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Abstract

Graphs are widely employed models for structural de-
pendencies in complex systems such as social, infras-
tructure, and information networks. Graph datasets
are often massive, computationally challenging to mine,
and non-trivial to understand by humans. Hence, there
is a large body of literature on graph summarization
aiming to improve algorithmic efficiency, quality of an-
alytics tasks, and visualization. Most existing graph
summarization methods focus solely on the structure of
the graph and assume that node properties are static.
In this paper we focus on graphs with temporal mea-
surements on their nodes, which we call temporal graph
signals. Our goal is to learn a graph aggregation (sum-
mary) that best reflects both the structure and the tem-
poral node measurements.

We propose a signal-aware graph aggregation
framework called SAGA. The key idea is to group
well-connected nodes whose behavior exhibits consistent
temporal patterns. SAGA learns simultaneously how to
(i) aggregate the graph into supernode groups and (ii)
represent the groups’ collective temporal behavior suc-
cinctly via a sparse dictionary encoding. The obtained
aggregations offer insights into the functional organiza-
tion of the graph and the learned model enables im-
proved performance for state-of-the-art approaches for
downstream tasks like temporal graph signal decompo-
sition, forecasting and link prediction. We demonstrate,
in both synthetic and real-world data sets, that SAGA’s
learned aggregations improve (i) reconstruction quality
for temporal graph signals by up to 75%, (ii) link pre-
diction accuracy by up to 40% and (iii) the accuracy of
forecasting by up to 63% while also offering 50% scala-
bility improvements.

1 Introduction

Data from many domains can be modeled as time series
associated with nodes of a network, also called tem-
poral graph signals (TGS). Examples include temporal
readings from physical sensor networks [5, 1, 26], user
activity in social media [8], and gene expression over
protein interaction networks [3]. The underlying net-
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(a) Airport network (b) Aggregate network

Figure 1: (a): The world airport direct-flight network (data

from [26]), where each airport is associated with a time series of

outgoing flights over time (Sydney and Vancouver time series
plotted in red). (b): A summary aggregation in which airports

of temporally consistent behavior and connected by direct flights
are grouped into supernodes (denoted with shared color on the

map). The edges of the mined Trans-Pacific (red) supernode and

its learned summary time series is also shown.

works are often large (thousands to millions of nodes),
making data mining and machine learning tasks in the
original space challenging and impractical to interpret
or visualize. Graph summarization offers an appealing
solution by reducing the number of nodes to a small
fraction of supernodes. Such summarization for TGS,
however, needs to reflect both the temporal behavior
of nodes and the graph structure, which have not been
considered jointly to date.

The utility of graph aggregation as a summariza-
tion tool has been demonstrated for a variety of do-
mains and downstream tasks [18]. Such aggregations
offer a succinct high-level view of complex datasets by
revealing the high-level graph properties while abstract-
ing noisy or insignificant patterns. For example, Shen
et Al. [30] used an aggregation to visualize a large and
dense network, while Koutra and colleagues [15] utilized
a summary to discover interesting patterns in real-world
graphs such as edit wars in collaborative content cre-
ation. Existing graph aggregation approaches focus on
the graph structure and node labels, but do not take into
account temporal signals on the nodes. Graph signal
processing offers an appealing alternative by modeling
node values as a signal over the graph structure [27, 7].
Methods in this domain, however, focus on static (not
temporal) graph signals, and do not produce a summary
of the graph.

Consider as an example the global air-traffic net-
work from [26] with airports as nodes, direct flights
between them as edges, and a temporal signal reflect-
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ing the number of outgoing flights from an airport over
time. We visualize the network structure and show
the flight time series of only two airports, Vancouver
and Sydney, in Fig. 1(a). The challenge is to distill
the functional organization of this complex dataset cor-
responding to major geo-political transportation flows.
Fig. 1(b), presents a summary of the data produced
by our proposed method, in which airports grouped in
a supernode are marked with the same color. This
grouping reflects both their coordinated temporal be-
havior (i.e., coherent outgoing flights time series) and
their locality on the direct-flight network. Specifically,
we detect supernodes corresponding to Trans-Atlantic,
Trans-Pacific, and several other flows. We also show the
aggregate learned temporal trend for all nodes in the
Trans-pacific (red) supernode. Being able to automat-
ically produce such intepretable summaries of desired
spatial resolution for TGS datasets and employ them in
downstream tasks is what motivates our work.

Our goal in this paper is to summarize TGS by
aggregating nodes into groups of similar temporal be-
havior and close locality in the graph. To this end,
we propose signal-aware graph aggregation (SAGA), a
method to simultaneously learn an aggregation matrix
for both the temporal signal and the graph. Our solu-
tion combines these two aims into a single optimization
objective which encodes the aggregate node time series
of a supernode via a temporal dictionary while enforcing
smoothness of the grouping on the graph structure. To
further expand its applicability, we equip SAGA with
the ability to handle signals with partially observed val-
ues. We evaluate SAGA’s utility as a preprocessing
step for three temporal graph mining tasks including
(i) data-driven dictionary learning for succinct TGS re-
construction, (ii) link prediction and (iii) future value
forecasting. SAGA enables up to 75% reduction in rep-
resentation error for temporal signal decomposition, up
to 40% improvement in link prediction accuracy, and up
to 63% reduction in mean square error for future value
forecasting.

Our contributions in this paper are as follows:
• Novelty: SAGA is the first framework to tackle
aggregation of temporal signals on graphs.
• Applicability: SAGA’s aggregations are advanta-
geous in multiple downstream applications for both im-
proving the quality of results and reducing the compu-
tational runtime.
• Interpretability: SAGA summarizes a complex tem-
poral graph signal through a small graph of supernodes
and corresponding shared temporal trends capturing the
functional organization of the network and offering an
important analytics tool for practitioners.
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Figure 2: Temporal graph signal aggregation model via a
small example. An unknown aggregated graph G′ with

structured pilot time series X′ generate the observed graph and

temporal graph signal (G,X). Our goal is to learn (i) the
aggregation matrix A and (ii) the temporal structure of X′ as a

succinct dictionary encoding in U and a fixed dictionary Φ.

