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Abstract The ability to accurately and consistently discover anomalies in time
series is important in many applications. Fields such as finance (fraud detection),
information security (intrusion detection), healthcare, and others all benefit from
anomaly detection. Intuitively, anomalies in time series are time points or se-
quences of time points that deviate from normal behavior characterized by periodic
oscillations and long-term trends. For example, the typical activity on e-commerce
websites exhibits weekly periodicity and grows steadily before holidays. Similarly,
domestic usage of electricity exhibits daily and weekly oscillations combined with
long-term season-dependent trends. How can we accurately detect anomalies in
such domains while simultaneously learning a model for normal behavior?

We propose a robust offline unsupervised framework for anomaly detection
in seasonal multivariate time series, called AURORA. A key innovation in our
framework is a general background behavior model that unifies periodicity and
long-term trends. To this end, we leverage a Ramanujan periodic dictionary and a
spline-based dictionary to capture both seasonal and trend patterns. We conduct
experiments on both synthetic and real-world datasets and demonstrate the effec-
tiveness of our method. AURORA has significant advantages over existing models
for anomaly detection, including high accuracy (AUC of up to 0.98), interpretabil-
ity of recovered normal behavior (100% accuracy in period detection), and the
ability to detect both point and contextual anomalies. In addition, AURORA is
orders of magnitude faster than baselines.
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Fig. 1 An example of multivariate time series with seasonality, trends, and different types of
anomalies: a) The map shows three neighbouring countries in south America: Peru, Brazil and
Bolivia; b) the graph shows weekly time series of Google flu searches for these three countries
spanning from 2002 to 2015. Point and segment annotations are predicted anomalies.

1 Introduction

Multivariate time series data arise in many domains including the web [49], sensor
networks [54], database systems [45], finance [61] and others. Time series from the
above domains often exhibit both seasonal behavior and long-term trends [42,39].
For example, city traffic levels [28] and domestic energy consumption [25] both
have an inherent period related to the regularity of human activity (daily/weekly
oscillations) and long term trends. Consider, for example, Google flu searches [22]
over 13 years at one week granularity visualized in Fig. 1. Search rates exhibit
annual seasonality, while in the long term neighboring countries share a decreas-
ing trend. In this type of time series, a common problem across domains is the
detection of anomalous time points in each of the co-evolving time series. How
to effectively detect anomalous time points in seasonal time series with long-term
trends without prior knowledge and supervision?

Accurate anomaly detection enables a host of applications including health
monitoring and risk prevention [44], financial fraud loss protection [21] and data
cleaning [52]. Anomalies are defined as “points” that deviate significantly from the
normal state and are differentiated into two types: point and contextual anomalies.
Point anomalies, denoted as circles in Fig. 1, consist of a single outlying observation
which stands out. Contextual anomalies (segments in Fig. 1) consist of sequences
of outliers, which can be mistaken for normal behavior due to their persisting
nature, and hence require long-term contextual information to be detected. The
detection of anomalies in multivariate time series elucidates the behavior of a
system holistically—both normal and abnormal. For instance, it can help us make
sense of patterns and anomalies in the co-evolving national time series of cases of
COVID-19.

Anomaly detection is often formulated as a classification problem [37,32], and
as such, it requires supervised model learning. However, the labels for anomalies
are rare and typically expensive to obtain, leading to a surge of interest in unsu-
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pervised approaches, including statistical methods [40,23,8] and deep-learning [4,
54]. While some existing methods do not rely on explicit anomaly annotations,
they have three fundamental limitations: (i) they require normal (non-anomalous)
data, (ii) they are sensitive to small local variations, and (iii) they do not offer
model interpretability.

In this work, we propose an unsupervised offline (or batch) method, called AU-
RORA, to detect anomalies in multivariate time series with an explicit estimation
of the normal behavior as a mixture of seasonality and trends. Our formulation
of normal behavior is flexible and allows capturing diverse temporal patterns.
Namely, we formulate seasonality and trend fitting as an optimal reconstruction
problem employing the Ramanujan periodic dictionary and a spline dictionary,
respectively. This new framework ensures the accurate discovery of interpretable
normal behavior while highlighting anomalies.

Our contributions in this paper are as follows:
Novel formulation: We introduce the problem of anomaly detection in seasonal
multivariate time series with long-term non-linear trends.
Interpretability: Our framework AURORA automatically detects anomalies and
simultaneously obtains an interpretable model of the seasonal and trend compo-
nents in the observed time series.
Applicability: AURORA ensures strong quantitative improvements on synthetic
and real-world datasets in anomaly detection (up to 30% improvement on AUC),
and superior scalability (14 seconds in data with half a million time points and
200 univariate series) when compared to state of the art baselines.

