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Abstract

Machine learning and data analytics tasks on graphs
enjoy a lot of attention from both researchers and prac-
titioners due to the utility that a graph structure among
data entities adds for downstream tasks. In many cases,
however, a graph structure is not known a priori, and
instead has to be inferred from data. Specifically, learn-
ing a graph associating time series may elucidate hid-
den dependencies and also enable improved performance
in tasks like classification, forecasting and clustering.
While approaches based on pairwise correlation and pre-
cision matrix estimation have been employed widely, re-
cent approaches that model observations as signals on
graphs have been shown to be more advantageous.

We propose to learn a graph among time series
based on similarity of encoding via temporal dictionar-
ies. The key premise is that observed time series have an
inherent underlying structure such as periodicity and/or
trends and can be succinctly encoded via an appropri-
ate dictionary. Time series with similar encodings are
associated via edges in the inferred graph. We formu-
late the problem as a joint graph Laplacian learning
and sparse dictionary-based coding. We consider two
alternative solutions for different problem settings: one
that associates time series that behave similarly and one
that associates them based on shared periodicity. We
demonstrate that our solutions enable improved perfor-
mance over baselines in identifying ground truth edges
and ground truth groupings of the time series in 8 real-
world datasets from diverse domains.

1 Introduction

Graphs are employed to model relationships among en-
tities and enable improvements compared to non-graph
counterparts for tasks like classification and link predic-
tion [34], forecasting [50], filtering [8], and sparse data
representation [38]. In typical applications, nodes are
endowed with attributes, e.g., interests of social net-
work users or temporal sensor network measurements,
and the graph structure among the nodes is known a
priori and employed jointly with attributes to improve
downstream tasks. In many cases, however, the graph
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Figure 1: (a): Overview of dictionary-based graph inference for

structured time series (GIST). We model input time series X as
sparsely encodable via an appropriate dictionary Φ (e.g., Fourier,

Ramanujan, Spline or other) through an encoding matrix U . The

goal is to learn a Laplacian matrix L such that similarly encoded
time series are associated with high-weight edges. (b)-left: The

top 15 edges among S&P 500 Tech stocks’ adjusted daily closing
prices time series inferred by our method GIST and (b)-right: the

top 15 edges based on correlation.

structure is unknown and has to be learned from data.
Some prior work on graph inference from node proper-
ties focuses on independent attributes while in others
nodes are associated with time series [16]. We consider
the latter setting, namely our goal is to perform graph
inference for time series data.

Graph inference for multivariate time series was
previously approached by employing network statis-
tics [6] as well as by learning a sparse estimation of the
precision matrix in the Graphical lasso approach [21].
Alternatively, signal processing solutions assume that
observed signals should be smooth over the inferred
graph [14, 28–30]. Other proposals rely on inferring
pairwise causal associations between time series [35,51].
Graph neural network forecasting approaches also es-
timate a network among univariate time series while
training a non-linear forecasting model [27, 50]. In this
work we focus on general (task-agnostic) and unsuper-
vised graph inference for time series.

The key premise in our approach is that related
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times series share temporal structures such as seasonal-
ity or trends. Consider the example in Fig. 1(a) in which
groups of time series in X (marked with the same color)
have similar temporal behavior. Note that they might
not necessarily exhibit similar values in the temporal
domain, but they feature similar frequencies. Using an
appropriate periodic dictionary Φ, one can view the time
series’ dominant frequencies in U as sparse encodings for
the data X. Beyond periodicity one can consider shared
trends via a spline dictionary or other temporal patterns
via alternative dictionaries. Different from other signal
processing graph inference methods, we propose to as-
sociate time series based on encoding similarity rather
temporal domain similarity.
Example application: S&P 500 stocks. Understanding
how stocks of publicly traded companies are connected
can provide meaningful insights to investors, where in-
ferred graph edges may imply competition or supply
chain links, and inform opportunities for portfolio di-
versification. The 15 strongest closing price correlation
links among S&P 500 stocks are shown in Fig. 1(b)-
right where the company sub-sectors are indicated by
different shapes. It is clear from the large mixing of
connections between software and semiconductor com-
panies that correlation alone does not lead to inter-
pretable networks. In contrast, the edges learned by our
proposed approach (Fig. 1(b)-left) capture similarity in
global temporal patterns and our inferred graph more
accurately draws expected edges within sub-sectors.

We propose GIST, a general framework for joint
sparse dictionary coding and graph learning for mul-
tivariate time series with temporal structures such as
trends and periodicity. We combine the two goals in
a single objective which promotes smoothness of time
series’ codes on the learned graph. We also propose
a shared-period alternative that associates lagged- or
anti-correlated time series with the same period. Our
framework can employ arbitrary temporal dictionaries
for sparse coding: both existing analytical dictionaries
and data-driven counterparts. We demonstrate GIST’s
utility on both synthetic and real-world datasets.

