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Abstract—Natural and human-engineered systems often ex-
hibit periodic behavior. Examples include the climate system,
migration of animals in the wild, consumption of electricity in the
power grid and others. The behavior of such systems, however, is
not perfectly periodic. The time series we collect from them are
often noisy and incomplete due to limitations of data collection
and transmission, or due to sensor malfunction and outages.
In addition, there are often multiple periods, for example, air
temperature and pressure oscillates daily and yearly with the
seasons. Hence, accurate and robust period estimation from raw
time series is a fundamental task often employed in downstream
applications such as traffic prediction and anomaly detection.

In this paper, we study the period estimation problem in noisy
time series with multiple periods and missing values. We propose
a method based on a Ramanujan periodic dictionary and a vector
completion model to estimate missing values. To account for
the block structure in the Ramanujan periodic dictionary, we
introduce a graph Laplacian group lasso regularization which
enables robust and efficient period learning in the presence of
missing observations. In our extensive experiments on datasets
from diverse domains, our proposed methodology outperforms
state-of-art baselines in terms of accuracy of period estimation.

Index Terms—Period Estimation; Nested Periodic Matrices;
Missing Value Imputation; Graph Laplacian Group Lasso; Al-
ternating Direction Method of Multipliers

I. INTRODUCTION

Periodicity is a common pattern in time series from many
natural and human-engineered systems: tandem repeats in
DNA [1], seasonal animal migration [2], weather [3], electro-
cardiograms [4] and music composition [5] all exhibit periodic
behavior. Identifying the natural periods in observed signals is
a key step in understand complex system behavior and solving
important prediction and outlier detection tasks [6]–[8]. As a
result, the problem of period learning from signals has received
a lot of attention in the fields of signal processing [9], data
mining [10], databases [11], and bioinformatics [12].

The major challenges in period estimation are three-fold: (i)
multiplicity (or complexity) of the underlying periods [9], (ii)
noise [10], and (iii) missing values [13]. Real-world signals
often exhibit more than one natural period (multiplicity) [3].
For example, electricity consumption over time is a mixture
of daily, weekly and season-specific cycles [14]. In addition,
the measured signals are often contaminated by measure-
ment noise [15]. The issues of multiplicity and noise have
been previously addressed by employing multi-scale basis
for reconstruction (e.g. Fourier [16], wavelets [17] and other
periodic bases [9]), however, the issue of missing values due

to sensor malfunction [10] or communication errors in data
transmission [13] has received limited attention. Incomplete
data poses a key challenge for traditional period estimation
methods based on Fourier Transform (FT) [16], AutoCorrela-
tion Functions (ACF) [18] and periodograms [19], as they are
all designed with the expectation of regularly sampled time
series. In addition, these traditional methods often detect a
large number of spurious periods, and thus, require non-trivial
thresholding to determine the predicted periods [9]. These
limitations make period detection in noisy signals with missing
values especially challenging.

Period detection has recently been approached within a
periodic dictionary framework [20]–[22]. The main idea is
to approximate signals as a linear combinations of atoms in
periodic dictionaries. Vaidyanathan et al. [22] proposed an
efficient dictionary construction method, called Farey dictio-
nary, in which periods are explicitly represented within a
set of nested periodic matrices. This approach was further
generalized to a family of periodic dictionaries including the
Ramanujan periodic dictionary [9], in which period estimation
is formulated as a convex optimization problem enabling
optimal results and efficient inference. The effectiveness of
the Ramanujan basis was demonstrated in diverse applications
such as tandem repeats in DNA [1], protein repeats [12], music
analysis [5] and community detection [23].

Both traditional methods and periodic dictionary-based
methods do not explicitly handle missing observations. As
a result, when employed on time series with missing values
(imputed using various imputation techniques), they fail to
recover the underlying true periods. Figure 1 demonstrates
this challenge for a real-world dataset tracking daily beer con-
sumption [24]. We omit 30% of the observations in the time
series and detect the period using our proposed approach PIE,
and baselines based on Fast Fourier Transform (FFT+) [16]
and Nested Periodic Matrices (NPM+) [9], where missing
values for baselines are imputed using spline interpolation.
Our proposed method PIE not only obtains the ground truth
period of 7 days, but also reports no other spurious periods
in its periodogram, while alternatives are sensitive to missing
values and report multiple spurious periods.

In this paper we propose a period estimation framework,
called PIE, for noisy and incomplete time series. The opti-
mization objective in our framework unifies the estimation
of missing values and period estimation and is motivated
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Fig. 1. Periodogram for daily beer consumption in the Czech republic [24]
with 30% missing values estimated by our method PIE and baselines including
NPM [9] and FFT [16]. The expected period of 7 days (or a week) is the
strongest period detected by PIE, while alternatives extract multiple periods
which cannot be readily interpreted.

by the co-dependence of the two tasks. Namely, a good
estimation of missing observations can aid accurate period
learning and vice versa. A key to the accuracy of our method is
a graph Laplacian group lasso regularization designed to take
advantage of the block structure in the Ramanujan periodic
dictionary to improve the selectivity and robustness of our
framework.