2 Related work

Anomaly detection. Existing methods can be broadly categorized into super-
vised and unsupervised. Supervised anomaly detection methods such as one-class
SVM [40] and Isolation Forest [38] employ labeled anomaly data and pose the
problem as binary classification [3]. Since labels for anomalies in time series are
expensive to obtain and largely unavailable [53], we focus on the unsupervised case.
In unsupervised settings, distance-based methods, such as kNN [23], are commonly
used to quantify the difference between normal and anomalous samples. Subspace
learning methods have also been proposed where the goal is to identify a sub-
space in which the difference between normal and anomalous samples are more
pronounced [29]. Both distance-based and subspace-based methods are designed
for anomaly detection in datasets of independent samples and do not consider
the temporal structure of time series. Thus, they are not well-suited to localize
anomalies in time series.

To account for the temporal structure, some methods explicitly model tempo-
ral patterns while others utilize comparisons across time. In the former category
normal behavior with multiple periods is rarely considered and many time series
models are restricted to the univariate case. The Autoregressive Moving Average
framework [11] accounts for temporal correlations and can be extended to include
seasonality, but is sensitive to noise and is limited to single-period time series.
TwitterR [24] applies the Extreme Studentized Deviate outlier test after decom-
posing the univariate time series into its median, seasonal and residual component.
This method assumes that periodicity is known and only allows a single period.
Other methods map the time series in some feature space [10], a process which
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requires domain knowledge to construct informative features. Methods relying on
comparison across time declare a time window as anomalous if its distance to
past windows is too large [47]. However, it is challenging to select an optimal win-
dow size for the analysis. Such methods also requires some supervision in that it
relies on a sanitized (anomaly-free) period of observations. Matrix profile [50] is
another popular distance-based method. It profiles the distance of all fixed-length
subsequences to their top-1 closest subsequence. Since Matrix Profile operates at
the subsequence level, and thus can declare only windows of pre-selected size as
anomalous, it is not a good fit for our task of pinpointing individual anomaly time
points or contextual anomalies of variable length [14].

Given the wide variety of structures in multivariate time series, recently deep
learning techniques have gained increasing attention in anomaly detection [53,
26,4,48,60]. In [53], the authors developed a multi-scale model that captures the
temporal patterns. Authors of [26] compare LSTM model predictions to actual
observations and use thresholding to detect anomalies. Several variational autoen-
coder (VAE) methods have also been proposed for this task [4,48,60]. The recent
meta-analysis by Zhang et Al. [53] demonstrates that such deep learning meth-
ods do not exploit the temporal structure, suffer from sensitivity to noise, and do
not offer interpretation. In addition, deep learning anomaly detectors also require
normal (anomaly-free) data to train the underlying “normal” model. Therefore,
these methods are not applicable to fully unsupervised scenarios where normal
data is not available. As we demonstrate experimentally, our method consistently
outperforms representative methods from this group, even if they are given access
to normal data in both synthetic and real-world applications.
Change point detection in time series: Change points can be viewed as a spe-
cific type of anomaly where the change is long-lasting in nature. Statistical change
point detection methods generally assume independent and identically distributed
data within a temporal segment to establish probabilistic models, and cannot be
applied directly on data with periodicity and trends. They require multiple obser-
vations in each segment for accurate estimation [59], and hence may be limited to
detecting contextual anomalies. Some methods require knowledge of the underly-
ing data distributions [30], while others constrain the target change point types,
for instance focusing on level shifts [5,58].
Period learning: Traditional period detection methods have employed Fourier
transform [34,27] and work in the frequency domain to determine pronounced pe-
riods. The major drawback of such methods is the detection of a large number
of spurious periods [43]. Auto-correlation is another approach for period learn-
ing [13] which employs similarity among time segments. Methods in this category
rely on a predefined threshold for selecting dominant periods and often employ
heuristic post-processing or integration with Fourier spectrograms [46]. Recently,
a dictionary-based period learning framework has been proposed by Tenneti et
al. [43], comprised of a family of periodic dictionaries and a unified convex model
for period detection. Recent work has offered improvements by exploiting the group
structure in the dictionary [57,56].

Period learning methods were also proposed for binary sequence data [35,51].
These methods assume that the time series have only one period and rely on
prior information about the series. For example, the model in [35] requires an
appropriate segmentation threshold. More importantly, these methods are only
applicable to binary sequences and are not suited to deal with general time series.
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3 Preliminaries and notation

Notation: We denote by Ai, A
i, Aij the i-th column, the i-th row, and the

ij-th element of matrix A, respectively. Throughout the paper, ‖·‖F , ‖·‖1 and
‖·‖∗ denote the Frobenius, L1 and nuclear norms. The nuclear norm is defined
as ‖A‖∗ =

∑
i σi, where σi is the i-th singular value of A. I denotes the identity

matrix.
The Ramanujan periodic dictionary was proposed by Tenneti et al. [43] to
learn underlying periods in univariate time series. For a given period g, the Ra-
manujan periodic dictionary is defined as a nested matrix:

Φg = [Pd1 , Pd2 , ...PdK ] , (1)

where {d1, d2, ...dK} are the divisors of the period g sorted in an increasing order;
Pdi ∈ Rg×φ(di) is a periodic basis matrix for period di, where φ (di) denotes the
Euler totient function evaluated at di and d =

∑
i φ (di). The basis matrix here is

constructed based on the Ramanujan sum [43]:

Cdi (g) =

di∑
k=1,gcd(k,di)=1

ej2πkg/di , (2)

where gcd(k, di) denotes the greatest common divisor of k and di. The Ramanujan
periodic basis matrix is constructed as a circulant matrix as follows:

Pdi =

 Cdi (0) Cdi (g − 1) ... Cdi (1)
Cdi (1) Cdi (0) ... Cdi (2)
... ... ... ...