Our contributions in this paper are as follows:
• Novelty: We propose a dictionary-based graph
learning framework for multivariate time series based on
the intuitive premise that connected time series share an
encoding via an appropriate temporal dictionary.
• Generality: Our method is applicable to time series
with various temporal structures: seasonality, trends
and other temporal patterns.
• Applicability: We demonstrate that GIST accu-
rately infers graph edges and communities in multiple
application domains and that inferred graphs offer in-
terpretable insights for stocks and COVID data.

2 Related work

Graph inference for time series methods can be
categorized in several groups. Statistical models cast
the graph structure inference as fitting a joint distribu-
tion with a key representative the graphical lasso [20]
which estimates a sparse precision matrix (inverse co-
variance). Since its introduction there have been numer-
ous improvements of both the basic model and associ-
ated solvers [10]. A second group includes physically-
motivated models that infer a graph by assuming an
underlying network process such as network diffusion
or information cascades [24]. Graph signal processing
models treat inputs as smooth signals over a graph
and infer the latter assuming i) global signal smooth-
ness [15,28,43]. Our method falls in the signal process-
ing group but different from counterparts, we assume
that associated time series are not necessarily similar in
the original time domain, but in a dictionary encoding
domain, e.g., similar periodicity, trends and combina-
tions of the two.

A different group of methods, neural relational
inference models [4,25,32], infer a graph structure from
a dynamical interacting system while also learning the
underlying dynamical model. Some methods optimize a
graph structures for specific tasks like classification [19,
48, 53] and forecasting [42]. Others focus on prediction
and node representation learning [11, 26] by employing
deep latent generative models. Most models in this
group require multiple instances of multivariate time
series for training, validation and testing. Our setting
is different as we seek to learn a graph from a single
observation of a multivariate time series.
Graph signal processing (GSP) operates on signals
over (known) graphs and comprise a popular research
area in signal processing [44]. A central premise is that a
graph signal can be represented as a linear combination
of graph dictionary bases. The eigenvectors of the graph
Laplacian are often adopted as basis in this domain [15].
GSP approaches solve classical signal processing tasks
for graph signals, however, they assume that the graph
structure is known. Our work seeks to learn the
underlying graph structure and is thus complementary
to the approaches in this area.
Sparse dictionary modeling represents data via a
sparse combination of dictionary bases. It is widely em-
ployed in signal processing [41, 52], image analysis [18]
and computer vision [49]. In the context of time se-
ries, many widely adopted dictionaries have been de-
signed to capture underlying temporal structures, e.g.,
DFT [40] and the Ramanujan periodic dictionary [45]
and the spline dictionaries [22]. Other methods learn
temporal dictionaries from data [46]. Our work assumes
a given temporal dictionary and jointly learns a graph
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and a sparse encoding for observed multivariate time se-
ries. Thus, it can be viewed as a generalization of sparse
modeling and as complementary to dictionary learning
approaches since learned dictionaries can be employed
within our framework.

3 Preliminaries

Before we define our problem of encoding-based graph
inference, we introduce necessary preliminaries and no-
tation. The input to our problem is a real-valued mul-
tivariate time series X ∈ Rn×t comprised of n univari-
ate time series of length t. Sparse dictionary coding
represents observations X as a linear combination of
a few atoms from an appropriate dictionary Φ, where
both analytical and data-driven dictionaries can be em-
ployed [41]. In its general form sparse coding solves the
following problem:

(3.1) min
u
f(u) s.t. x = uΦ,

where x is an input signal, u is the encoding of the
signal and f(u) is a sparsity promoting function often
instantiated as an L1 norm. Tenneti et Al. [45] propose
multiple analytical dictionaries for periodic time series
based on the framework of nested periodic matrices.
Alternative dictionaries to model smooth trends have
also been proposed employing on splines [22].

A graph with n nodes is represented by its (com-
binatorial) Laplacian matrix L ∈ Rn×n, which in turn
is defined as the difference between the degree D and
adjacency matrices L = D − W . The degree matrix
D is a diagonal matrix with elements corresponding to
the volume of each node, i.e., the sum of weights on
all adjacent edges, while the adjacency matrix W is a
symmetric matrix specifying the non-negative weights
on edges among node pairs.

4 Problem formulation

The key premise of our graph inference approach is
that time series should be connected by an edge if they
have similar sparse encoding via a dictionary Φ. More
specifically, if two time series are encoded as xi =
uiΦ and xj = ujΦ, we seek to connect them by a
high-weight edge wij if the similarity s(ui, uj) of their
encoding is high. Depending on the choice of dictionary,
similar encoding may correspond to shared trends (e.g.,
Spline [22]), ii) shared periodicity (e.g., Ramanujan and
DFT [45]), iii) similar intervals of on/off states (e.g.,
Haar wavelets [12]), or other temporal structures.

An illustrative example employing a Ramanujan
periodic dictionary Φ is presented in Fig. 2(a). The
input X consists of 5 periodic time series x1 to x5.
Their corresponding sparse encodings (rows of U) are
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Figure 2: (a): Encoding matrix U for a dataset X of 5 periodic
time series employing the Ramanujan periodic dictionary Φ [45].