Our contributions in this paper are as follows:
(1) Novelty: To the best of our knowledge our method,
called PIE, is the first framework for estimating periods from
incomplete univariate time series.
(2) Robustness: We propose a novel group structure regular-
ization for nested periodic dictionaries, leading to improved
robustness and efficiency.
(3) Applicability: Extensive experiments on synthetic data
and real-world datasets demonstrate that PIE exhibits better
accuracy than state-of-the-art period learning methods while
maintaining superior scalability.

II. RELATED WORK

Period estimation. Traditional period estimation employs
Fourier transform [2], [25] to represent time series in the
frequency domain and determine the periods based on the
magnitude of individual frequencies. The key drawback of
such approaches is the detection of a large number of spurious
periods [9]. Auto-correlation is another traditional solution
for period estimation [26], [27]. In addition, hybrid methods
that combine Fourier transformation and auto-correlation have
also been proposed for the problem [28]. All approaches from
this group often rely on a predefined threshold for selecting
dominant periods.

The matrix profile [29], [30] is another powerful tool for
period estimation as it detects similarities in time series

segments. The framework, however, requires reference time
series for comparison and depends on prior knowledge of the
size of comparison time window, which can be critical for
period estimation. As reference time series and comparison
window sizes are not always readily available, matrix profile
methods cannot be readily applied to time series of unknown
period and missing values, a setting we focus on in this paper.

The period estimation problem has been recently ap-
proached by a periodic dictionary framework by Tenneti and
colleagues [9] who proposed a family of periodic dictionaries
and a unified convex model for estimating periods. This
approach offers significant improvements compared to earlier
work as it employs orthogonality of the dictionary atoms,
resulting in unique solutions [31].

Period learning from incomplete data has been limited to
event sequences as opposed to general time series [32], [33].
Li et al. [32] proposed period learning in the presence of
missing events by partitioning the data into short segments
of predefined length and casting the period detection as
an optimal alignment length for segments. Yuan et al. [33]
proposed a probabilistic model for learning multiple periods in
event sequences with missing values. However, these methods
cannot be readily applied to general time series as they are
designed for discrete binary event sequences. In addition,
they assume a single period (as opposed to multiple) and
rely on prior information about the event sequences, e.g., a
segmentation threshold in [32].
Missing value imputation. Our primary goal is not to perform
missing value imputation, a part of our model approximates
missing values to recover the periodic patterns in data. General
solutions for missing data imputation have been proposed to
deal with incomplete matrices, such as Low-rank based matrix
estimation [34], the generalized Winberg algorithm [35], and
matrix profiles [36]. Matrix completion methods do not explic-
itly model rows/columns as temporal signals (i.e. permuting
rows and columns would produce the same results from these
methods) and further take advantage of multiple signals. Liu
and colleagues [37] address the missing value imputation in
multivariate time series using deep learning, however, they
take advantage of relations among multiple time series. This
is different from our task in which we focus on uni-variate time
series. Another relevant method by Xie et al. [38] partitions a
signal and stack segments in a matrix which is then factorized
to estimate missing data. This method requires knowledge of
the periodicity to partition the signal and has an underlying
assumption that the signal has only one period. In [39], a
non-negative Hidden Markov Model is proposed to estimate
missing data by employing dictionaries learned from training
data without missing values. As this method is supervised, it
is not suitable for our task in which no training is available.
In summary, missing value imputation techniques either rely
on commonalities among multiple signals or supervision in
the form of complete data, but do not address directly period
learning and data imputation in univariate time series.

Deep learning methods for missing data imputation have
also been proposed including recurrent architectures [40] and



adversarial learning [37]. Beyond their high complexity, these
methods require large quantity of training data to learn the
imputation models. Instead, we exploit periodicity directly in
time series with missing values without the need for additional
training data.

III. PRELIMINARIES AND NOTATION

In this section we introduce preliminaries and notation used
in the remainder of the paper.

Definition 3.1: (Periodic time series) A time series
x(t) is k-periodic if there exists an integer g such that
|x(n+ k)− x(n)| ≤ ε,∀n, where k is the smallest integer
satisfying the above inequality and ε is a small real value.

Instead of using conventional methods for period estimation,
such as FT, we consider a periodic dictionary based framework
using Nested Periodic Matrices (NPM) [9].