Cdi (g − 1) Cdi (g − 2) ... Cdi (0)

 . (3)

To this end, we can obtain the overall Ramanujan periodic dictionary R for max-
imum period gmax as R = [Φ1, .., Φgmax ], where R is also called a nested periodic
matrix (NPM). To analyze time series of length T , the columns in R are peri-
odically extended to a length of T . One can reconstruct time series as a linear
combination of a few columns from R, where the dominant periods of time series
correspond to high-magnitude coefficients.
Spline dictionary: PB-spline regression [20,18] is a flexible method to fit curves
using B-splines of degree-d with a smoothness regularization. Quadratic or cubic B-
splines are sufficient for most applications [18]. A spline of degree d with k distinct
interior knots {u1, . . . , uk} is a function constructed by connecting and summing
polynomial segments of degree d. We construct the spline from B-splines basis
functions Bi,d(u) which can be defined recursively by the Cox-de-Boor formula:
Bi,0 = 1 if ui ≤ u < ui+1, 0 otherwise.

Bi,p =
u− ui

ui+p − ui
Bi,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Bi+1,p−1(u)

Each Bi,d(u) is non-zero on [ui, ui+d+1). The resulting spline is a linear combina-
tion of the basis functions. A sequence of equally-spaced knots is often specified,
with a regularization term to penalize for overfitting and to encourage smoothness
of the fitted curve.

4 Problem definition

In this paper we study the anomaly detection problem on multivariate time series.
Suppose we are given a multivariate time series matrix X ∈ Rt×n with t time
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points and n samples. We model this input as a mixture of three components:

X = XT +XS +O + δ, (4)

where XS denotes the seasonal component, XT denotes the trend component, O
represents anomalies, and δ is random noise. In general, prior information about
these three components is not available, therefore, we propose to minimize the
following objective to model them:

argmin
XS,XT

‖X −XS −XT ‖1 +R1(XS) +R2(XT ), (5)

where anomalies are computed as the residual: O = X −XS −XT . In the above
objective, R1(XS) and R2(XT ) are regularization terms for XS and XT , respec-
tively. Note that minimizing the L1 norm reconstruction cost is robust to anoma-
lies, therefore, the objective can capture the XT and XS components without
being sensitive to distortion. The two learned components comprise the normal
temporal behavior of the data.
Seasonality modeling R1(XS): We impose structure on the periodic component
by harnessing the Ramanujan periodic dictionary. Namely, we convert this problem
as a sparse coding problem into follows,

argmin
U

λ1 ‖U‖1 , s.t. XS = GU (6)

where G = RH−1 ∈ R and λ1 is a balance parameter. Here, H is a diagonal
matrix for penalizing large periods in R when sparse coding, where Hii = p2 and
p is the period of the i-th column in the R. Finally, the coefficients of periods can
be obtained through Û = H−1U .
Trend modeling R2(XT ): Our second goal is to impose structure on the trend
component XT . Trends do not typically follow a parametric regular shape and
users have no prior information about it, therefore, we employ a spline-based
approximation, which is an effective nonparametric smooth shape estimation so-
lution based on polynomial functions. We introduce a spline dictionary, denoted
as A ∈ Rt×m, where each column represents a spline basis function. We can use
the degree-d B-spline basis defined over k internal knots, such that m = k+ d+ 1.
We employ equally-spaced knots to construct the dictionary. To ensure separabil-
ity between the periodic and trend components, we pre-process the spline basis S
to be orthogonal to the periodic dictionary R. Let R̃ be an orthonormal version
of R, which can be constructed by the Gram-Schmidt process. R̃ has the same
dimensions as R since the latter forms a basis. We can then find the component of
S perpendicular to the subspace spanned by the columns of R̃ by A = S − R̃R̃′S.

By treating A as the underlying factors, XT can be linearly reconstructed in
terms of these factors as follows:

argmin
W

λ2 ‖W‖∗ + λ3 ‖DW‖2F , s.t. XT = AW, (7)

where W is the coefficient matrix and D is the matrix form of the difference
operator; and λ2 and λ3 are balance parameters. Multivariate time series are often
collected from the same system, thus they often share similar global trends. To this
end, we impose a low-rank constraint on W through a nuclear norm penalty. We
also incorporate a selection regularization on W as ‖DW‖2F to prevent overfitting
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and to encourage smoothness of the fitted curve. We define this difference penalty
by introducing the cases of 1st ∼ 3rd order difference as follows:

[DW ]ij = Wij −Wi−1,j 1th-order

[DW ]ij = Wij − 2Wi−1,j +Wi−2,j 2th-order

[DW ]ij = Wij − 3Wi−1,j + 3Wi−2,j −Wi−3,j 3th-order.