Different blocks of atoms Pi and correspond to discrete periods.

(b): In order to infer edges between time series sharing the same
period, though not necessarily correlated, we take the element-

wise absolute values of the encodings abs(U) and aggregate them

according to the period-specific blocks in Φ to obtain the shared
period representation Us.

similar for pairs of time series with similar periodicity.
For example, x1 and x2 which are scaled versions of each
other have corresponding scaled encoding in U for the
period-2 atom P2 of Φ. Alternative dictionaries allow
us to associate time series based on other structural
patterns through their encodings.
The GIST objective. We enforce encoding similarity
via a Laplacian quadratic form similar to how smooth-
ness of graph signals is enforced in graph signal process-
ing approaches. A key difference in our case is that our
goal is to also simultaneously learn the graph Laplacian
L. The GIST objective is as follows:

(4.2)

argmin
U,L

||X − UΦ||2F + λ1tr(U
TLU) + λ2||L||2F + λ3||U ||1

s.t. tr(L) = n

Lij = Lji ≤ 0, i 6= j

L1 = 0,

where the first term in the minimization quantifies the
quality of fit by a temporal dictionary encoding UΦ
as Frobenius residual loss, the trace term promotes
smoothness of the encodings U with respect to the
learned graph Laplacian L, and the third term adds
a Frobenius norm penalty on the learned L to reduce
concentration of weight on individual edges. The last
term of the minimization imposes an L1 norm on U to
promote sparse encoding in line with sparse dictionary
modeling (Eq. 3.1). The three constrains guarantee a
valid Laplacian matrix: the first avoids a trivial solution
of all-zeros, the second ensures symmetry while the the
last constraint ensures that the Laplacian rows sum
to 0. The Laplacian constraints are similar to those
employed by earlier graph inference methods [15, 28],
with a key difference that we associate time series in
the encoding (frequency) domain as opposed to the
temporal domain leading to learned graphs of better
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quality as we demonstrate in Sec. 6.
Shared period objective: GIST-SP. The main
GIST objective from Eq. 4.2 penalizes differences in
the encodings of connected time series weighted by
the learned edge weight among them via the trace
term tr(UTLU). For some applications a more flexible
similarity measure might be beneficial to capture similar
behavior. Specifically, in the case of periodic time series,
we would like to be able to associate pairs that are
off-phase or even anti-correlated as such relationships
may correspond to causal links, e.g., a change in one
time series leads to a delayed change in another. This
scenario is present in Fig. 2(a) for pairs x1 and x3 which
are off-phase by one time step and also the pair x4 and
x5 which are not correlated, but both have a period of 3.
Under the main objective from Eq. 4.2 an edge between
x1 and x3 and an alternative edge between x1 and x4
will incur similar penalties.

To enable associating time series of shared pe-
riod, we propose a shared period alternative objec-
tive by modifying only the encoding smoothness term
tr(UTLU) from Eq. 4.2. The key idea is illustrated in
Fig. 2(b) in the context of the Ramanujan dictionary
and our example time series. We take the absolute val-
ues of encodings abs(U) and aggregate coefficients corre-
sponding to atoms within the same period via an appro-
priate aggregation matrix P to obtain the shared period
encodings Us. Note that with this transformation the
three 2-periodic time series x1, x2 and x3 and the two 3-
periodic time series x4 and x5 are appropriately grouped
in shared-period groups within Us. Our shared period
encoding objective, which we term GIST-SP, imposes
smoothness on the learned graph by a similar trace term
tr(UT

s LUs) involving the shared period encodings Us as
opposed to the raw encodings. Note, that alternative
periodic dictionaries, such as the DFT [45], can also be
employed with corresponding aggregation matrices P to
aggregate loadings of period-specific atoms.

5 Optimization overview: the GIST algorithm

In this section we summarize the optimization solutions
for the two objectives GIST and GIST-SP. Since the
problems are not convex with respect to both variables
L and U , we employ an alternating optimization ap-
proach that updates one while keeping the other one
fixed. We list the overall optimization algorithm in
Alg. 1, while the detailed update derivations are pro-
vided in the extended version of the paper [36]. The
alternating optimization (Step 6-24) iterates between
updating the Laplacian L (Steps 7-10) via the primal-
dual method and updating U (Steps 11-19) following an
ADMM scheme [9]. To solve for L, we re-formulate the
sub-problem with respect to the adjacency matrix W

Algorithm 1 GIST (and GIST-SP)

1: Input: Time series X, dictionary Φ, params:
λ1, λ2, λ3, η, iter, ε

2: Output: Laplacian L, Encodings U
3: Initialize U = V , Γ, ρ randomly

4: [P, S,Q] = svd(Φ)