Definition 3.2: (Nested Periodic Matrices) Let the inte-
gers {d1, d2, ...dK} be the divisors of d sorted in increasing
order. The Nested Periodic Matrices (NPM) for a period of
length d are defined as:

Ad = [Pd1 ,Pd2 , ...PdK ] , (1)

where each Pdi ∈ Rd×φ(di) is a periodic basis matrix for a
component period di and d =

∑
i φ (di) where φ (di) denotes

the Euler totient function evaluated at di, i.e. the number of
integers between 1 and di that are co-prime to di. Columns of
Pdi are signals with period di. All basis matrices in the above
definition are constructed based on the Ramanujan sum:

Cdi(g) =

di∑
k=1,gcd(k,di)=1

ej2πkg/di , (2)

where gcd(k, di) denotes the greatest common divisor of k
and di. The Ramanujan basis is built as a circulant matrix of
Ramanujan sums as follows:

Pdi =

 Cdi (0) Cdi (g − 1) ... Cdi (1)
Cdi (1) Cdi (0) ... Cdi (2)
... ... ... ...

Cdi (g − 1) Cdi (g − 2) ... Cdi (0)

 . (3)

The final dictionary A with maximum period Pmax is formed
by concatenating basis periodic matrices with periods from 1
to Pmax as A = [A1, ..,APmax ]. A small periodic dictionary
example A based on the above construction is presented in
Fig. 2. It includes nested matrices for three periods (2, 3, 5).
The columns of this dictionary are periodically extended to the
length of the input signal which in this example is 6. Further
details related to the above definitions are available in [9].

The model for period estimation in complete (no missing
data) signals proposed by Tenneti and colleagues [9] aims to
obtain a succinct representation of an input signal through the
NPM basis:

argmin
b
‖Hb‖Ln , s.t. x = Ab, (4)

where x is the input signal; b contains the coefficients speci-
fying the representation in NPM basis; H is a diagonal matrix
encouraging representation through small periods (Hii = p2,
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Fig. 2. An example of a Ramanujan periodic dictionary A (left), which has
three periods as (2, 3, 5) and assumes a length of the time series to encode
of 6. On the right we show a block diagonal adjacency matrix G we employ
to enforce the group structure in the dictionary. Positions corresponding to
atoms of the same period have edges of weight 1 in G and 0 otherwise.

where p is the period of the i-th column in A); and Ln is a
norm basis. We consider the L1 and L2 norms proposed in
past work as baselines and refer to the corresponding period
estimators as NPM-L1 and NPM-L2, respectively.

IV. PROBLEM FORMULATION

The input for our problem is an incomplete time series x ∈
RT and a corresponding binary mask vector w denoting the
observed time points in x, i.e., wi = 1 if xi is observed, and
wi = 0 otherwise. Our goal is to estimate the periods in x.
A. Block-aware period estimation for complete signals

We adopt the Ramanujan periodic dictionary for period
estimation using a novel block-aware sparse coding model.
The NPM basis and in particular the Ramanujan periodic
dictionary have a group structure, namely each period is
represented by φ (di) column atoms. Columns from the same
block can collectively represent an arbitrary temporal pattern
with a corresponding period of length di, and this block-
wise dependence should be enforced when searching for a
sparse reconstruction of the given signal. Note, that prior NPM
models seek a sparse representation without considering this
block structure.

We propose to model this dependence through a Graph
Laplacian group lasso regularization on the reconstruction
coefficients b:

argmin
b

1

2

∑
i

∑
j

(bi − bj)
2
Gij = bTLb, (5)

where G is a block matrix with elements Gij = 1 if the i-th
and j-th dictionary atoms (columns) are part of the same NPM
block, as shown in Fig 2. L is the combinatorial Laplacian
matrix of G defined as L = D −G, where D is a diagonal
degree matrix. The block-aware objective for complete signals
we propose is as follows:

argmin
b

1

2
‖x−Ab‖22 + λ1 ‖Hb‖1 + λ2b

TLb, (6)

where λ1 and λ2 are balance parameters. The first term in the
objective is a data fitting function, the second term enforces
sparse representation and the third term imposes the Graph



Laplacian group structure penalty. The L is defined same as
in Eq. 4

B. Handling missing observations

When the time series is partially observed the objective from
Eq. 6 is not directly applicable. To perform period estimation
we introduce a complete signal proxy z, as follows:

argmin
z,b

1

2
‖z−Ab‖22 + λ0 ‖w � (x− z)‖22

+ λ1 ‖Hb‖1 + λ2b
TLb,

(7)

where � is the Hadamard element-wise product. Minimizing
the above objective allows us to simultaneously learn the
periods and obtain estimates for the periodic component of
missing values in z. The objective also incorporates the inter-
dependence between missing value imputation and period
estimation: good missing value imputation will allow recovery
of the true periods and similarly knowledge of the period will
enable accurate missing value imputation.

V. OPTIMIZATION

Since H is invertible, we convert the objective into standard
Lasso format by introducing Â = AH−1 and β = Hb.
Therefore, we can rewrite Eq. 7 as follows:

argmin
z,β

1

2

∥∥∥z− Âβ
∥∥∥2
2

+ λ0 ‖w � (x− z)‖22

+ λ1 ‖β‖1 + λ2β
TLβ.