(8)

We use 3rd order as the default setting, except when noted otherwise. Note that
the selection of the type of spline basis functions in dictionary A is flexible, but
certain choices such as truncated polynomials are known to be prone to numerical
instability.

Overall AURORA objective: By integrating all the above, we arrive at the
objective function for anomaly detection on multivariate time series as follows:

argmin
U,W

‖X −GU −AW‖1 + λ1 ‖U‖1 + λ2 ‖W‖∗ + λ3 ‖DW‖2F . (9)

Instead of modeling outliers explicitly, we detect anomalies from the residuals of
O = X −GU − AW . Intuitively, anomalies diverge from normal components, i.e.
seasonal and trend component, and thus, lead to large residuals. We produce a
ranked list of possible anomaly locations corresponding to high magnitude of the
residuals. Without any assumptions on anomaly lengths, this model allows us to
detect any deviation from the normal state, instead of being restricted to only
detecting certain types of anomalies.

5 Optimization

Since the objective function in Eq. 9 is not jointly convex, we optimize the two vari-
ables alternatively using the Alternating Direction Method of Multiplier (ADMM)
framework [7]. We first introduce auxiliary variables: V = U , P = W and Y =
X −GU −AW . Then, we rewrite Eq. 9 as follows:

argmin
U,W,V,P,Y

‖Y ‖1 + λ1 ‖V ‖1 + λ2 ‖P‖∗ + λ3 ‖DW‖2F

s.t V = U, P = W,Y = X −GU −AW.
(10)

The corresponding Lagrangian function is:

L (U,W, V, P, Y, Λ1, Λ2, Λ3) = ‖Y ‖1 + λ1 ‖V ‖1 + λ2 ‖P‖∗ + λ3 ‖DW‖2F
+ 〈Γ1, V − U〉+

ρ1

2
‖V − U‖2F + 〈Γ2, P −W 〉+

ρ2

2
‖P −W‖2F

+ 〈Γ3, Y − (X −GU −AW )〉+
ρ3

2
‖Y − (X −GU −AW )‖2F

(11)

where Γ1 ∼ Γ3 are the Lagrangian multipliers and ρ1 ∼ ρ3 are penalty parameters.

Update Y : The subproblem w.r.t. V is as follows:

argmin
Y

‖Y ‖1 +
ρ3

2

∥∥∥∥Y − (X −GU −AW ) +
Γ3

ρ3

∥∥∥∥2
F

(12)

This problem can be solved based on the following Lemma from [36].
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Lemma 1 For α > 0, the following objective has a closed-form solution

argmin
A

1

2
‖A−B‖2F + α ‖A‖1 (13)

which is written as Aij = sign (Bij) × max (|Bij | − α, 0). Here, sign (t) is the
signum function defined as:

sign (t) =


1 if t > 0

−1 if t < 0

0 if t = 0

(14)

Based on this lemma, we obtain a closed-form solution for Y :

Yij = sign (Eij)×max
(
|Eij | −

1

ρ3
, 0

)
(15)

where E = (X −GU −AW )− Γ3

ρ3
.

Update V : The subproblem w.r.t. V is as follows:

argmin
V

λ1 ‖V ‖1 +
ρ1

2

∥∥∥∥V − U +
Γ1

ρ1

∥∥∥∥2
F

(16)

We similarly obtain a closed-form solution for V employing Lemma 1:

Vij = sign (Hij)×max
(
|Hij | −

λ1

ρ1
, 0

)
, (17)

where H = U − Γ1

ρ1
.

Update P : The subproblem w.r.t. P is as follows:

argmin
P

λ2 ‖P‖∗ +
ρ2

2

∥∥∥∥P −W +
Γ2

ρ2

∥∥∥∥2
F

(18)

According to the singular value thresholding (SVT) method [9], we can com-
pute a closed-form solution for P as well. By setting M = W − Γ2

ρ2
, we first

take the singular value decomposition of M as M = JΣKT , where J , K and
Σ denote left-singular vectors, right-singular vectors, and singular values, respec-
tively. Then, we obtain the solution for P as P = JS (Σ)KT , where S (Σ) =

diag
[
max

(
σi − λ2

ρ2
, 0
)]

and σi is the ith singular value.