2 Problem formulation

The intuition behind our problem formulation is
sketched in Fig. 2. The input to our problem is an ob-
served graph G and a corresponding temporal graph sig-
nal (TGS) X (Observations panel in Fig. 2). We model
(G,X) as generated from an aggregate-level graph G′

with associated aggregate time series X ′ for each of its
supernodes. The aggregate graph G′ from the exam-
ple in Fig. 2 has three nodes and we assume that their
corresponding time series (rows of X ′) can be expressed
succinctly using a dictionary encoding. For example,
they might have pronounced periodicity or trend behav-
ior and by employing an appropriate fixed dictionary Φ
(e.g. DFT, Ramanujan or Spline) one can succinctly
encode them using a coding matrix of coefficients U .
The aggregate graph and time series give rise to the ob-
servations (G′, X ′) → (G,X), where each supernode in
G′ “generates” a set of well-connected nodes in the ob-
served graph (e.g., b generates a triangle (b1, b2, b3) in
Fig. 2). The time series of observed nodes follow a sim-
ilar trend/periodicity to the corresponding supernode
pilot time series. Our goal is to learn (i) an aggregation
matrix A that maps observed nodes to supernodes and
(ii) a sucinct representation of the temporal structure of
the supernode time series X ′ via dictionary encoding by
a matrix U and a fixed dictionary Φ. Next we formulate
the problem and introduce necessary notation.

We represent the observed undirected graph G
of n nodes by its weighted adjacency matrix H ∈
Rn×n whose non-zero entries represent the strength
of connections. The combinatorial graph Laplacian
matrix L is defined as L = F − H, where F is a
diagonal degree matrix with elements Fi,i =

∑
qHi,j .

A temporal graph signal (TGS) is a matrix X ∈ Rn×t,
whose n rows contain node time series of length t
time snapshots. Our goal is to learn an aggregate
graph G′ with k supernodes corresponding to disjoint
groups of the original nodes such that members of a
supernode exhibit shared temporal patterns and are of
close proximity in G. Note that k is a user-controlled
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desired summary size. We model the members of the i-
th supernode as a one-hot encoding vector ai ∈ Rn with
non-zero elements indicating participating nodes from
G. We stack the k supernode vectors into the columns
of an aggregation matrix A = [aT1 ,a

T
2 ...a

T
k ] ∈ Rn×k.

Shared aggregate network locality. Supernodes
give rise to groups of well-connected nodes in G. To pro-
mote high degree of connectivity among supernode con-
stituents one can seek to minimize a Laplacian quadratic
form aLaT , where a is any of the supernode one-hot
vectors. This quadratic form is widely adopted in graph
signal processing to promote signal smoothness over the
graph. Here we adopt it to promote “smoothness” or
good connectivity for our aggregation.
Shared aggregate temporal behavior. We assume
that nodes corresponding to a supernode have a shared
temporal behavior “coordinated” by the aggregate time
series of the supernode. In addition, we assume a simple
and intepretable temporal structure for the aggregate
time series inX ′, which we model via a sparse dictionary
encoding. Specifically, if X ′i is the time series of the i-th
supernode, we represent it as X ′i ≈ UiΦ, where Ui is
an encoding vector and Φ is a fixed dictionary matrix.
For example, the periodic time series associated with
supernode a in Fig. 2 can be expressed succinctly in
frequency domain using a DFT dictionary.

Finally, the observed graph temporal signal X can
be reconstructed via the aggregation matrix as follows:

(2.1) X ≈ AX ′ ≈ AUΦ,

where the non-zero elements in A’s columns “replicate”
and scale each aggregate time series to obtain the cor-
responding observations (e.g., the time series associated
with a1 and a2 are scaled versions of the periodic time
series of the supernode a in Fig. 2).
A non-negative orthonormal relaxation. Note
that learning binary one-hot supernode encodings in
A would require non-trivial combinatorial optimization.
Particularly, if X is an all-constant time series, learning
a smooth A over the Laplacian matrix is equivalent to
minimizing the ratio cut formulation of spectral clus-
tering which is an NP-hard problem [36]. Hence, we
relax the one-hot encoding by promoting an orthonor-
mal shape of A with non-negative elements. To avoid
overfitting to noise and to control for the sparsity of our
learned aggregation we also add L1 regularization for
both A and U . Finally, since many real-world temporal
graph signals may include missing values (due to cor-
rupted data, faulty sensors, etc. [13, 24]), we also add
a missing value mask Ω to ensure that our framework
only fits observed values. Our overall constraint objec-

tive function is as follows:

(2.2)

argmin
A,U

1/2 ‖Ω� (X −AUΦ)‖2F + λ0 ‖A‖1

+λ1 ‖U‖1 + λ2 tr(A
TLA)

s.t. ATA = I, A > 0,

where the four terms in the minimization model the ag-
gregated temporal fit, sparsity in the aggregation ma-
trix A, sparsity in the dictionary encodings of supernode
time series U and smoothness of the aggregation on the
Laplacian respectively. The regularization parameters
λi control the importance of sparsity and smoothness,
while the constraints ensure that A is non-negative and
orthonormal. If there are no missing values in the in-
put temporal graph signal X, one can simply omit the
missing value mask Ω in the formulation.