(8)

Note that H is constant and has the same value in each block,
therefore, the minimizing βTLβ is equivalent to minimizing
bTLb.

Since the objective in Eq. 8 is non-differentiable, it is hard
to develop an optimization approach that updates (β, z) simul-
taneously. We propose an alternating minimization method to
optimize the variables in turn. To this end we partition Eq. 8
into two sub-problems w.r.t (β, z), specified below:

argmin
β

1
2

∥∥∥z− Âβ
∥∥∥2
2

+ λ1 ‖β‖1 + λ2β
TLβ (a)

argmin
z

λ0 ‖w � (x− z)‖22 + 1
2

∥∥∥z− Âβ
∥∥∥2
2

(b)
(9)

Update for β: Because ‖β‖1 is non-differentiable, we employ
the alternating direction method of multipliers (ADMM) [41]
to optimize the subproblem in Eq. 9(a). We introduce an
auxiliary variable α and reformulate the problem as follows:

argmin
β

1

2

∥∥∥z− Âβ
∥∥∥2
2

+ λ2β
TLβ + λ1 ‖α‖1

s.t α = β

(10)

Following the ADMM method, we formulate the augmented
Lagrangian form:

L (β,α,y) =
1

2

∥∥∥z− Âβ
∥∥∥2
2

+ λ2β
TLβ + λ1 ‖α‖1

+ 〈y,β −α〉+
ρ

2
‖β −α‖22 ,

(11)

where y holds the corresponding Lagrangian multipliers and
ρ is a penalty parameter. The updates for (β,α,y) at the
(k + 1)-th iteration are:

βk+1 = argmin L
(
β,αk,yk

)
αk+1 = argmin L

(
βk+1,α,yk

)
yk+1 = yk + ρ

(
βk+1 −αk+1

) (12)

Next, we present the solutions to the subproblems from Eq. 12.

βk+1 = argmin L
(
β,αk,yk

)
= argmin

1

2

∥∥∥z− Âβ
∥∥∥2
2

+ λ2β
TLβ

+
〈
yk,β −αk

〉
+
ρ

2

∥∥β −αk
∥∥2
2

= argmin
1

2

∥∥∥z− Âβ
∥∥∥2
2

+ λ2β
TLβ +

ρ

2

∥∥∥∥β −αk +
yk

ρ

∥∥∥∥2
2

(13)
By taking the gradient of L

(
β,αk,yk

)
w.r.t β, we get:

ÂT
(
Âβ − z

)
+ 2λ2Lβ + ρ(β −αk +

yk

ρ
) = 0 (14)

We, thus, obtain a closed-form solution:

βk+1 =
(
ÂT Â + 2λ2L + ρI

)−1 (
ÂT z + ραk − yk

)
(15)

The update of αk+1 is the following problem:

αk+1 = argmin L
(
βk+1,α,yk

)
= argminλ1 ‖α‖1 +

〈
y,βk+1 −α

〉
+
ρ

2
‖β −α‖22

= argminλ1 ‖α‖1 +
ρ

2

∥∥∥∥βk+1 −α +
yk

ρ

∥∥∥∥2
2

(16)

This subproblem can be solved by soft thresholding [42] based
on the following Lemma 1.

Lemma 1: If λ > 0, then

argminu

1

2
‖u− v‖22 + λ ‖u‖1

has an element-wise closed form solution:

ui = max {|vi| − λ, 0} × sign (vi) (17)

where sign (r) is the signum function, defined as

sign (r) =


+1 if r > 0

0 if r = 0

−1 if r < 0

(18)

As a result, the i-th element of α has a closed-form solution

αt+1
i = max

{
|vi| −

λ1
ρ
, 0

}
· sign (vi) ,

where v = βk+1 + yk

ρ .
Update for z: Taking the gradient of Eq. 9(b) w.r.t z and
setting it to 0, we obtain:

2λ0w � (z− x) +
(
z− Âβ

)
= 0. (19)



Thus, we have a closed-form solution for z:

z =
(

2λ0w � x + Âβ
)
� (1 + 2λ0w) , (20)

where 1 ∈ RT is a vector of all ones and � denotes element-
wise division.

Algorithm 1: PIE
1 Input: A time series x and parameters (λ0, λ1, λ2 )
2 Initialize: z = x,y = 0, ρ = 1

3 Q =
(
ÂT Â+ 2λ2L+ ρI

)−1

4 while not converged do
5 while not converged do
6 βk+1 = Q

(
ÂT z+ ραk − yk

)
7 αk+1

i = max
{
|vi| − λ1

ρ
, 0
}
· sign (vi)

8 yk+1 = yk +
(
βk+1 −αk+1

)
;

9 αk+1 = αk

10 end
11 βt+1 = βk+1;
12 zt+1 =

(
2λ0w � x+ Âβt+1

)
� (1+ 2λ0w);

13 t← t+ 1;
14 end
15 b = H−1α;
16 Output: Complete time series z, sparse coefficients b

A. Overall algorithm and complexity

We summarize the overall algorithm of our method for
Period Estimation and Imputation (PIE) in Algorithm. 1. The
steps of the algorithm alternate between updating the two
variables β and z, based on the updates derived in the previous
subsection. Finally, to obtain predicted periods, we add the
coefficients learned in b in the columns corresponding to
dictionary atoms representing a given period. Top periods rank
highest in terms of aggregate dictionary loadings.

