TABLE 9: Running time comparison of our algorithms and
those proposed in [9] (budget = 5).

Data Algo. #Sample Time(min)
Twitter-Celeb (unif.) PCS 148 2.5

Twitter-Politics (unif.) PCS 166 3.5
DBLP (unif.) PCS 200 9

Twitter-Celeb (gen.) GS(4T) 148 1
Twitter-Politics (gen.) GS(4T) 64 19
Twitter-Science (gen.) GS(4T) 64 12

DBLP (gen.) GS(4T) 40 62

TABLE 10: Running times of PCS and GS(4T) with k = 5.

complete in at most 36 min, while the alternatives take close
to or more than 5h on the same input (DNF stands for “does
not finish in 5 hours”). Twitter-50K in this experiment is
a subgraph of the Twitter-Politics network involving 50K
nodes, while in the uniform-delay setting we evaluate PCS
on a subgraph of DBLP of 100K nodes (DBLP-100K).

Since the methods by Dilkina et al. [9] do not scale
for large graphs we compare the quality of our sampling
schemes with that of Deg-Cen and High-Delay on the full
large-graph datasets (High-Delay is replaced by Random in
the uniform model experiments as delays in this setting
are equal). To enable even higher scalability for GS, we
use multi-threading with 4 threads to compute the shortest
paths (steps 4− 7 in Alg. 2). For the rest of the experiments,
we use GS(4T).

Tab. 10 presents the running times of our algorithms
in both the uniform and general delay settings together
with the number of sampled pairs of each run over the full
networks. The number of samples clog(n) depends on both
the size of the network and the constant c (which we set to
values not exceeding 20). In the uniform scenario (datasets
denoted unif.), we assume delay 1 associated with nodes.
PCS completes in the order of minutes in uniform-delay
networks and GS within 62 mins. on the DBLP dataset.

Figs. 6a-6d show the quality of GS in Twitter and DBLP.
In all cases GS performs better than alternatives for in-
creasing budget, since the alternatives fail to capture the
dependency between upgraded nodes and are limited to
local node properties. We get higher quality in Twitter-
Celeb as we use relatively higher number of samples. The
RR in DBLP is relatively low due to the large network
size and disproportionately small budgets (5 and 10 out of
1.1M nodes). Fig. 6e presents an analogous comparison for
uniform delay. Our technique PCS outperforms alternative

in Twitter (budget k = 5). In DBLP, Deg-Cen has similar
quality as PCS since authors of high degree tend to be
central.

The only parameter in our techniques is the number of
samples which provides a natural trade-off between run-
ning time and quality. Our analysis shows that we usually
need only small fraction of sampled pairs to match the
performance in greedy in both real-world and synthetic
data. Details of this analysis are available in the Appendix.

4.4 Experiments related to Theorem 3

Comparison of PCS and Upper Bound from Theorem
3 on “Long” Paths: Theorem 3 compares the perfor-
mance of a random algorithm against the optimal algorithm
for the restricted metric of sum of “long” paths (length
≥ k′ = εn). Based on the theorem, k ∗Rεrand(kb) ≥ Rεopt(k).
We can, thus, compare PCS(k) (PCS with budget k) against
k ∗ Rεrand(kb) as a proxy for comparing against Rεopt(k).
Since the constant b is not known, we vary it to evaluate the
quality of PCS(k).

We experiment with two different settings for kb
(100, 200) in a 2, 000-vertex subgraph of the DBLP data.
We assume that the path length threshold and the budget
are the same (i.e., k′ = k) and vary over the range 3–
5. As in earlier plots, we compute relative reductions for
the methods. Since k.Rεrand(kb) is only an estimate, if this
quantity exceeds the original value of the metric, we set it
to the original value and its relative reduction to 100%. For
simplicity, we refer to this quantity as UB.

RR* denotes relative reduction in the sum of “long”
paths. Figs. 7a and 7b present UB and the relative reduction
(RR*) for PCS. RR* by PCS is within 50% of UB. (As kb is
unknown, PCS may in fact occasionally produce a higher
RR* than UB, Fig. 7a for k′ = 3). Increasing the length
threshold (k′) reduces the difference between UB and PCS.

Finally, we explore the reduction by PCS in the sum of
long versus short paths. Fig. 7c compares the reduction: RR
for the actual metric (sum of all paths) and RR* for the
restricted metric (sum of paths of length ≥ k′). There is a
higher chance for long paths to contain upgraded vertices.
As expected, the figure shows higher reduction when the
metric includes only longer paths.