3 Optimization solution: SAGA

We employ ADMM [6] to optimize our objective func-
tion from Eq. 2.2. We introduce intermediate variables
D = X, Z = A and U = V which help ensure that
all subproblems have a closed-form solution, resulting
in the following objective:

(3.3)

argmin
A,U,V,Z,D

1/2 ‖D −AUΦ‖2F + λ0 ‖Z‖1 + λ1 ‖V ‖1

+λ2 tr(A
TLA) + 1/2 ‖Ω� (D −X)‖2F

s.t. U = V, Z = A,ATA = I, A > 0

The Lagrangian corresponding to Eq. 3.3 is:

L =
1

2
‖D −AUΦ‖2F + λ0 ‖Z‖1 + λ1 ‖V ‖1 + λ2 tr(A

TLA)+

1

2
‖Ω� (D −X)‖2F +

ρ1

2

∥∥∥∥V − U +
Γ1

ρ1

∥∥∥∥2

F

+
ρ0

2

∥∥∥∥A− Z − Γ0

ρ0

∥∥∥∥2

F

,

where ρ1 and ρ0 are penalty parameters and Γ1 and Γ0

are Lagrangian multipliers. We next derive solutions to
individual subproblems of participating variables.
Updates for A: We let UΦ = B to obtain A’s
optimization subproblem:

argmin
A

1

2
‖D −AB‖2F + λ2 tr(A

TLA) +
ρ0

2

∥∥∥∥A− Z +
Γ0

ρ0

∥∥∥∥2

F

Setting the gradient to zero we obtain:
−DBT +ABBT + λ2L

TA+ λ2LA+ ρ0A− ρ0Z + Γ0 = 0,

which due to L’s symmetry can be reorganized in the
form of the Sylvester equation:

(3.4)
2λ2L︸ ︷︷ ︸
Lh

A+A (ρ0I +BBT )︸ ︷︷ ︸
Rh

= DBT + ρ0Z − Γ0︸ ︷︷ ︸
C

Since both Lh and Rh are symmetric in the above we
have a fast solution based on their eigendecompositions:
Lh = QAdiag(dA)QTA and Rh = QBdiag(dB)QTB due
to [4]. Namely, the solution for A is as follows:
(3.5) A = QA[(QTACQB)� (dA + dTB)]QTB ,

where � denotes element-wise division. Since Lh is a
constant matrix, we can further speed-up our algorithm
by pre-computing its eigendecomposition. To satisfy
the constraints for A, we (i) set negative values in the
solution from Eq. 3.5 to 0 and (ii) ensure orthogonality
by utilizing a solution to orthogonal procrustes [35] by
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Algorithm 1 SAGA
Input: Input X, L, Ω, dictionary {Φ}, k, λ0, λ1, λ2

1: Initialize A = Z = 1, U = V = 1, QAdiag(dA)QTA = (2λ1L)

2: while not converged do

3: B = UΦ
4: C = DBT + ρ0Z − Γ0

5: QBdiag(dB)QTB = (ρ0I +BBT )

6: A = QA[(QTACQB)� (dA + dTB)]QTB
7: A = A ≥ 0

8: ΥΣΨT = svd(A)

9: A = ΥIΨT

10: U = (2ATDΦT + ρ1V − Γ1)(2ΦΦT + Iρ1)−1

11: Vij = sign (Hij)×max
(
|Hij | − λ1

ρ1
, 0
)

12: Zij = sign (Hij)×max
(
|Hij | − λ0

ρ0
, 0
)

13: D = (P + Ω�X)� (I + Ω).
14: Γi+1

0 = Γi0 + ρ0 (Z −A)

15: Γi+1
1 = Γi1 + ρ1 (V − U)

16: i← i+ 1
17: Convergence condition:

∣∣f i+1 − f i
∣∣ ≤ ε, where f i+1 and

f i are the objective values of Eq. 2.2 at iterations i+ 1 and i.
18: end while

applying SVD to the resulting A as follows:
(3.6) ΥΣΨT = A→ A = ΥIΨT ,

where I is the identity matrix.
Updates for U : We have the following optimization
problem for U :

(3.7) argmin
U

1

2
‖D −AUΦ

∥∥∥∥2

F

+
ρ1

2

∥∥∥∥U − V +
Γ1

ρ1

∥∥∥∥2

F

Setting its gradient w.r.t. U to 0, we obtain:
(3.8) (2ATDΦT + ρ1V − Γ1)(2ΦΦT + Iρ1)−1 = U

When Φ is orthonormal this simplifies further to:
(3.9) (2ATDΦT + ρ1V − Γ1)[(2 + ρ1)I]−1 = U

Update for D: By letting P = AUΦ, we have the
following optimization problem for D:

(3.10) argmin
D

1

2
‖D − P‖2F +

1

2
‖Ω� (D −X)‖2F

Setting its gradient to zero, we get:
(3.11) D = (P + Ω�X)� (I + Ω).

Updates for Z, V : The problems w.r.t. Z and V are:

(3.12)


argmin

Z
λ2 ‖Z‖1 + ρ0

2

∥∥∥Z −A+ Γ0
ρ0

∥∥∥2

F

argmin
V

λ1 ‖V ‖1 + ρ1
2

∥∥∥U − V + Γ1
ρ1

∥∥∥2

F

Closed-form solutions are available due to [17]:

(3.13)

Zij = sign
(
H

(2)
ij

)
×max

(∣∣∣H(2)
ij

∣∣∣− λ0
ρ0
, 0
)
,

Vij = sign
(
H

(1)
ij

)
×max

(∣∣∣H(1)
ij

∣∣∣− λ1
ρ1
, 0
)
,

where H(1) = U − Γ1

ρ1
and H(2) = A− Γ0

ρ0
.

Updates for Γi : The Lagrangian multipliers are
updated as follows:
(3.14) Γi+1

1 = Γi1 + ρ1(V − U) and Γi+1
0 = Γi0 + ρ0(Z −A)

The overall SAGA algorithm. We list all updates in
the overall optimization procedure in Alg. 1. We initial-
ize all variables and precompute the evd of 2λ1L in step
1 and repeat updates in steps 3-16 until convergence.
The three steps dominating the runtime of SAGA are

Dataset Nodes Edges t Resolution

Synthetic 150-50k 30k-1500 1000 NA

Air [26] 389 27073 124 6 hour

Bike [1] 142 3446 328 1 day

Road [5] 1923 5318 720 1 hour

Reality Mining [8] 94 795 8636 1 hour

Table 1: Summary of datasets used for evaluation.