5: Λ = 2SST + ρI
6: for i = 1 . . . iter do

7: // Update L

8: Compute Z: Zi,j = ||ui − uj ||2, ∀i, j
9: W = primal-dual(λ1

2
Z, 2λ2)

10: L = D −W
11: // Update U

12: if GIST then

13: U = sylvester(2λ1L,P,Λ, 2XΦT + ρV + Γ)
14: else if GIST-SP then

15: Perform gradient descent (GD) for U

16: end if
17: H = U − Γ

ρ

18: V = sign(H)�max(abs(H)− λ3
ρ
, 0)

19: Γ = Γ + ρ(V − U)

20: // Check convergence

21: if
||U(i)−U(i−1)||F
||U(i−1)||F

≤ ε &
||L(i)−L(i−1)||F
||L(i−1)||F

≤ ε then
22: break

23: end if

24: end for
25: return L, U

and a pair-wise distance matrix Z between the encod-
ings (Steps 8-9). This reformulation is advantageous as
it allows for primal-dual optimization [33]. The ADMM
scheme to update U introduces a proxy variable V and
Lagrangian multipliers Γ, ρ. The closed-form update
for U in the GIST objective is based on the Sylvester
equation (Step 13) which we further optimize by pre-
computing fixed terms depending on a factorization of
the dictionary Φ (Steps 4-5). A closed-form solution for
U for the shared period objective GIST-SP is computa-
tionally demanding due to an abs(U) term and produces
similar results to a simpler gradient descent update in
practice, hence we employ the latter (Step 15). Proxy
variable V and Lagrangian multipliers Γ, ρ have efficient
closed-form updates (Steps 17-19). We track conver-
gence of L and U in (Steps 20-23). Detailed derivation
of the updates is available in [36].

The two steps that dominate the running time of
our algorithm are (i) the SVD of the dictionary Φ
in Step 4 with complexity O(min(k2T, kT 2)); and (ii)
the Sylvester solution in Step 13 with a worst-case
complexity of O(n3) but faster practical running times
due to optimizations [23].

6 Experimental evaluation

We evaluate the ability of our methods to predict ground
truth edges among time series and the utility of the
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Dataset Nodes Edges Groups t Res. Graph

Synthetic 60-2k 100-4k SBM 300-10k / Random

Bike [2] 142 1723 / 328 1d Trips

Road [7] 100 128 / 300 5m Roads

RM [17] 94 795 / 8636 1h Messages

Crime [13] 77 200 / 795 1h Spatial

Wiki [39] 128 119 / 792 1h Co-clicks

TEMP [1] 70 212 Clim. zones 365 1d Spatial

Covid [31] 74 464 States 678 1d Spatial

Stock [3] 496 / Sectors 250 1d /

Table 1: Summary of datasets used for evaluation.

learned graph structure to discern ground truth group-
ings of time series on multiple datasets and in compar-
ison to state-of-the-art baselines. An implementation
of GIST is available at: http://www.cs.albany.edu/

~petko/lab/code.html.

6.1 Datasets. We employ synthetic as well as 8
real-world datasets for evaluation. Statistics of all
datasets are listed in Tbl. 1. We synthesize ground
truth random stochastic block model (SBM) graphs
with a fixed number of blocks and varying number of
nodes. The real world datasets feature either ground
truth edges (Bike, Road, Reality Mining (RM), Crime,
Wiki), ground truth groupings (Stock) or both (Covid,
TEMP). We normalize all input time series using z-
score normalization to reduce effect of varying scales.
Details of evaluation data are available in the extended
version [36].

6.2 Experimental setup. We employ two dictio-
naries for experiments: the Ramanujan (R) [45] periodic
dictionary and the Spline (S) [22] dictionary for smooth
trends. Corresponding GIST variants are denoted as
GIST(R) and GIST(S). Selecting an appropriate dictio-
nary for a given dataset can be performed by compar-
ing the quality of time series reconstruction (i.e. GIST
without graph learning). Dictionary definitions as well
as details on how to select an appropriate dictionary are
provided in the extended version [36].
Baselines. We compare our methods to a naive base-
line associating times series baseed on their correlation
(Corr) and four baselines from the literature: Dong [15],
Kalofolias’s Dong (K-Dong) and Kalofolias’s Log objec-
tive (K-Log) [28] and Iterative Deep Graph Learning
(IDGL) [11]. Dong, K-Dong and K-Log are signal pro-
cessing methods that learn a graph on which the time se-
ries X are smooth in the temporal domain. While IDGL
is not explicitly a time series method (it works with gen-
eral node feature vectors), it jointly learns a graph struc-
ture and node embeddings optimized for node classifica-
tion within a graph neural network architecture. Thus,

we employ it as a baseline for graph structure learning
in datasets in which we have ground truth cluster anno-
tations (TEMP, Covid and Stock) which we provide to
the method as node labels (note that this information is
not provided to any of the other competing techniques).
We create 10 random training-testing splits of labeled
time series (90%-10%) and report average metric quality
for IDGL in all experiments.
Metrics. Quality of predicted edges with respect to
ground truth edges is measured via the AUC measure.
We also measure how well learned graphs reflect known
groups (or clusters) of time series. To this end, we
quantify the quality of recovering ground truth groups
by perform spectral clustering using the learned com-
binatorial Laplacian by baselines [47]. We employ k-
means (k is set to the ground truth number of groups in
each dataset) as the last step of spectral clustering and
run it 10 times to “smooth out” variation due to random
initialization. We report average Normalized mutual in-
formation (NMI ) [5] and cluster Purity (Pur) [37] from
multiple k-means runs and across clusters.