There are two main loops in the algorithm: an inner loop
to update β and an outer loop which iterates between the two
variables. The elements of β are updated in steps 6-9 and the
complexity of these steps is dominated by step 6 since Steps
7-9 are all linear in the size of the input T . Updating β (Step
6) involves a matrix multiplication, which has complexity of
Θ (gT ), where g is the total number of columns of Â. The
complete signal z is updated at step 12 and has a complexity
of Θ (gT ). Note that the complexity of step 3 is O(g3), but
this inversion is computed only once and re-used after that. In
addition, this step is data agnostic and can be pre-computed
and re-used for the analysis of different time series. Thus, the
overall complexity of one iteration of the main loop is Θ (gT ).

VI. EXPERIMENTAL EVALUATION

We evaluate our method PIE on 3 different tasks: 1) period
estimation, 2) missing value imputation and 3) future value
prediction. We use state-of-the-art baselines for comparison in
each of them and perform experiments on both synthetic and
real-world datasets.

A. Datasets
We use the following datasets for evaluation:

Synthetic data: We generate periodic time series by following
the experimental setup in [9]. We set the series length to
T = 200 and ground truth (GT) periods to [3, 7, 11]. Then, we
add random noise and remove observations at random times
(missing values).
Web traffic [43]: This dataset tracks the number of daily
views of Wikipedia articles between 7/2015 and 12/2016. We
follow the process in [44] to aggregate data at a daily time
scale based on the languages of articles (there are 7 languages
in the dataset). We report performance on the German time
series, however, all languages exhibit similar performance. For
this data, we expect ”natural” periods of a week, or a month.
Bike rentals [45]: This dataset contains time series of rental
logs of bikes from 2011 to 2012 in the Capital Bikeshare
system, Washington D.C., USA. Bike rentals are likely to be
correlated with weather conditions as well as weekly patterns
of human movement. For instance, temperature, precipitation,
season, day of the week, and hour in the day are likely to affect
rental behaviors. In particular, we expect a weekly periodicity
due to work-week patterns, such as riding to work or primarily
for leisure when time is available on weekends.
Sunspots [46]: This dataset contains the records of sunspot ac-
tivity between 1/1749 and 8/2017. A sunspot is a phenomenon
in which a region of the sun’s photo-sphere becomes darker
than its surrounding area. The mechanism behind sunspot
formation is driven by concentrations of magnetic field flux
leading to a periodic pattern which repeats approximately
every 11 years (132 months) according to the solar cycle.
Beer consumption [24]: This dataset includes beer consump-
tion from the Czech Republic. Beer consumption is often
related to daily or weekly activity, for instance after-work
socialization or larger social events on weekend days. As such,
we expect a weekly period.
Air Quality [47]: This hourly dataset contains the PM2.5
measurements for five cities in China spanning the period
between 2010 and 2015. PM2.5 levels measure small (less than
2.5nm) airborne particulate matter, predominantly generated
by burning of fossil fuel. Therefore, the PM2.5 index is related
to automobile emissions, industrial activity, and construction
work. These activities are likely to follow human behavioral
patterns, which will often lead to periods of half (12 hours)
or full days (24 hours) [48]. In this experiment, we report the
results based on data from Jingan, Shangai, China.
Hourly weather [49]: This data includes hourly weather
measurements for 5 years from multiple cities. We evaluate
period estimation on the pressure time series as it is directly
affected by the solar position and one can expect a half day
(12 hours) or full day (24 hours) GT periods in this dataset.
We report in experiments the time series for Atalanta city,
however, results from other cities are similar.

A note on expected periods: Explicit ground truth periods
are not available for many of the above datasets. Since
some represent human activity we intuitively expect ”natural”
periods - days, weeks, months, years. Other hard-to-explain
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Fig. 3. Period estimation comparison of the competing techniques on synthetic datasets. In the first column, we show results for varying missing ratio; the
second column shows the results for varying SNR; the third column shows the results for varying time series length; the last column shows the results of
varying Pmax for LP, NPM-L1, and NPM-L2.

periods detected by competing techniques are likely spurious
as they cannot be interpreted as driven by phenomena from
the respective domains.