(i) the eigenvalue decomposition in step 5 which is in
the worst case O(k3), (ii) the singular value decompo-
sition in step 8 with a worst case complexity O(nk2),
and (iii) the matrix inversion in step 10, which is ei-
ther O(p3) for non-orthogonal dictionaries Φ, where p is
the number of dictionary atoms, or O(p) for orthogonal
dictionaries due to the simplified version in Eq. 3.9.
Dictionaries for SAGA. SAGA can accommodate
arbitrary temporal dictionaries Φ. In our experiments
we utilize three popular alternatives: DFT (D) and
Ramanujan (R) for periodic signals and the Spline
(S) dictionary for signals with simple smooth trends.
Definitions and further details about the dictionaries
are available in the supplement.
Tuning SAGA’s hyper-parameters. In order to
tune hyper-parameters one can adopt a task-specific
grid search like as have done for this paper (details in the
supplement). However, recent work on TGS [24] offer
a more general solution. Specifically, hyper-parameters
are tuned using cross-validation for reconstruction by
(i) removing random values form the TGS, (ii) im-
puting the missing values given one setting of hyper-
parameters, (iii) measuring the accuracy of imputation,
and (iv) repeating (i)-(iii) for a new set of parameters.
The setting of lowest imputation error is considered as
optimal. SAGA can leverage this existing method by
replacing the graph dictionary with our aggregation A
(as we do in Sec. 4.2) and repeating the same process
to set SAGA’s hyper-parameters.

4 Experimental evaluation

We evaluate the quality of SAGA’s learned aggregation
on three different tasks: data-driven graph dictionary
learning for compressed TGS representation, link pre-
diction, and forecasting on four datasets. In all tasks
SAGA serves as a preprocessing step that summarizes
the dataset and enables quality and running time im-
provements for subsequent state-of-the-art techniques
on the tasks.

4.1 Data sets. We employ four real-world and a se-
ries of synthetic datasets in our experiments summa-
rized in Tbl. 1 and further described in the supplement.
We generate Synthetic data by creating a stochastic
block model graphs with high edge probability between
members of the same supernode. The corresponding
TGS signal is generated based on a vector auto regres-
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Figure 3: Decomposition quality vs model size, comparing k smallest frequencies in the GFT vs k supernodes found by SAGA.

Fig.3(a), 3(b), 3(c), and 3(d) are scatters of the Pareto optimal points for a given k. Fig.3(e), 3(f), 3(g), and 3(h) are the bar plots

of the average relative improvement for a given k of SAGA in terms of MSE and NNZ. SAGA utilized the Spline dictionary in Bike
and Ramanjuan in the rest. TGSD always utilizes the DFT dictionary.

sion (VAR) model associating members with in the same
node. The real-world data-sets include Air [26] (air-
port traffic), Road [5] (road speeds), and Bike[1] (bike
rentals) employed for graph dictionary learning for re-
construction, link prediction, and forecasting; Reality
Mining (RM) [8] dataset is employed for link prediction
experiment to evaluate SAGA on a social interaction
dataset. Further details of each dataset are provided in
the supplement.

4.2 Dictionary Learning. To demonstrate that
SAGA is able to find an aggregation which can be
used to succinctly represent a temporal graph signal
we employ the Temporal Graph Signal Decomposi-
tion (TGSD) method, a state-of-the-art representation
method for data of this type [24]. TGSD represents
a TGS as a low-rank joint encoding via a graph dic-
tionary (Ψ) and temporal dictionary (Φ), such that
D ≈ ΨYWΦ. As we discuss in Related Work the uti-
lization of such graph dictionaries is central to many
graph signal processing methods [27].

In this experiment we demonstrate that using our
aggregation matrix in place of a ”band-limited” Graph
Fourier Transform (GFT) dictionary (Ψ in TGSD) re-
sults in better-quality representation given a fixed num-
ber of dictionary atoms (columns in Ψ). In order to pre-
form this evaluation we repeat the graph signal decom-
position experiment from [24] which varies TGSD’s pa-
rameters and records the number of nonzero coefficients
(NNZ) learned and the representation error measured
in terms of mean squared error (MSE). One variation
of TGSD employs the standard GFT dictionary with

up to k columns (denoted TGSD in figures), while the
second variation employs the learned aggregation ma-
trix A as a graph dictionary of the same size (denoted
TGSD+SAGA). Similar to TGSD’s original experiment
we zscore-normalize the data by subtracting the mean
and dividing by the variance.

We conduct this experiment on Synthetic, Air, Bike,
and Road, and plot the Pareto-optimal models for a
given k and the relative improvement for that k in
Fig. 3. SAGA’s learned data-driven graph dictionary
in A provides significant advantages in Synthetic, Air,
and Bike reducing the MSE by at least of 40% while
minimally increasing the NNZ by at most 20% and on
average nearly no increase. SAGA considers jointly
the network and the temporal information to learn a
good organization of the original nodes into supernodes
(dictionary atoms). Thus, even if the input graph
does not align well with the temporal domain across
all nodes, SAGA can still find supernodes that can be
utilized to represent a TGS succinctly. In contrast, the
GFT can only utilize the input graph information to
encode the signal even when it “does not align” perfectly
with the temporal behavior. In the Road dataset SAGA
is able to reduce the MSE at small dictionary sizes k at
the cost of a higher number of NNZ coefficients. The
road speeds on neighboring nodes (highway sections)
are well-coupled, making the Road graph highly well-
aligned to the temporal behavior and leaving limited
room for improvement by data-driven dictionaries.