6.3 Effect of data properties. We first compare
the performance of our methods and that of baselines
as a function of varying data characteristics, including
noise level, graph community structure, smoothness of
encodings on the graph and length of the time series.
Varying noise. We synthesize an SB graph with 60
nodes and 3 clusters, vary the SNR from infinity (noise-
less time series) to 1/20, set the encoding smoothing to
α = 0.9 (details in [36]), and report the AUC for ground
truth edge prediction in Fig. 3(a). GIST with Ramanu-
jan dictionary performs best among baselines at all noise
levels. Notably, it maintains better than random quality
in very noisy settings. For example, when SNR = 1/5,
we can still achieve a score of 0.78, while baselines’ AUC
values deteriorate to 0.68 and lower. Note that due to
the high level of encoding smoothing α = 0.9, GIST-SP
does not have advantage over the main objective. To
evaluate a setting that is advantageous for GIST-SP, we
“turn off” smoothing, ensuring that times series within
each SBM cluster share periods, but could be anti- or
lag-correlated. The results for this experiment are pre-
sented in Fig. 3(b). The overall quality of all methods
decreases as this a more challenging setting. GIST-SP
has a pronounced advantage over alternatives with up
to 0.1 AUC improvement in mid-noise regimes. Signal
processing alternatives tend to be the next best base-
lines and IDGL’s performance ranks last as it does not
explicitly handle time series and optimizes the graph for
node classification rather than graph signal smoothness.
Effect of varying α. We next vary the encoding
smoothness in the Synthetic dataset via synthesis pa-
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Figure 3: Effect of SNR on edge inference for smoothed encodings (α = 0.9) (a), and shared period (b) in synthetic data. Effect of
encoding smoothness (c) and cluster density ratio on edge (d) and group (d) recovery (SNR=1/5). Effect of time series length t on

edge recovery in Synthetic (SNR=1/5) (f) and Road (g); and on group recovery in Stocks (h).

rameter α (see [36] for details). Large values of α in-
crease the “alignment” of neighbor encodings. GIST’s
quality dominates alternatives and its advantage widens
with α (Fig. 3(c)). A similar trend is evident for alter-
native methods since within-block time series become
more similar in both the encoding and time domains.
It is important to note that for low values of smooth-
ness (α = [0.1, 0.2]), GIST-SP emerges as the dominant
method as its ability to associate time series based on
shared periods, but not necessarily similar coefficients
is central to its objective.
Varying Cluster Structure. We also study the
effect of the underlying ground truth graph structure
on the ability of competing methods to recover known
clusters. To this end, we vary the density of within and
across cluster edges in the SB model. In addition to
reporting the AUC for edge inference (Fig. 3(d)), we
also quantify the ability to recover ground truth blocks
of the SB model in terms of NMI (Fig. 3(e)). In terms of
AUC, GIST(R) and GIST-SP are always the best two
methods. At low ratios the graph is relatively simple
(few edges) to learn. Alternatively, at high density
ratios there are more edges to learn, but the clusters
are much more “discernable” which helps all baselines
get a better AUC. The task is most challenging for mid
density ratios of 10 − 20. In the cluster recovery task
(Fig. 3(e)), there is a clear monotonic trend of increasing
performance with stronger clusters. GIST(R) is again
the dominant method in terms of NMI with a small
advantage over GIST-SP.

Varying Time Series Length. Next we evaluate the
data complexity of competing techniques. Specifically,
we are interested in how the observed time series length
affect competitors’ inference quality. For synthetic data
we vary the number of time steps t in X between 30
and 300, set the SNR to 1/5 and report the AUC for
competing techniques in Fig. 3(f). GIST(R)’s advantage
is small compared to baselines when a small prefix
of the time series is employed (t = 30). As the
length of observations increases, our method can learn
a better encoding matrix U and consequently a more
accurate Laplacian. While the AUC of baselines also
improves with t, it remains significantly lower than
that of GIST(R). We also vary the number of observed
timesteps t for two real-world dataset. In Road, we
test the AUC for edge inference and report results in
Fig. 3(g). While all methods improve with t, GIST(S)
retains dominant performance across all values of t. We
also evaluate the effect of t on the quality of cluster
recovery (Fig. 3(h)). GIST(R) and GIST-SP dominate
alternative on this task across all values of t.