B. Experimental settings

Baselines: Since we consider two different tasks, period
estimation and data imputation, we adopt two corresponding
groups of baselines for comparison. For period estimation, we
compare PIE to NPM-L1 [9], NPM-L2 [9] and FFT [16].
For this evaluation, all missing values are filled in with
zeros. For missing value imputation, we compare to linear
interpolation [50], spline interpolation [50], and LMF [38]
using the actual ground truth periods for partitioning the time
series. In addition, we combine period estimation methods
with spline interpolation, which is the best missing value
imputation method among baselines, to obtain NPM-L1+,
NPM-L2+ and FFT+. This is to reduce the negative impact
of the missing values for these period estimation methods.
Evaluation Metrics: We compute the accuracy of detecting
ground truth (GT) periods for the period estimation task. As
methods often detect multiple periods, we sort the obtained
periods according to their magnitudes and use the top-k ranked
periods, where k is the number of GT periods. We use Sum
of Squared Errors (SSE) to compare alternative approaches on
missing value estimation, forecasting and parameter evalua-
tion.
Implementation: All methods are implemented and executed
in Matlab 2018b. All reported running times are based on
single-core execution on an Intel(R) Core i7-8700 CPU @
3.20GHz processor in a Dell desktop.

C. Period estimation

1) Performance on synthetic data: We compare PIE with
other period estimation baselines on synthetic data by varying
three parameters: signal-to-noise ratio (SNR), missing value
ratio (the fraction of unavailable observations) and the signal
length T in Fig. 3. PIE has perfect (100%) accuracy for all
missing ratios between 0 and 0.6 (Fig. 3(a)). NPM-L1 and
NPM-L2 achieve 100% only when the missing ratio is below
0.1 and 0.2, respectively. FFT is hihgly sensitive to missing
values and is incapable of detecting the true period even
when a small fracion of the measurements are missing. In
addition, two-step methods: NPM-L1+, NPM-L2+ and FFT+,
which use spline interpolation and then estimation of periods,
do not have significantly better performance then their no-
interpolation counterparts since the imputation of missing
values is period-agnostic and does not preserve the periodicity
in signals. In contrast, PIE maintains a high quality as it jointly
imputes missing values and estimates the period, allowing it
to consistently uncover the true periodicity in data.

In Fig. 3(b), we show performance for time series with no
missing values and varying SNR. PIE similarly achieves 100%
accuracy at all SNR levels while FFT peaks at 67%. Both
NPM methods are sensitive to noise and as a result perform
optimally only at high SNR, namely NPM-L1 and NPM-L2
reach 100% at SNR = 30 and above. PIE is more robust to
noise compared to other Ramanujan dictionary methods (NPM
methods) as it models explicitly the block structure in the
periodic dictionary via the graph Laplacian group lasso. Both
NPM methods, however, neglect this structure.

Next we evaluate period estimation for varying the observa-
tion length of the time series. Ideally, a method should be able
to detect the periodicity employing as little data as possible.



Statistics PIE NPM-L1 [9] NPM-L2 [9] FFT [16]
Dataset Length GT Periods Results Time [λ0, λ1, λ2] Results Time Results Time Results Time

Web traffic 550 [7] days [7] 0.3s [1, 1e−3, 1e−3] [18] 52s [18] 0.2s [49] 0.04s
Bike rental 731 [7] days [7] 0.2s [1, 1e−3, 1e−3] [20] 31s [2] 0.2s [26] 0.04s
Sunspots 2820 [132] months [132] 8.2s [1, 1e−4, 1e−2] [150] 1467.7s [99] 4.3s [128] 0.04s

Beer consumption 365 [7]days [7] 0.3s [1, 1e−3, 1e−2] [18] 15.3s [15] 0.2s [7] 0.04s
Air quality 25k [12,24] hours [12,24] 2.2s [1, 1e−4, 1e−4] [1,2] 3.87 hours [3, 4] 156.3s [46, 49] 0.05s

Hourly weather 45k [12,24] hours [12,24] 4.5s [1, 1e−4, 1e−4] / / / / [7, 31] 0.08s
TABLE I

REAL-WORLD DATASET STATISTICS, COMPARISON OF PERIODS ESTIMATION AND RUNNING TIME FOR OUR METHOD AND COMPETITORS.
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Fig. 4. Evaluation of the estimated missing values: (a) and (b) present the SSE for varying missing ratio and SNR on synthetic data; (c) and (d) present the
results for varying missing ratio on real-world datasets: Beer consumption and Web traffic data.

PIE retains 100% accuracy when varying time series length
from 100 to 500. FFT also maintains consistent, although
lower than PIE’s, accuracy when varying the length of the
time series. The performance of both NPM methods drops
from 100% to 0 when increasing the observation length since
they are sensitive to the choice of Pmax (i.e. the largest period
in the dictionary), and thus cause identifiability issues when
the observation length of the time series varies. In other words,
for time series of fixed periods, NPM methods predict different
periods for different observation lengths.