4.3 Link Prediction. The A matrix in SAGA en-
codes temporally-coherent groupings of nodes. We next
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Data Observed |E|
Acc AUC Acc AUC Acc AUC

90% 90.3 95.7 88.1 96.4 88.6 96.3

70% 88.3 95.6 88.7 95.3 88.8 95.7

50% 87.3 93.3 88.0 94.4 88.1 94.8

30% 84.6 90.8 85.4 91.9 85.2 92.0

90% 85.4 93.7 85.9 94.2 86.4 94.2

70% 84.8 93.0 85.8 93.9 86.0 93.9

50% 84.4 92.4 85.2 93.3 85.2 93.3

30% 82.5 90.8 84.1 92.3 84.0 92.3

90% 95.5 88.5 99.4 96.1 96.2 99.5

70% 87.3 95.2 95.9 99.4 96.0 99.4

50% 85.4 93.3 94.6 98.9 94.7 98.9

30% 83.4 91.2 93.5 98.4 93.7 98.4

90% 90.1 95.6 99.5 99.8 98.8 99.8

70% 75.1 84.1 98.2 99.6 97.3 99.1

50% 67.0 73.6 97.6 99.0 95.8 97.8

30% 55.7 59.0 96.4 98.4 90.0 94.2

Road

Bike

Air

RM

SAGA SSAGA RVanilla

Table 2: Accuracy (Acc) and area under the curve (AUC)

comparison for link prediction using SEAL [37] given raw node

features (Vanilla) and SEAL when using the aggregations
produced by SAGA with the Ramanujan (SAGA R) and Spline

(SAGA S) dictionaries for various percentages of observed edges

set out to quantify their utility for predicting missing
links by utilizing SEAL [37], a state-of-the-art graph
neural network link predictor. To predict a link between
nodes a and b, SEAL first extracts enclosing subgraphs
for a and b and then estimates their proximity based
on label and structural information. Finally, it utilizes
these features and the given adjacency matrix in a graph
neural network (DGCNN [38]) to predict the probabil-
ity of edges between the two nodes. It is trained on
both negative (nonexistent) and positive edges. We uti-
lize SAGA to improve SEAL by employing the learned
aggregation matrix A as node attributes.

We compare the accuracy and area under the
curve (AUC) of SEAL+SAGA versus the Vanilla SEAL
method. We follow and extend the experimental design
from [37]. We remove a set percentage of the known
links in the graph and save them for testing while sam-
pling an equal number of negative links for the test set.
We utilize the remaining number of positive links while
again sampling an equal number of negative links to
produce the training set. The authors of [37] utilized
90% of the positive links for training and 10% for test-
ing. However, we are also interested in the trend as
smaller number of edges are observed. Thus, we per-
form experiments at other levels of missing links (Col-
umn “Observed |E| in Tbl 2). We report the average
of 5 samples per dataset and remove test edges before
we learn SAGA’s model to ensure we have no direct
information on their existence.

The accuracy and AUC comparison is summarized
in Tbl. 2. In every setting and dataset a variation of
SEAL+SAGA dominates Vanilla SEAL with the ex-
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Figure 4: AUC and running time comparison between SEAL

and SEAL+SAGA on the RM dataset.

ception of the accuracy in Reality Mining at 90% ob-
served edges. SAGA is able to place nodes into distinct
communities which have similar temporal patterns and
network neighborhoods. The connection between this
community information and the probability of an edge
between two nodes can then be easily learned by a link
prediction method like SEAL.

We are also interested in characterizing how SAGA
affects the convergence and running time of SEAL
and compare the running time and AUC of SEAL
and SEAL+SAGA with the Ramanujan dictionary at
different epochs of training for the GNN on the RM (
Fig.4) and the Road datasets (figures in supplement).
In both datasets SEAL+SAGA converges to a better
result faster than vanilla SEAL. SAGA learns a holistic
(temporal behavior and structure) representation for
graph groups which leads to stable convergence with
much less variation between epochs.

4.4 Forecasting. Multivariate time series forecasters
typically utilize historical data in order to learn to pre-
dict future values [23]. However, not all time series will
have predictive interactions. If we can correctly parti-
tion nodes into groups retaining predictive interactions,
we can reduce the computational complexity and ro-
bustness of predictors due to learning fewer parameters.
SAGA is particularly well suited for this task, as we par-
tition nodes into supernodes which are both temporally-
and network-aware. To test this, we utilize VAR [28] to
predict future values 10 steps ahead in a sliding window
fashion on the Air, Bike, Road and Synthetic datasets
(10 independent samples for the latter). We compare
the forecasting quality of group-wise VAR predictors,
where groups are detected by SAGA and baselines par-
titioning algorithms: time series k-means [21], spectral
clustering on the graph [12], and a stat-of-the-art clus-
tering method for time series on graphs CCTN [19].

We also evaluate the corresponding quality when
25% of the training values are missing values. We
use neighbor averages to impute missing values for
baselines, while SAGA handles those directly through
the mask Ω. One exception is the Road dataset where
we also use the neighbor imputation method for SAGA.
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Dataset missing SAGA CCTN[19] k-means Spectral VAR

%
raw num of max

Dic
raw num of max raw num of max raw num of max raw num of max

MSE groups time MSE groups time MSE groups time MSE groups time MSE nodes time

Syn 0 0.24 15 0.10s R 0.47 15 1.33s 0.55 15 1.27s 0.25 15 0.05s 0.33 430 1.52s

Syn 25 0.36 15 0.11s R 0.95 15 1.28s 0.92 15 1.26s 0.40 15 0.06s 0.63 430 1.51s

Air 0 91.1 100 0.004s R 6011.0 5 0.08s 414.5 5 0.07s 110.0 5 0.05s 89.6 389 0.08s

Air 25 339.5 100 0.003s R 7.6 ∗ 105 5 0.07s 1049.2 5 0.06s 459.7 5 0.05s 397 389 0.08s