6.4 Evaluation on real-word datasets We next
evaluate all techniques on the real-world datasets (in-
cluding two versions of Stock) and report results for
edge prediction, and cluster detection in Tbl. 2.
Edge prediction. In all datasets, a variation of our
method performs best in terms of edge prediction AUC
with the exception of the TEMP dataset where Dong
has a small advantage. Despite this disadvantage in
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RM Wiki Bike Crime Road TEMP Covid Stock-small Stock S&P 500

Method AUC t(s) AUC t(s) AUC t(s) AUC t(s) AUC t(s) AUC NMI Pur t(s) AUC NMI Pur t(s) NMI Pur t(s) NMI Pur t(s)

Corr 64.4 .02 50.9 .02 61.0 .02 52.5 .02 75.7 .02 96.3 39.0 65.4 .02 63.2 9.6 47.7 .02 14.5 45.2 .02 13.8 20.7 .05

Dong 71.4 3.7 55.1 7.3 62.9 8.4 52.6 2.9 76.8 3.9 99.2 62.2 78.6 4.9 72.3 58.2 73.0 4.5 44.0 69.8 4.5 21.8 33.1 718
K-Dong 71.7 .07 55.4 .07 56.4 .07 49.8 .02 76.8 .04 93.8 68.7 78.6 .03 67.4 52.7 69.1 .02 43.3 69.2 .03 21.6 32.7 2.2

K-Log 73.4 .29 52.5 .25 62.3 .29 49.8 .12 79.4 .17 89.9 62.2 78.6 .15 71.5 52.6 69.0 .12 44.5 69.2 .12 22.9 34.0 8.7
IDGL / / / / / / / / / / 92.0 72.4 91.4 24 60.7 9.4 47.6 23 44.8 64.6 24 9.7 20.5 45

GIST(S) 73.4 3.8 57.4 5.1 64.0 6.1 53.8 2.4 80.0 1.1 96.1 67.2 80.0 3.0 50.1 20.0 62.2 3.0 46.8 73.8 2.7 21.8 33.4 205
GIST(R) 71.6 3.2 52.4 5.4 60.7 10.1 53.8 1.6 75.8 1.6 90.0 83.4 94.3 3.4 66.4 47.5 69.4 2.4 44.7 69.2 2.3 24.0 36.4 211

GIST-SP 74.3 .38 54.4 .4 61.2 .32 54.0 .24 74.5 .22 91.4 80.3 91.7 .2 73.3 58.8 74.0 .14 53.3 73.8 .18 18.9 31.4 8.8

Table 2: Comparison of all competitors on real-world datasets for (i) edge prediction in terms of Area under the ROC curve (AUC),

(ii) cluster recovery via Normalized Mutual Information (NMI) and Purity (Pur), and (iii) running time t(s) in seconds.

AUC, GIST(R) and GIST-SP preform better in terms
of cluster recovery (both NMI and purity) which we
discuss in the subsequent section. In the Covid, RM
and Crime we observe advantage when utilizing GIST-
SP. The ground-truth edges in Covid reflect neighboring
counties. Throughout the pandemic waves, Covid cases
exhibit rises and falls similarly in neighboring counties,
however, counties may be temporally lagged in this
patterns. Since, GIST-SP only considers shared periods
when inferring edges, it is able to capture neighboring
lag better than alternatives resulting in better AUC.
Advantage in the Reality Mining dataset can be also
due to lag in user message responses, resulting in “off-
phase” time series. Overall, the strong performance of
our methods demonstrate that edges in these datasets
reflects global temporal patterns. For example, the
connections in Bike rental and Road would be highly
reflective of weekly traffic patterns. Note that IDGL
was not evaluated on datasets without GT communities
which we employ as node labels for IDGL.
Clustering. In the clustering experiments we evaluate
how well the graphs inferred by competing techniques
reflect ground truth groups. To this end, we perform
spectral clustering on the learned graphs and report
the NMI and Purity (Pur) scores of the learned clus-
ters compared to the ground truth. Results are also
reported in Tbl. 2. In all datasets with ground truth
clusters GIST obtains both the highest NMI and Pu-
rity. In TEMP, although not the best at edge inference
(AUC), GIST(R)’ clustering of US cities aligns best with
known climate zones. Edges predicted by Dong, K-Log
and K-Dong are less reflective of long-term tempera-
ture patterns due to enforcing smoothness in the tem-
poral rather encoding domain. In Stock-small GIST-SP
produces groupings that best align to sectors, however,
GIST(R) performs best in the full Stock data. Stock-
small contains only three sectors (Basic Materials, Com-
munication Services, and Energy) with low likelihood
of cross-sector shared trends, hence the better results
across all methods as compared to the full Stock data.
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Figure 4: Scalability comparison of GIST and competing

baselines with increasing number of nodes (a) and number of time

steps (b). Running time is in seconds.