4.5 Effect of parameters

The most important parameter for our sampling schemes
is the number of samples. In Figs. 7d and 7e we present
the variation in quality and performance of GS with the
increase of number of samples on the Twitter-Celeb data.
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The running time of GS grows linearly with the sample
constant c, while the quality increases and then saturates
confirming our main premise that not all SP need to be
observed to make a good-quality selection in our problem.

We also study the effect of different inputs on our algo-
rithms on synthetic and real networks and their scalability
with the number of samples and for increasing budget. The
delays in the general model are randomly distributed in
[500, 1000]. Fig. 8a shows the scalability of our methods for
increasing network size (Barabasi graphs, growth parameter
3). As expected, PCS scales better than GS (on networks with
0.1 million vertices PCS is 30 times faster), and both scale
significantly better than the non-sampling alternative GR.
This experimentally confirms the theoretical running times
of Alg. 1,2 and 3.

Figs. 8b and 8d present the running time for increasing
c and budget=10 for PCS and GS respectively. Note that
the number of samples used by our techniques is controlled
by c: #samples=c ∗ log(n). As expected, GS and PCS scale
linearly with c. The same behaviour persists for increasing
budget in Figs. 8c and 8e (c =15). These results also confirm
the expected theoretical running time behavior.

5 PREVIOUS WORK

There is a considerable amount of research in network de-
sign targeting various objectives and addressing problems
on augmenting the network structure as well as modifying
node and edge attributes. So, the whole set of problems
differ in upgrade models and objective functions. In this
section, we mainly focus on those problems which address
optimizing different metrics related to shortest paths.

Network design: Paik et al. [11] first introduced a set
of design problems in which vertex upgrades improve the
delays of adjacent edges. Later, Krumke et al. [12] gener-
alized this model assuming varying costs for vertex/edge
upgrades and proposed to minimize the cost of the mini-
mum spanning tree. Lin et al. [3] also proposed a delay min-
imization problem with weights associated with undirected
edges. The authors in [33] proposed a stochastic formulation
of minimizing shortest paths by adding edges. The above
formulations are different from ours as in our case delays
are associated with vertices.

The problems considered in Dilkina et al. [9] correspond
to a variation of DMP and are closer to our setting. Note that
they do not consider a candidate set Γ, which is important in
real-life scenarios as one might not have the opportunity to
upgrade all nodes. Moreover, we show in our comparative

evaluation that our methods are superior in both scalability
and quality (Section 4.3).

Structural network design: Delay minimization and
other global objectives (vertex eccentricity, diameter, all-
pairs shortest paths etc.) have been previously addressed
by edge addition [10], [34], [35], [36], [37]. Meyerson et al. [10]
designed approximation algorithms for single source and
all pair SP minimization. Demaine et al. [36] minimize a
network diameter and node eccentricity by adding shortcut
edges with a constant factor approximation algorithm. Prior
work also considers eccentricity minimization in a compos-
ite network where a social node connectivity is improved
by additional communication network edges [37]. All the
problems, however, are based on adding new edges i.e.,
structural modification, and hence are complementary to
our setting. In different applications, node-based and edge-
based schemes could be adopted individually or in unison.

Centrality: Other related problems involve efficient com-
putation of betweenness centrality. In [38], the authors
compute top k nodes based on betweenness centrality via
sampling. The group betweenness problem has been solved
in almost linear time by Yoshida et al. [29] by a high quality
probabilistic approximation algorithm.

6 CONCLUSIONS
In this paper, we studied and proposed solutions for the
network design problem of node delay minimization. The
problem has diverse applications in a variety of domains
including social, collaboration, transportation and commu-
nication networks. We proved that the problem is NP-hard
even for initial equal node delays. We also showed that the
problem with equal delays is even APX-hard and cannot
be approximated a factor greater than (1 − 1

e ). However,
approximation guarantees for a restricted formulation via
randomized schemes based on VC dimension theory was
obtained. We proposed and evaluated high-quality methods
for the problem based on sampling that scale to large
million-node instances and consistently outperform existing
alternatives. We evaluated our approaches on several real-
world graphs from different genres. We achieved up to
2 orders of magnitude speed-up compared to alternatives
from the literature on moderate size networks, and obtained
high-quality results in minutes on large datasets while com-
petitors from the literature require more than 4 hours.
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APPENDIX: MIP FORMULATION AND ANALYSIS