We also investigate the impact of varying the maximum
candidate period Pmax for Ramanujan dictionary methods
in Fig. 3(d) (observation length is fixed to 200). PIE is not
sensitive to the selected value of Pmax and consistently
obtains 100% accuracy for estimating GT periods. However,
NPM-L1 and NPM-L2 achieve 100% accuracy only when the
maximum considered period is relatively high Pmax = 80
(i.e. they require larger dictionary, and thus, higher compu-
tational cost). The advantage of PIE is due to the proposed
Graph Laplacian group lasso regularization that overcomes the
identifiability issue. As a result our Laplacian regularization
not only increases the accuracy, but also reduces the compu-
tational cost. The periodic dictionary contains 278 columns
when Pmax = 30, and 1966 when Pmax = 80. Hence, the
ability to obtain high quality with smaller Pmax significantly
reduces the computational cost for detection.

In all synthetic experiments, PIE not only exhibits better
accuracy, but also predicts fewer periods overall, making it
highly specific. To quantify the number of spurious periods for
all methods, we normalize the obtained period weight vector
of each method to one and set a threshold of 0.05 as a cut-
off for detected periods. In Figs. 3(e), 3(g), 3(f) and 3(h),
we present the number of detected periods for each setting.

Typically PIE predicts the same number of periods as those in
the GT, while baselines predict multiple spurious periods. This
property is very important when the number of GT periods is
unknown because one can determine true periods simply based
on the results of PIE. Without certain prior information to use
in post-processing, we can’t directly use the results of other
period estimation methods.

2) Performance on real-world data: We also demonstrate
the performance of PIE on a variety of real-world datasets.
We summarize period detection results in Table. I. PIE is able
to detect periods matching the expected true periods in each
of the datasets. In comparison, competing methods mostly
detect difficult to justify or incorrect periods. While FFT is the
fastest method in terms of running time, it correctly detects
the GT period in the Beer dataset only. Both NPM-L1 and
NPM-L2 miss the GT periods because real-world datasets
are noisy, and thus, not perfectly periodic. To make sure
that NPM-L1 and NPM-L2 have optimal performance, we set
Pmax = 90 for this evaluation. Nevertheless, both methods
fail to detect the true periodicity while also incurring high
computational cost.Note that some results for NPM-L1 and
NPM-L2 are missing for the Air quality and Hourly weather
datasets because NPM methods do not scale to such large
datasets.

D. Missing value estimation study

Apart from period estimation, we can also employ PIE
to estimate missing values in periodic time series. In this
section we report the performance on missing value estimation
measured in terms of SSE. We present the performance for
varying SNR and missing ratio for synthetic data in Fig. 4(a)
and Fig. 4(b). PIE outperforms competitors on value impu-
tation as it considers periodicity in the time series when
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Fig. 5. Total SSE for forecasting 2000 future time points after training on
8000 employing Autoregression (AR) and Autoregression with periodicity
adjustment via PIE (PIE+AR).

predicting missing values. LMF partitions the signal at a
fixed window length and has the worst prediction in these
multiple-period datasets. Linear interpolation degrades faster
than all alternatives with increasing ratio of missing values as
it has access to diminishing local temporal information. Spline
interpolation is the closest competitor to PIE for missing value
imputation, however, it does not take advantage of periodic
behavior.

We also fix the missing value ratio at 0.3, and evaluate
the competing methods at varying SNRs in Fig. 4(b). PIE
still outperforms alternatives because of its noise robustness
due to the proposed group regularization. Linear and spline
interpolation obtain similar performance as at this level of
missing values they are able to recover the signal based
on local approximation. In particular, the performance of all
methods tend to be stable when SNR is higher than 10. This
is because the amount of missing values becomes a significant
factor in estimation accuracy when the noise is low. LMF
again has the worst performance among competitors since
noise compromises its low-rank assumption.

We also present value imputation results on real-world
datasets, including Beer consumption and Web traffic data,
in Fig. 4(c) and Fig. 4(d). Similar to the observed behavior
on the synthetic data, our method dominates alternatives for
the entire range of missing value ratios. In both datasets, LMF
results in the highest SSE, while linear and spline interpolation
achieve similar quality that of PIE at low missing ratios and
diverges when more than 50% of the observations are missing.

E. PIE for forecasting in time series.

The periodic dictionary encoding learned by PIE can be also
employed to improve forecasting (or future value prediction)
by considering seasonality or periodicity. We set out to test
this hypothesis in this subsection. A general time series with
trend and periodicity can be decomposed into x = xper +
xtr + ε, where in xper is its periodic component, xtr is an
long-term trend, and ε is a noise component. Our hypothesis
is that when predictive methods, such as auto-regression (AR),
are used for forecasting their accuracy critically depends on
accounting for periodicity in the data. Hence, we set out to
evaluate this hypothesis using AR as an example predictor,
though other methods can also be similarly employed.

In this experiment, we generate periodic multivariate time
series with total length of T = 10000. We use the first
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Fig. 6. Evaluation of the running time of Graph Laplacian group lasso and
the traditional group lasso solver by varying the length of the signal (a) and
the maximum candidate period Pmax (b). We fix the Pmax = 150 for (a)
and the signal’s length to 100k for (b).