Update U : The subproblem w.r.t. U is:

argmin
U

ρ1

2

∥∥∥∥V − U +
Γ1

ρ1

∥∥∥∥2
F

+
ρ3

2

∥∥∥∥Y − (X −GU −AW ) +
Γ3

ρ3

∥∥∥∥2
F

(19)

By taking the gradient w.r.t. U and equating it to zero, we obtain:

ρ1U − (ρ1V + Γ1) + ρ3G
T

(
GU −X +AW + Y +

Γ3

ρ3

)
= 0 (20)

We get the closed-form solution of U as follows:

U =
(
ρ1I + ρ3G

TG
)−1

[
ρ1V + Γ1 + ρ3G

T

(
X −AW − Y −

Γ3

ρ3

)]
(21)
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Algorithm 1 AURORA

Require: A multivariate time series matrix X, and parameters (λ1 ∼ λ3).
1: Initialize: Γ1 = 0, Γ2 = 0, Γ3 = 0; ρ1 = 1, ρ3 = 1, ρ3 = 1.
2: while W and U have not converged do

3: Yij = sign (Eij)×max
(
|Eij | − 1

ρ2
, 0
)

4: Vij = sign (Hij)×max
(
|Hij | − λ1

ρ1
, 0
)

5: [J,Σ,K] = svd(W − Γ2
ρ2

)

6: P = JS (Σ)KT

7: U =
(
ρ1I + ρ3GTG

)−1
[
ρ1V + Γ i1 + ρ3GT

(
X −AW − Y − Γ i

3
ρ3

)]
8: W =

(
λ3DTD + ρ2I + ρ3ATA

)−1
[
ρ2P + Γ i2 + ρ3AT

(
GU − Y − Γ i

3
ρ3

)]
9: Γ i+1

1 = Γ i1 + ρ1 (V − U)

10: Γ i+1
2 = Γ i2 + ρ2 (P −W )

11: Γ i+1
3 = Γ i3 + ρ3 [Y − (X −GU −AW )]

12: i = i+ 1
13: end while
14: O = X −GU −AW
15: return {O,W,U}

Update W : The subproblem w.r.t. W is as follows:

argmin
W

λ3 ‖DW‖2F +
ρ2

2

∥∥∥∥P −W +
Γ2

ρ2

∥∥∥∥2
F

+
ρ3

2

∥∥∥∥Y − (X −GU −AW ) +
Γ3

ρ3

∥∥∥∥2
F

(22)

By setting the above objective’s derivative w.r.t. W to zero, we obtain:

λ3D
TDW + ρ2

(
W − P −

Γ2

ρ2

)
+ ρ3A

T

(
AW −GU + Y +

Γ3

ρ3

)
= 0 (23)

As a result, a closed-form solution for W is as follows:

W =
(
λ3D

TD + ρ2I + ρ3A
TA
)−1

[
ρ2P + Γ2 + ρ3A

T

(
GU − Y −

Γ3

ρ3

)]
(24)

Updates for the Lagrangian multipliers Γ1, Γ2 and Γ3: In the i+1 iteration,
the Lagrangian multipliers can be updated as follows: Γ i+1

1 = Γ i1 + ρ1 (V − U),
Γ i+1
2 = Γ i2 + ρ2 (P −W ), and Γ i+1

3 = Γ i3 + ρ3 [Y − (X −GU −AW )].

5.1 Overall algorithm and complexity analysis

We summarize AURORA in Algorithm 1. We repeatedly perform the updates for
U and W from Steps 3 to Step 12 until convergence. The most substantial run-
ning time cost is due to Steps 5, 7 and 8, while the remaining steps are either of
linear complexity or near-linear complexity, e.g. involvivng sparse matrix multi-
plication. For Step 5, the SVD operation has a complexity of O

(
min

(
tn2, t2n

))
.

Here, t is often much greater than n, therefore, the complexity of svd is O
(
tn2
)
.

Both step 7 and 8 involve an inversion of a quadratic matrix, which incurs a cost
of O(q3) and O(m3) in the worst case, respectively. Because of the sparsity in
D and I, the complexity of the two can be significantly reduced to O(qSnnz)
and O(mSnnz) based on the analysis in [55]. In the above, Snnz is the number
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of non-zero elements of λ3D
TD + ρ2I and Innz is the number of non-zero el-

ements of I. Therefore, the overall asymptotic complexity for each iteration is
O
(
tn2 + qInnz +mSnnz

)
. In practice, AURORA often only needs a few itera-

tions to converge. An implementation of our method is available for download at
https://www.cs.albany.edu/%7Epetko/lab/code.html.

6 Experimental evaluation

Our goal is to evaluate the performance of our method on data with periodic
and trend components with both single point and contextual anomalies. Thus,
our selection of datasets, baselines and evaluation metrics are geared towards this
setting.

6.1 Datasets

We conduct evaluation experiments on both synthetic and real-world datasets.
Synthetic data: We generate 20-dimensional time series of length 5000 and re-
fer to each univariate time series as a sample. The time series are comprised of
four additive components: (i) periodic, (ii) trend, (iii) anomalies and (iv) noise
components. We generate the periodic component by following the methodology
in [43], namely, we generate a uniformly random sequence of length equal to a pre-
specified underlying period and repeat it to obtain a series of the desired length.
We select two periods for each time series randomly from {3, 5, 7, 11, 13}. We use
4-th degree polynomial functions to generate the trends in the time series with two
sets of coefficients: {[1, 1, 0,−0.1], [1, 0.1, 0.1, 0.1]}. Individual samples are assigned
one of the two trend polynomials randomly.