Bike 0 607.5 25 0.012s S 2732.9 5 0.084s 655.0 5 0.020s 708.6 5 0.015s 1663.0 142 0.115s

Bike 25 1034.5 25 0.020s S 3144.7 5 0.092s 1294.7 5 0.023s 1095.0 5 0.018s 2096.2 142 0.127s

Road 0 43.5 2 2.8s S 43.9 100 4.8s 44.1 2 3.4s 42.5 2 3.7s 38.7 1923 5.7s

Road 25 45.9 2 2.3s S 47.0 100 4.8s 48.4 2 3.6s 46.6 2 3.7s 43.0 1923 5.7s

Table 3: Comparison vector auto-regression (VAR) forecasting quality and running time for groups identified by SAGA and

alternatives. of (i) MSE forecasting of the next 10 time steps, maximum running time, relative to a VAR on entire dataset.
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Figure 5: Running time for SAGA as a function of (a): the

number of nodes n (t = 1000, k = 5), (b): the number of time

steps t (n = 1000, k = 5), and (c): the number of supernodes k
(n = 1000, t = 1000).

We search various parameters for all baselines and
report the best obtained quality (details of parameter
tuning are available in the supplement).

We present the MSE of forecasters and the max-
imum VAR training time for any partition in Tbl .3.
SAGA produces the most accurate forecast in Synthetic
and Bike, both with and without missing values present.
In Air without missing values and in Road SAGA is a
close second in terms of MSE after the full VAR model
on the whole dataset, but enables a running time reduc-
tion to a fraction of full VAR’s running time.

4.5 Scalability. We have already demonstrated that
SAGA has the ability to speed up downstream applica-
tions, but a natural question remains: How long does
it take to learn SAGA’s aggregation? We employ Syn-
thetic datasets of varying number of nodes n, time steps
t, and supernodes k and record their effect on the run-
ning time (Fig. 5). All dictionary variations of SAGA
scale similarly with n (Fig.5(a)) since the temporal dic-
tionary encoding does not depend on the number of
nodes. In Fig.5(b) we see a stark difference between
the performances of different dictionaries since the full
DFT is quadratic in t, while for Ramanujan and Spline
dictionaries we use a constant number p of atoms w.r.t.
t. Note that the DFT dictionary can also be band-

limited in terms of frequency to enable faster model
training. Finally, in Fig.5(c) we see increases in run-
ning time with the number of supernodes as expected
based on our complexity analysis. It is important to
note that for significantly large instances, SAGA can be
trained within minutes to an hour, making it practical
and applicable.

4.6 Case Study: Airport traffic data. SAGA’s
learned aggregation produces meaningful and inter-
pretable supernodes which can be used to obtain a high
level understanding of the functional organization of
temporal graph signals. We look closer at the results
on the Air data from [26] and plot the airport locations
and flight links within 4 discovered supernodes in Fig. 6.
For this analysis we employed the Ramanujan periodic
dictionary with λ0 = .01, λ1 = .01 and λ2 = .1. Each
airport is represented by a circle of size proportional to
the number of its incoming flights. The 4 supernodes
show interpretable air traffic flows. We give each a name
that aligns with our interpretation in Fig. 6. This in-
terpretation is supported by the dominant airlines op-
erating in each supernode. For example, the Europe-
North America supernode is dominated by airlines such
as Ryanair (Ireland), and Lufthansa (Germany) while
the Trans-Pacific one is dominated by Southwest (US
west), and Virgin Australia (we include a table of top
airlines per supernode in the supplement).

5 Related work

Graph summarization seeks to improve analytics
efficiency, pattern discovery, anomaly detection, and
visualization for complex graph datasets [18]. Many
methods reduce the input graph by aggregating nodes
into supernodes by reflecting the community structure
and node attribute consistency [34, 16]. Labels are
typically discrete values [34] or real scalars [39], Our
setting can be viewed as a generalization of label-aware
summarization where node “labels” are time series.
Dynamic graph structure summarization has also been
considered [29], however, it works with edge changes
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(a) Europe-North America (b) North America (c) Asia-North America (d) Trans-Pacific

Figure 6: Supernodes learned from the Air traffic dataset including the comprising airports and their direct flight connections.

over time, while we focus on temporal node behavior in
a fixed graph.
Graph signal processing views node values as a
smooth signal over the graph structure that can be
sparsely encoded using a graph Fourier dictionary [27,
31, 7]. Methods from this active research field do not
consider temporal graph signals and assume that the
input graph structure is correct and observed at the
optimal “spatial” resolution. We challenge the above
assumption and demonstrate that an aggregated graph
can provide a more advantageous representation for
temporal graph signals.
Dimensionality reduction and signal compres-
sion techniques can be employed to group the nodal
time series and compress their representation. For ex-
ample, compression methods [20, 32] and dictionary
coding approaches [33, 9] for time series can significantly
reduce the size of a temporal graphs signal. However,
they cannot take advantage of the graph structure as
side information. This limitation was addressed in a re-
cent dual graph-time dictionary encoding approach [24],
but, it fully trusts the input graph and as we demon-
strate experimentally its quality can be improved by
our methods summarization of the input graph. While
methods in this category employ dictionary encoding
to succinctly represent the temporal dimension of sig-
nals, we focus on “compressing” the spatial mode (i.e.,
aggregating the input graph), rendering SAGA comple-
mentary to them.
Graph embedding methods learn representations for
graph nodes that summarize the local neighborhood
structure, often employing random walks to generate a
sample of neighbors to train on [11]. Some methods ex-
tend this idea to utilize the richer information contained
in attributed [2] or timestamped graphs [25]. Closest to
our setting is a recent work that identifies groups of sig-
nals in a temporal attributed graph that belong to the
same user [14]. Methods from this group assume fixed
attributes and/or evolving graph structure, while in this
work our goal is to summarize a fixed structure among
nodes with evolving signals on them.
Community detection for static [12, 22] and tempo-
ral [19, 10] graphs is also a relevant topic as our su-
pernode aggregation can be viewed as communities of
shared temporal behavior. Most dynamic community

methods focus on evolving structure and are not appli-
cable to our temporal graph signal setting. The method
most similar to ours is CCTN [19] as it utilizes a fixed
graph and a temporal signal on nodes to learn a la-
tent feature space in which communities are detected
using k-means. As we demonstrate experimentally, un-
like SAGA’s supernodes, the communities detected by
CCTN and other baselines do not lead to improvements
in the quality and scalability of forecasting for temporal
graph signals.