8000 points for training and the remainder for testing. The
baseline model we employ is a 100-lag vector AR model,
which is used to forecast the final 2000 time points directly.
In particular, we replace missing values with the mean of
the stationary time series. In comparison, we employ PIE
to get the periodic component z as well as the periodic
structure coefficient β. The same AR model is then used to
fit the trend without seasonality, i.e. perform AR on x− z.
Next, the forecasting from this AR model is added to the
projected periodic component from Āβ, where Ā is obtained
by extending the periodic dictionary to the final 2000 time
points that we predict. We repeat this procedure for multiple
missing ratios, and present the results in Fig. 5. Removing
correctly-identified periodic components from the time series,
as detected by PIE, leads to more accurate forecasting even
over long prediction horizons, particularly in the presence of
missing values. The final results are obtained by averaging 10
runs for each missing ratio.

F. Importance of the graph Laplacian group lasso.

In this section, we demonstrate the efficiency of our pro-
posed graph Laplacian group lasso. Recall that we propose
the graph Laplacian group sparse model to enforce the group
structure in the dictionary. This allows us to optimize all
groups together, while the traditional group lasso model needs
to solve one group at a time [41], [51]. To validate the utility of
our proposed regularization we compare it with the traditional
group lasso by formulating two alternative versions for our
model as follows:

argmin
β

1
2

∥∥∥y − Âβ
∥∥∥2
2

+ λ
∑N
i

∥∥βGi

∥∥
2

(1)

argmin
β

1
2

∥∥∥y − Âβ
∥∥∥2
2

+ λβTLβ, (2)
(21)

where we integrate the traditional group lasso and our pro-
posed graph Laplcacian group lasso in Eq.21 (1) and (2),
respectively. Note that y is a time series; N denotes the
number of groups in the dictionary Â; and λ is a balance
parameter.

To optimize Eq.21 (1), we employ a state-of-the-art solver
of group lasso [41] which employs the ADMM framework.
We can obtain a closed form solution for Eq.21 (2) by setting
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Fig. 7. The sensitivity analysis of the parameters on the synthetic data and
running time (in seconds).

L (β) = 1
2

∥∥∥y − Âβ
∥∥∥2
2

+ λβTLβ, we take the gradient of
L (β) w.r.t β as zero, therefore, we have

ÂT
(
Âβ − y

)
+ 2λLβ = 0 (22)

Then, we can obtain the closed-form solution as

β∗ =
(
ÂT Â + 2λL

)−1

ÂTy (23)

With our group lasso model, we not only obtain a closed form
solution, i.e the optimal solution, but also one that is faster than
the traditional group lasso solver. We show the running time
of our proposed model and the traditional model in Fig. 6.
When increasing the size of Pmax and the signal’s length,
the running time gap between our approach and traditional
lasso is gradually increasing.

G. Scalability and parameter sensitivity analysis

We evaluate the CPU running time of competing period
learning methods on the synthetic data in Fig. 7(d). All meth-
ods are implemented in MATLAB without parallel execution.
Note that the code of NPM-L1 and NPM-L2 are provided by
the authors of [9]. For PIE, NPM-L1 and NPM-L2, we fix
Pmax = 50. For varying signal lengths, the running time of
PIE is close to that of FFT, taking only a few seconds to run
on a signal of length T = 40k (Fig. 7(d)). Although NPM-
L2 has a closed-form solution, it is slower than PIE and FFT.
When the length of the signal is 40k, NPM-L2 needs about
9 minutes and NPM-L1 need about 25 minutes to complete,
while PIE requires 2 seconds.

We also investigate the sensitivity of PIE to its parameters
on synthetic data, including λ0, λ1, and λ2 for missing value
modeling, sparsity and group structure, respectively. In these
experiments, we fix one parameter and vary the other two.
We report the period detection accuracy in Fig. 7. PIE is not

sensitive to the parameters within wide ranges. When λ1 and
λ2 are set close to 1, the performance of our model decreases
significantly. This is because large λ1 and λ2 promote the
selection of very sparse blocks in the periodic dictionary,
limiting the correct reconstruction of the input data and leading
to inaccurate period detection. Small λ1 and λ2 result in good
performance in practice. Note that this is also confirmed across
real-world datasets: we report the optimal parameter values
in the 6-th column of Table I. In particular, we fix these
parameters when varying the missing ratio and the results
demonstrate robustness.

VII. CONCLUSION

In this work, we introduced a robust framework for period
estimation in signals with missing values. We formulated
the period estimation and missing values imputation as a
joint optimization problem. The demonstrated the superior
performance of our method over state-of-the-art baselines by
conducting extensive experiments on both challenging syn-
thetic datasets and multiple real-world datasets. PIE was able
to estimate the true periods with 100% accuracy even when
60% of the values were missing.
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