We select random individual time points as positions for point anomalies and
add random values to the normal behavior of varying magnitude as outlined in indi-
vidual experiments. To inject contextual anomalies, we select a position uniformly
at random in the time series and add contiguous point anomalies (as described
above), of length chosen uniformly from {3, 4, 5, 6}. All contextual anomalies are
independent in each univariate (sample) time series. We also add Gaussian noise
to all time series and control the signal-to-noise ratio (SNR) in the experiments.
Real-world data: We also experiment with time series from 4 real-world datasets,
including Power plant [1] and Google flu [22], Yahoo [31] and NAB [33]. We in-
ject point anomalies in the Power plant [1] and Google flu [22] following the same
protocol as in our synthetic datasets. Note that this is a common evaluation strat-
egy when anomaly labels are not available [1,19]. The rest of the datasets have
anomaly labels.
• Power plant [1]: This dataset is from the 2015 PHM Society Data Challenge.
There are a total of 24 sensors with a sampling rate of 15 minutes. We experiment
with the first segment of 10000 time steps. We randomly inject 6 point anoma-
lies for each sensor (144 in total) by following our synthetic anomaly injection
methodology. Anomaly positions are independent in each sample.
• Google flu [22]: The Google flu dataset consists of weekly estimates for influenza
rates based on web searches in 29 countries from 2002 to 2015 (659 time points).
We inject 6 point anomalies in the time series of each country.
• Yahoo [31]: The Yahoo A1 benchmark has 67 time series with labeled anomalies.
This is a collection of real traffic metrics from Yahoo! services reported hourly. The
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lengths of individual time series varies between 741 and 1461. Note that existing
literature argues that ground truth in some time series are not reliable [15]. We
have annotated such time series in the experiments, but report results on all of
them for completeness.

• NAB [33]: The NAB dataset includes time series data from multiple domains
with manually labelled anomalies. We report results on the 10 Twitter traffic time
series from the benchmark as they fit our assumptions of periodic behavior.

6.2 Experimental setup

6.2.1 Baselines

• Anomaly detection: We compare AURORA on anomaly detection with two base-
lines: TwitterR [24] and Donut [49]. These state-of-the-art anomaly detectors ei-
ther explicitly account for periodicity and trends or are flexible in modeling time
series patterns of configurable length.

Donut [49] is based on the Variational Autoencoder (VAE) framework. It detects
anomalies by scoring dependencies in a time window of a fixed length based on a
pre-trained model for anomalies. This method accounts for periodicity and trends
in the time series and is, thus, an especially good fit for our setting. The window
size is the main parameter in the method. We report the best result based on
a grid search on window sizes varying from 10 to 100 with a step of 10. In all
experiments a window size with 10 resulted in the best performance.

TwitterR [24] employs the Seasonal Extreme Studentized Deviate (S-ESD), a
popular and robust anomaly detection method for univariate seasonal data. Raw
data is decomposed into a median component, seasonal component and residuals.
The Extreme Studentized Deviate (ESD) test is then applied to the residuals to
produce a list of anomaly time points ordered by their probability of being an
outlier. Different from our method which learns the underlying periods from data,
this algorithm requires a single dominant period as an input. We set this parameter
to the minimum true period present in our synthetic time series which puts the
method in an advantageous position. We are, however, interested in characterising
its quality for anomaly detection in the best possible settings, and thus, control for
other factors of inaccuracy. For experiments on real-world data, the true periods
are unknown, so we set TwitterR’s period parameter according to the highest-
magnitude DFT frequency in each time series.

• Period detection: AURORA learns the underlying periods from data, and hence,
we also evaluate its ability to detect GT periods and compare to three baselines:

NPM [43] is the state-of-the-art period learning method based on periodic dic-
tionaries. It encodes time series employing the Ramanujan periodic dictionary
and predicted periods are recovered based on the reconstruction coefficients. Since
NPM operates on univariate time series, we apply it on each univariate time series
and compile top ranked periods as final predictions.

FFT [41] is a classical period learning method that transforms time series into
their frequency domain. Predicted periods have high-magnitude coefficients.

AUTO [35] combines auto-correlation and Fourier transform. It first calculates
the auto-correlation of the input data. Next, it employs Fourier transform on the
results from the first step to derive periods of highest magnitude.
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Fig. 2 Comparison of anomaly detection quality for different types of anomalies in synthetic
and varying signal-to-noise ratio (SNR) taking values of [10, 40, 70, 100]. We consider (a) point
anomalies; (b) contextual anomalies (size range: [3, 4, 5, 6]); (c) mixture of both types.