6 Conclusion

We proposed SAGA—a general method for aggregation
of temporal graph signals (TGS). Our method provides
an interpretable coarse-grained representation of the
graph informed by both the temporal behavior of nodes
and their structural network organization. We demon-
strated that SAGA’s aggregation can benefit multiple
state-of-the-art algorithms for link prediction, forecast-
ing and data compression. In particular, for both syn-
thetic and real-world data sets SAGA’s model improved
reconstruction quality for temporal graph signals by up
to 75%, link prediction accuracy by up to 40%, and the
accuracy of forecasting by up to 63% while also offering
up to 2-fold speed-up. The discovered aggregation in
an Air traffic dataset also aligned well with major geo-
political transportation flows. Our code is available at
http://www.cs.albany.edu/~petko/lab/code.html.
Acknowledgements: This research is funded by
an academic grant from the National Geospatial-
Intelligence Agency (Award No. # HM0476-20-1-0011,
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Supplement overview

In the supplement we add information that could not
be included in the main paper due to space constraints.
This information provides a fuller picture of the ex-
periments with a detailed description of how hyper-
parameters were tuned for all techniques to enable
transparency and reproducibility. Specifically, we add
details on dictionary definitions (Sec.6.1), dataset de-
scription (Sec.6.2), and parameter selection (Sec.6.5).
In addition, we provide further details on the Air traffic
case study in the form of a table listing the top ten Air-
lines per detected supernode discussed in the case study
(Table.4). We also add an extra experimental figure on
link prediction AUC and runtime for the Road dataset
in Fig.8.

6.1 Detailed dictionary description. The dictio-
naries used in our evaluation are listed in Table. 5. We
provide a short definition for each of them next and
citations for further details.

The Discrete Fourier Transform (DFT) [33] dictio-
nary is for signals with N time steps and is defined as
the following:
(6.15)

W =
1
√
N


1 1 1 ... 1
1 ω ω2 ... ωN−1

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) ... ω(N−1)(N−1)

 ,
letting ω = e

−2πi
N and i is the imaginary unit. This basis

is unitary.
The Ramanujan periodic dictionary [33] is designed

for periodic time series and is generated by concate-
nating period-specific sub-matrices of various widths
R = [Φ1, ..,Φgmax ], where gmax is the a maximum pe-
riod which desired to be modeled and Φi is the peri-
odic basis of period gi. Period-specific matrices Φg =
[Dd1 , Dd2 , ...DdK ] have columns determined by the di-
visors {d1, d2, ...dK} of g. Ddi ∈ Rg×φ(di) is a periodic
basis for period di of the following circulant matrix form:

(6.16) Ddi =


Cdi (0) Cdi (g − 1) ... Cdi (1)

Cdi (1) Cdi (0) ... Cdi (2)

... ... ... ...
Cdi (g − 1) Cdi (g − 2) ... Cdi (0)

 ,
where the number of columns, φ (di) denotes the Euler
totient function. Elements Cdi(g) are computed as the
Ramanujan sum:

(6.17) Cdi (g) =

di∑
k=1,gcd(k,di)=1

ej2πkg/di ,

where gcd(k, di) is the greatest common divisor of k and
di.

The Spline dictionary [9] should be utlizied to en-
code smoothly-evolving temporal signals and is gen-
erated by employing B-splines Bi,d(u), defined by the

Cox-de-Boor formula:

Bi,p =
u− ui

ui+p − ui
Bi,p−1(u)+

ui+p+1 − u
ui+p+1 − ui+1

Bi+1,p−1(u),

where Bi,0 = 1 if ui ≤ u < ui+1, and 0 otherwise.
Bi,d(u) is non-zero in the range of [ui, ui+d+1). This
dictionary is non-orthogonal.

6.2 Datasets description. The Synthetic data gen-
eration consists of 15 groups which vary in size from 10
to 35 nodes. We randomly assign 30% of possible edges
between group members and 25% of possible edges be-
tween members of different groups. The signal is 1000
time points long. The first 5 time steps are Gaussian
random with mean 0 and variance 1. The following
995 time steps are generated by vector auto regression
(VAR) process of lag 5 with a simultaneously added
Markovian random walk on each node and 10% of the
variance at edge timestamp removed to ensure the sig-
nal does not exponentially increase. Finally we subtract
the mean of each time step and divide by the variance
to normalize the time points.

The Air Traffic dataset consist of readings from the
OpenSky Network [26] from January 1 2019 to January
31 2019. We utilize readings that contain the origin,
destination, callsign and last seen time of observed
flights to extract a TGS. The nodes are the airports,
the connections in the graph (edges) are the origin and
destination, and the temporal signal on the nodes is the
number of incoming flights for 6 hour time blocks. We
remove airports with less than 8 flights a day.

The Bike [1] dataset contains daily Bike check-out
counts at rental stations in Boston. Pairs of stations
are connected by an edge if within approximately 2.22
km. The graph in the Road [5] dataset corresponds to a
highway network where nodes are locations of inductive
loop sensors. We use the average speed (at a resolution
of 5 mins) at sensors as our evolving graph signal.