We formulate the DMP problem as a mixed integer program
(MIP), in order to obtain exact solutions in both the gen-
eral and uniform model. We use a multi-commodity flow
formulation (similar to [9]) to compute the shortest path
delay between a node pair p ∈ Ω. An undirected graph
G is transformed into a directed graph G′ as follows: a node
v is replaced by two nodes v− and v+ with two additional
parallel edges from v− to v+ with delays l(v) (original node
edge, ev) and 0 (upgraded node edge e′v) respectively. If
an edge (u, v) is present in the original graph, there are
two edges (u+, v−) and (v+, u−) with delays 0 in G′. The
variables used in the formulation are as follows: (1) xv : a
flag for whether node v is to be upgraded, (2) d(p): the
effective shortest path length delay between the nodes in
pair p, (3) budget: the total number of upgraded nodes, (4)
fpe: continuous variable indicating whether edge e is chosen
to be on the shortest path for the pair p, (5) fpv : the flow of
the commodity p on edge ev , (6) f ′pv : continuous variable
that indicates the flow of the commodity p on edge e′v .

In an integral solution, fpv and f ′pv denote whether the
original node and upgraded node respectively are chosen
to be on the shortest path between the pair p in an integral
solution. We use δ−(v−) and δ+(v+) to denote the set of
incoming and outgoing edges respectively. The full MIP
formulation is as follows:

min
∑
p∈Ω

d(p) (3)

s.t. fps + f ′
ps = 1, fpt + f ′

pt = 1 ∀p = (s, t) ∈ Ω (4)∑
e∈δ−(s−)

fpe = 0 ∀p = (s, t) ∈ Ω (5)∑
e∈δ+(s+)

fpe = fps + f ′
ps ∀p = (s, t) ∈ Ω (6)∑

e∈δ−(t−)

fpe = fpt + f ′
pt ∀p = (s, t) ∈ Ω (7)∑

e∈δ+(t+)

fpe = 0 ∀p = (s, t) ∈ Ω (8)

∑
e∈δ+(v+)

fpe = fpv + f ′
pv ∀p = (s, t) ∈ Ω,∀v 6= s, t ∈ V (9)

∑
e∈δ−(v−)

fpe = fpv + f ′
pv ∀p = (s, t) ∈ Ω,∀v 6= s, t ∈ V (10)

f ′
pv ≤ xv ∀p = (s, t) ∈ Ω, ∀v 6= s, t ∈ V (11)

fpv ≤ 1− xv ∀p = (s, t) ∈ Ω,∀v 6= s, t ∈ V (12)

d(p) =
∑
v∈V

l(v) · fpv ∀p = (s, t) ∈ Ω (13)

budget =
∑
v∈V

xv, budget ≤ k (14)

xv ∈ {0, 1} ∀v ∈ V (15)

fpe, fpv, f
′
pv ≥ 0 ∀p ∈ Ω, e ∈ E, v ∈ V (16)

The MIP formulation for DMP is shown in Eqs. (3− 16).
The constraints as Eqs. (4 − 10) are used to model the
shortest path delay of each terminal pair as multicommodity
flow. Constraints (4 − 8) enforce the nodes s and t to be
the source and sink respectively with one unit of flow in
each terminal pair (s, t). The next two constraints (9, 10)
ensure the flow conservation through the rest of the nodes.
Constraints (11 − 12) enforce that the upgraded node edge
e′v will carry the flow instead of the original node edge ev ,
when the node v is upgraded. Similarly, the original node
edge ev carries the flow when the node v is not upgraded.
Constraint (13) computes the total delay. Constraint (14)
computes the total budget and sets the maximum as k. Con-
straints 15 and 16 ensure that upgrade decision variables
and flow variables are binary and non-negative respectively.
Experimental results: We implement MIP using CPLEX and
validate on the traffic data (see Tbl. 6). In these experiments
we use 100 terminal pairs. We compare the full MIP runnig
time to that of our sampling techniques and to MIP 100 and
MIP 30m: MIP versions for which we restrict the computa-
tion in CPLEX to 100 times that of our algorithm and also 30
minutes respectively. The results in Figure 9 show that our
sampling algorithms (PCS and GS) obtain solutions much
closer to that of the optimal than time-restrictred MIP. We
find the similar trend in synthetic data too. Note restricted-
time MIP has significant quality gaps (up to 9%) compared
to the optimal solutions unlike our algorithms which are
persistently within 2% of the optimal. Our algorithms also
are much faster than the restricted MIP versions.

Uniform General
k PCS MIP MIP 100 GS MIP MIP 100
5 1.1 > 10000 110 1.1 > 20000 110
10 1.7 > 10000 170 1.9 > 20000 190
15 2.3 > 10000 230 3.0 > 20000 300

TABLE 11: Running times (in seconds) of the different version
of MIPs and our algorithms.
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Fig. 9: Comparison of MIPs on Traffic: (a) PCS in the Uniform
Model; and (b) GS in the General Model.
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