6.2.2 Performance Metrics

We employ area under the ROC curve (AUC) to quantify the performance in
anomaly detection. A true positive (TP) in the case of point anomalies is the
correct identification of a time point annotated as a ground truth anomaly. We
treat contextual (interval) anomalies as a collection of point anomalies (e.g., a
contextual anomaly of length l is treated as l positive instances of anomalies),
and evaluate AUC for this case in the same manner. Note that this measure
is naturally biased to longer contextual anomalies which correspond to positive
examples proportional to their length. Since, in some experiments we consider
both point and contextual anomalies in the same time series, we focus on this
simple measure that can capture both types. It is also worth noting that more
optimistic metrics have been employed where any overlap of a predicted interval
with anomalous interval is declared a TP [14], however, we employ the above
time-point-wise metric as it does not leave ambiguity about the correspondence of
predicted and GT time points.

To quantify the evaluation of period learning we compare the top-k obtained
periods with the ground truth (GT) periods, where k is the number of GT peri-
ods. We report the accuracy of period identification for datasets with known GT
periods.

6.3 Anomaly detection in synthetic time series

We compare the performance of AURORA and baselines for anomaly detection in
three types of settings: point-only, contextual-only, and mixed anomalies (Fig. 2).
For this analysis we vary the signal-to-noise ratio (SNR) and report an average
AUC of ten samples of data for each setting. With decreasing noise level (or increas-
ing SNR), the average AUC of AURORA increases slightly in all three settings
and consistently dominates that of alternatives. In the case of point anomalies,
AURORA achieves an AUC of 0.98 at SNR greater than 20, while Donut and
TwitterR peak at AUC of 0.83 and 0.68, respectively. AURORA is similarly bet-
ter than baselines in the cases of contextual anomalies and mixture of anomalies,
exhibiting a 15% improvement over Donut and a 25% improvement over Twit-
terR. AURORA’s advantage is due to its explicit modelling of normal periodic
and trending behavior in the time series which is built into our synthetic datasets.
This allows AURORA to precisely detect time points that deviate from normal.

TwitterR’s performance is close to constant at different SNRs as it employs
LOESS local smoothing to extract a seasonal component. We parametrize Twit-
terR with the smallest ground truth period in our synthetic data, and hence, its
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Fig. 3 Comparison of AUC for anomaly detection by varying the magnitude of injected
anomalies in the (a) Google flu; (b) Power plant datasets.

quality is not affected by incorrect periodicity estimation. However, when this im-
portant information is not available (e.g. in real data), its reliance on accurate
periodicity estimation becomes a crucial step for TwiterR and a potential weak
point, limiting its application. Another key drawback of TwitterR is its assump-
tion of a single period in the data. Our synthetic data features complex/multiple
periods, which is another factor for AURORA’s edge in performance over TwitterR
in this set of experiments.

The performance of Donut is also close to constant over varying SNRs. This
method uses pre-trained models to score anomalies, i.e., its anomaly score function
is bounded by the quality of its training data. Specifically, the VAE at the core of
Donut should ideally be trained on anomaly-free data, thus, obtaining a model for
normal behavior. The presence of anomalies in the input, however, are incorporated
in the model, and thus, affect the likelihood scoring of anomalies in testing data. In
contrast, AURORA has no requirement for anomaly-free data. Instead, it models
anomalies in the testing data directly without pre-training.

6.4 Anomaly detection in real-world data

We next present anomaly detection results in real-world datasets in Fig. 3. We
inject anomalies into the Power plant and Google flu time series. Since difference
in performance between point-based and context anomalies is minimal (as observed
in synthetic data in Fig. 2), we focus on point anomalies and inject those in our
two datasets without GT. The magnitude of anomalies plays an important role as
anomalies of increasing magnitude are naturally expected to be more discernible.
Hence, we evaluate the performance by varying the magnitude of anomalies.

The AUC of AURORA and TwitterR grows with the magnitude. The AUC of
AURORA is greater than 0.9 in most cases and is about 0.3 higher than that of
TwitterR in Power plant and 0.25 higher in Google flu. The single period assump-
tion of TwitterR is not necessarily realistic for these datasets and the more flexible
periodicity model in AURORA may partially explain its performance advantage.
Donut exhibits worse performance in both datasets with injected anomalies and
notably its AUC does not grow with the magnitude of injected anomalies. The key
reason for this behavior is that Donut requires anomaly-free data for training, but
this is often not possible in real-world applications due to the presence of noisy or
unidentified anomalies. As a consequence, since we train it on the actual data with
injected anomalies to allow for fair comparison, its performance is proportionately
affected by the magnitude of anomalies in training data which gets encoded in
the VAE. We use part of the actual data for training the VAE as we do not have
access to additional anomaly-free data from the same sources.
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1 2 3∗ 4 5 6 7∗ 8 9∗ 10
AURORA 0.99 0.99 0.99 0.99 1 1 0.79 0.98 0.99 1
Donut 0.58 0.04 0.02 0.34 0.61 0 0.47 0.42 0.63 0.46

TwitterR 0.52 0.6 0.56 0.42 0.52 0.39 0.59 0.61 0.61 0.75

11 12 13∗ 14 15∗ 16∗ 17 18∗ 19 20∗

AURORA 0.99 0.96 0.86 0.73 0.84 1 0.99 0 0.99 0.58
Donut 0 0.11 0.3 0.17 0.17 0.41 0.45 0.41 0.77 0.57