Reality Mining (RM) [8] tracks the number of
hourly interactions of 142 people at Reality Mining
where an edge between two individuals exists if they
interacted at least 100 times. We normalize all real
world datasets by zscoring (subtracting the mean and
then dividing by the variance) the time series vectors
of each node for all applications with the exception of
forecasting.

6.3 Parameter sensitivity We are interested in
characterizing the sensitivity of SAGA to our λ param-
eters. To achieve this, we first generate a Synthetic
dataset of ground truth number k of supernodes each
with a unique periodic signal and some random edges
between them. We then disaggregate these supernodes
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Group Color top 10 airlines

Green Ryanair, Lufthansa, easyJet, Air France, British, Eurowings, Scandinavian, Alitalia, Swiss International Air Lines, Royal Dutch

Blue American, Southwest, United, Delta Air Lines, JetBlue, SkyWest, Republic, Spirit, Jetstar, Qatar, Mesa

Pink Southwest , Emirates, American, IndiGo, Jet Airways, Turkish , Aeroflot, FedEx Express, Air India, SkyWest

Red Southwest, Virgin Australia, Qantas, Alaska, United, Jetstar Airways, American, SkyWest, Delta, Air New Zealand

Table 4: The top 10 airlines per supernode found by SAGA in the case study.
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Figure 8: AUC and running time comparison
between SEAL and SEAL+SAGA on the Road dataset

TGSD

Parameters/Dataset Synthetic & Air

λ1, λ2 {.001,.01}
k [5:5:25]

Parameters/Data Bike

λ1, λ2 {.001,.01,.1}
k [5:5:25]

Parameters/Data Road

λ1, λ2 {.001}
k [25:25:125]

SAGA

Parameters/Dataset Synthetic & Air

λ0, λ1, λ2 {.001,.01}
Parameters/Data Bike

λ0, λ2 {.001,.01,.1}
Parameters/Data Road

λ0, λ1, λ2 {.001}

Table 6: Parameter search space for TGSD and SAGA in
dictionary learning. Curly braces (e.g. {.1, 1, 10}) indicate a set
of values we tested and brackets (e.g. [5 : 5 : 25]) indicate that

we iterate in an interval from the first to the third values by a
step specified in the middle value

DFT (D) Ramanujan (R) Spline (S)

Orthogonal X
Parameter-free X

Temporal Assumption Periodic Periodic Trends

Table 5: Summary of dictionaries Φ we experiment with.

(a) λ0 v.s. λ1 (b) λ0 v.s. λ2

Figure 7: Parameter sensitivity of our method
measured by the NMI with GT groups being nodes in
a supernode

into 4 to 15 ”constituent nodes”. The edges between
the two supernodes are randomly attached to various
”constituent nodes” of the two supernodes. We include
70% of the possible edges between members of the same
supernode. We randomly split the original signal of a
supernode and assign these fractions of the original sig-
nal to member nodes and add Gaussian white noise at
a single-to-noise ratio of 20. We test the effect of our
hyper-parameters {λ0, λ1, λ2, } on SAGA’s ability to re-
cover the correct supernode membership measured by
the normalized mutual information (NMI).

In Fig. 7, we present the sensitivity of our model to
these parameters. We fix one parameter and vary the
other two. SAGA performs best when λ0 is small as
large values will push the model to avoid picking many
large supernodes. SAGA also preforms better in this
setting with larger λ1 and λ2. The supernodes temporal
signal is relatively simple meaning a high λ1 will avoid
overfitting to noise and enable or temporal fit to focus on
the generating process. There is also high connectivity
for members of supernodes meaning that encouraging
more network connectivity within supernodes by raising
λ2 will encourage SAGA to map the member nodes to
the correct supernode.

6.4 Additional link prediction experiments.
In Fig. 8 we show additional characterization of
SEAL’s [37] training when employing the original
dataset (SEAL) and SAGA’s aggregation matrix A as
node features (SEAL+SAGA). This additional analysis
is for the Road dataset and parallels the observations
on the RM dataset presented in the main paper.
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6.5 Parameter tuning for all experiments. Fi-
nally, to ensure reproducibility we detail the parame-
ters utilized in dictionary learning in Tbl. 6, SAGA’s
optimal parameters for link prediction and forecasting
in Tbl. 7, and the grid search ranges for optimal pa-
rameters in forecasting for CCTN and SAGA in Tbl. 9.
The parameters used for vector auto regression (VAR)
forecasting on each dataset are listed in Tbl. 9.

Data-Task λ0 λ1 λ2 k

RM, Air, Bike, Road - Link prediction-R .01 1 1 10

RM, Air, Bike, Road - Link prediction-S .5 .1 .1 10

RM, Air, Bike, Road - Link prediction-D .01 .01 1 10

RM, Air, Bike, Road - Link prediction-D .01 .01 1 10

Synthetic - Forecasting-R .1 .1 0.05 15

Air - Forecasting-R .05 .1 1 100

Bike - Forecasting-S .5 .1 1 25

Road - Forecasting-S .1 .05 0.01 2

Table 7: Parameters for SAGA

CCTN

number of groups

Synthetic {15}
Air {5,10,25,50,100}
Bike {5,10,25,50,100}
Road {2,5,10,25,50,100}

SAGA

Parameters/Dictionaries/Dataset all/

λ0 {.01,.05,.1,.5,1}
λ1 {.01,.05,.1,.5,1}
λ2 {.01,.05,.1,.5,1}

Table 8: Parameter search space for competing methods

forecasting. Curly braces (e.g. {.1, 1, 10}) indicate a set of values
we tested and brackets (e.g. [5 : 5 : 25]) indicate that we iterate

in an interval from the first to the third values by a step

specified in the middle value ( [5 : 5 : 25] represents the values
{5, 10, 15, 20, 25})

trainning length sliding window size lag

Synthetic 1000 NA 5

Air 95 2 5

Bike 230 4 5

Road 600 10 15

Table 9: Parameters used by VAR for all methods in

forecasting.
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