6.5 Running time. Beyond quality, Tbl. 2 also lists
running times for all methods and datasets. While
a simpler baseline like Corr and the optimized signal
processing methods from [28] run between 5 and 10
times faster than our method, they produce graphs of
lower quality. Our GIST-SP objective is faster than
alternatives as it follows a Gradient Descent (GD)
approach. GIST(R) and GIST(S) are generally faster
than the original Dong method. To further compare
the scalability of all methods we vary the number of
nodes and number of time steps in a synthetic dataset
and report running times in Fig. 4. The running
time of all competitors grows super-linearly with the
number of nodes (Fig. 4(a)) which is expected as the
number of possible edges grows quadratically. Dong,
GIST(S), GIST(R) are relatively slower than GIST-SP,
K-Log and K-Dong methods, mainly because they use
closed-form solutions and/or optimize relatively more
complex objectives. All methods can infer a graph
among 2000 time series within one hour. Running time
of competitors is less affected by the number of time
steps (see Fig. 4(b)).

6.6 Case Studies: Tech Stocks and Covid in
Vermont We perform a case study of a subset of the
Stock dataset corresponding to the technology sector.
We compare the top 15 edges and associated companies
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learned by GIST(R) with λi = .0001, i = 1, 2, 3 and
compare them with the those of highest correlation
in Fig. 1(b). Each node represents a company listed
on the exchange with their industry indicated by the
legend and company ticker placed next to the associated
node. In Fig 1(b)-left GIST(R) learns edges which
correspond to long term shared periodic trends. This
can be seen in its ability to create more within-subsector
edges compared to correlation (Fig 1(b)-right). This
is further supported by a deeper inspection of the
formed edges. For example, GIST(R) identifies an
edge between Microsoft (MSFT) and Apple (AAPL)
which are well known competitors. In contrast, such
an edge is not identified by Corr. It is interesting
to see that Amphenol (APH) bridges the gap between
semiconductor producers and the business-to-business
technology companies they supply. A second case study
on the Covid dataset [31] is described in [36].

7 Conclusion

We proposed GIST, a dictionary-based method for in-
ferring a graph among time series. It utilizes temporal
dictionaries to encode temporal signals while simulta-
neously inferring a graph that is smooth with respect
to encodings. We demonstrated that GIST was able to
learn edges that share period, smoothness, or any other
pattern that can be readily captured by a dictionary.
We also demonstrated the advantage of our technique
on a synthetic and eight real-world datasets. Specifi-
cally, GIST was able to reconstruct graphs and their
ground truth groups more accurately than an array of
state-of-the-art baselines. We further demonstrated its
applicability through case studies where GIST learned
interpretable network structures.
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Kaelbling, Neural relational inference with fast modu-

lar meta-learning, Advances in Neural Information Pro-
cessing Systems, 32 (2019).

[5] A. Amelio and C. Pizzuti, Is normalized mutual
information a fair measure for comparing community
detection methods?, in 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis
and Mining (ASONAM), 2015, pp. 1584–1585.

[6] H. C. Baggio, A. Abos, B. Segura, A. Cam-
pabadal, A. Garcia-Diaz, C. Uribe, Y. Compta,
M. J. Marti, F. Valldeoriola, and C. Junque,
Statistical inference in brain graphs using threshold-free
network-based statistics, tech. rep., Wiley Online, 2018.

[7] P. Bogdanov, M. Mongiovi, and A. K. Singh,
Mining heavy subgraphs in time-evolving networks, in
ICDM, 2011.

[8] A. W. Bohannon, B. M. Sadler, and R. V. Balan,
A filtering framework for time-varying graph signals, in
Vertex-Frequency Analysis of Graph Signals, Springer,
2019, pp. 341–376.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multi-
pliers, Found. Trends Mach. Learn., 3 (2011), pp. 1–122.

[10] T. T. Cai, W. Liu, and H. H. Zhou, Estimating
sparse precision matrix: Optimal rates of convergence
and adaptive estimation, The Annals of Statistics, 44
(2016), pp. 455–488.

[11] Y. Chen, L. Wu, and M. Zaki, Iterative deep graph
learning for graph neural networks: Better and robust
node embeddings, Advances in neural information pro-
cessing systems, 33 (2020), pp. 19314–19326.

[12] C. K. Chui, An introduction to wavelets, vol. 1, Aca-
demic press, 1992.

[13] C. P. Department, Crimes - 2001 to present: City of
chicago: Data portal, Feb 2022.

[14] W. Dong and A. Pentland, A network analysis of
road traffic with vehicle tracking data., in AAAI Spring
Symposium: Human Behavior Modeling, 2009.

[15] X. Dong, D. Thanou, P. Frossard, and P. Van-
dergheynst, Learning laplacian matrix in smooth
graph signal representations, 2016.

[16] X. Dong, D. Thanou, M. Rabbat, and
P. Frossard, Learning graphs from data: A sig-
nal representation perspective, IEEE Signal Processing
Magazine, 36 (2019), p. 44–63.

[17] N. Eagle and A. S. Pentland, Reality mining:
sensing complex social systems, Personal and ubiquitous
computing, 10 (2006), pp. 255–268.

[18] M. Elad and M. Aharon, Image denoising via sparse
and redundant representations over learned dictionar-
ies, IEEE Transactions on Image processing, 15 (2006),
pp. 3736–3745.

[19] L. Franceschi, M. Niepert, M. Pontil, and
X. He, Learning discrete structures for graph neural
networks, in International conference on machine learn-
ing, PMLR, 2019.

[20] J. Friedman, T. Hastie, and R. Tibshirani, Sparse
inverse covariance estimation with the lasso, 2007.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

 https://www.kaggle.com/datasets/sudalairajkumar/daily-temperature-of-major-cities.
 https://www.kaggle.com/datasets/sudalairajkumar/daily-temperature-of-major-cities.
 https://www.kaggle.com/datasets/sudalairajkumar/daily-temperature-of-major-cities.
 http://hubwaydatachallenge.org.


[21] J. Friedman, T. Hastie, and R. Tibshirani, Sparse
inverse covariance estimation with the graphical lasso,
Biostatistics, 9 (2008), pp. 432–441.

[22] V. Goepp, O. Bouaziz, and G. Nuel, Spline re-
gression with automatic knot selection, arXiv preprint
arXiv:1808.01770, (2018).

[23] G. Golub, S. Nash, and C. Van Loan, A hessenberg-
schur method for the problem ax + xb= c, IEEE Trans-
actions on Automatic Control, 24 (1979), pp. 909–913.

[24] M. Gomez-Rodriguez, J. Leskovec, and
A. Krause, Inferring networks of diffusion and
influence, ACM Trans. Knowl. Discov. Data, 5 (2012).

[25] C. Graber and A. Schwing, Dynamic neural rela-
tional inference for forecasting trajectories, in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2020.

[26] A. Grover, A. Zweig, and S. Ermon, Graphite:
Iterative generative modeling of graphs, in International
conference on machine learning, PMLR, 2019.

[27] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, At-
tention based spatial-temporal graph convolutional net-
works for traffic flow forecasting, in Proc. of the AAAI
Conf. on Artificial Intelligence, 2019.

[28] V. Kalofolias, How to learn a graph from smooth
signals, in Artificial Intelligence and Statistics, PMLR,
2016, pp. 920–929.

[29] V. Kalofolias, X. Bresson, M. Bronstein, and
P. Vandergheynst, Matrix completion on graphs,
arXiv preprint arXiv:1408.1717, (2014).

[30] V. Kalofolias and N. Perraudin, Large scale
graph learning from smooth signals, arXiv preprint
arXiv:1710.05654, (2017).

[31] S. Kemp, J. W. Howel, and P. C. Lu, Bing covid-19
tracker, Apr 2020.

[32] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and
R. Zemel, Neural relational inference for interacting
systems, in International Conference on Machine Learn-
ing, PMLR, 2018, pp. 2688–2697.

[33] N. Komodakis and J.-C. Pesquet, Playing with
duality: An overview of recent primal-dual approaches
for solving large-scale optimization problems, 2014.

[34] Z. Liu, T.-K. Nguyen, and Y. Fang, Tail-gnn: Tail-
node graph neural networks, in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, 2021, pp. 1109–1119.
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[46] I. Tošić and P. Frossard, Dictionary learning, IEEE
Signal Processing Magazine, 28 (2011), pp. 27–38.

[47] U. Von Luxburg, A tutorial on spectral clustering,
Statistics and computing, 17 (2007), pp. 395–416.

[48] R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju,
C. Shi, and X. Xie, Graph structure estimation neural
networks, in Proceedings of the Web Conference 2021,
2021, pp. 342–353.

[49] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry,
and Y. Ma, Robust face recognition via sparse repre-
sentation, IEEE transactions on pattern analysis and
machine intelligence, 31 (2008), pp. 210–227.

[50] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang,
and C. Zhang, Connecting the dots: Multivariate
time series forecasting with graph neural networks, in
Proceedings of the 26th ACM SIGKDD Intl. Conference
on Knowledge Discovery & Data Mining, 2020.

[51] H. Xu, Y. Huang, Z. Duan, J. Feng, and P. Song,
Multivariate time series forecasting based on causal in-
ference with transfer entropy and graph neural network,
arXiv preprint arXiv:2005.01185, (2020).

[52] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, A
survey of sparse representation: algorithms and appli-
cations, IEEE access, 3 (2015), pp. 490–530.

[53] T. Zhao, Y. Liu, L. Neves, O. Woodford,
M. Jiang, and N. Shah, Data augmentation for graph
neural networks, in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 35, 2021, pp. 11015–
11023.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

http://www.cs.albany.edu/~petko/lab/publications.html
http://www.cs.albany.edu/~petko/lab/publications.html

	Introduction
	Related work
	Preliminaries
	Problem formulation
	Optimization overview: the GIST algorithm 
	Experimental evaluation
	Datasets.
	Experimental setup.
	Effect of data properties.
	Evaluation on real-word datasets
	Running time.
	Case Studies: Tech Stocks and Covid in Vermont 

	Conclusion
	Acknowledgements