TwitterR 0.35 0.35 0.42 0.55 0.46 0.51 0.48 0.56 0.46 0.54

21 22 23 24 25 26∗ 27∗ 28∗ 29∗ 30∗

AURORA 0.99 1 0 0 1 0 0.86 0 0.3 0.99
Donut 0.98 0.78 0.49 0.05 0.31 0.52 0.5 0.42 0.44 0.03

TwitterR 0.85 0.45 0.53 0.51 0.50 0.38 0.13 0.52 0.55 0.92

31 32 33 34∗ 35∗ 36∗ 37∗ 38∗ 39∗ 40
AURORA 0.91 0 0.99 0.79 0 0.99 0.43 0.84 0.84 0.01
Donut 0.71 0.54 0 0.72 0 0.38 0.71 0.45 0.47 0.49

TwitterR 0.5 0.5 0.25 0.37 0 0.72 0.70 0.74 0.66 0.45

41 42 43 44∗ 45 46∗ 47∗ 48 49∗ 50
AURORA 0.98 0.99 0.58 0.25 1 0.02 0.35 0.75 0 1
Donut 0.41 0.42 0.64 0.57 0.97 0.49 0.42 0.36 0.41 0

TwitterR 0.53 0.47 0.45 0.52 0.17 0.52 0.49 0.44 0.83 0.6

51∗ 52∗ 53 54∗ 55∗ 56∗ 57∗ 58 59∗ 60∗

AURORA 0.39 0.64 0.11 0.5 0.23 0.34 0.76 1 0 0.99
Donut 0.70 0.58 0.1 0.79 0.4 0.53 0.53 0.48 0 0.3

TwitterR 0.67 0.47 0.55 0.3 0.52 0.81 0.58 0.48 0 0.52

61 62 63 64∗ 65∗ 66 67
AURORA 0.54 0.99 1 0 0.93 0.98 0.99
Donut 0.43 0.44 0 0 0 0.41 0.51

TwitterR 0.54 0.36 0.12 0 0.48 0.44 0.56

Table 1 AUC comparison for anomaly detection in the Yahoo benchmark. Indices marked
with asterisk are reported to have questionable anomaly labels in recent work [15].

APPL AMZN CRM CVS FB GOOG IBM KO PFE UPS
AURORA 0.76 0.99 0.99 0.55 1 0.88 0.53 0.99 0.99 0.98
Donut 0.90 0.64 0.93 0.42 0.52 0.48 0.49 0.85 0.56 0.77

TwitterR 0.72 0.97 0.94 0.36 0.82 0.59 0.40 0.76 0.73 0.85

Table 2 AUC comparison for anomaly detection on the NAB benchmark, realTwitter series.

The Yahoo and NAB datasets include GT anomaly labels, hence, we present
the AUC values for each time series in those benchmarks in Tables 1 and 2. Some
time series in the Yahoo benchmark have anomaly labels of questionable quality
as reported by others [14]. We mark these time series with unreliable GT labels
by an asterisk in Table 1, but show results on all time series for completeness.

AURORA’s anomaly detection quality dominates that of baselines in most time
series for both benchmarks. In particular, AURORA obtains the best results in 46
out of the 67 time series in the Yahoo benchmark. We get the best results in 29 out
of 34 from the non-questionable labeled time series. In NAB, AURORA gets the
best results in 9 out of the 10 time series. Inspecting the cases in which AURORA
is not the best method among the baselines reveals that it under-performs in data
which does not match well our modeling assumptions of periodicity and trends.

6.5 The importance of multivariate analysis

Recall that we address anomaly detection in multivariate time series. Our approach
takes full advantage of shared periods and/or trends among individual univariate
time series. Univariate anomaly detection treating each time series as indepen-
dent cannot take advantage of such shared patterns. To demonstrate the utility
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Fig. 5 Case study on Google flu. Blue and red points are anomalies detected within and
outside of flu season, respectively.

of multivariate analysis, we compare AURORA and a univariate version which
fits periodicity and trends independently for each time series. To this end, we re-
move the low-rank regularization term λ2 ‖W‖∗ from Eq. 9 and call the resulting
method AURORAuni. In Fig. 4, we present a comparison between the alternatives
on synthetic and real-world data. Both results show that AURORA outperforms
AURORAuni with an increase of the AUC of at least 0.1.

6.6 A case study: the Google Flu dataset

Next we employ AURORA on the Google Flu dataset without injecting anomalies)
in order to qualitatively explore the reported anomalies in the raw data. Overall,
we find that anomalous time points fall well within typical flu seasons.

As an example, we dive deeper into the anomalies detected for Brazil, Bolivia
and the United States (Fig. 5). In Brazil, the flu season generally spans May to
July, which are the southern hemisphere’s winter months [2]. Out of the top 50
anomalies detected for Brazil, 44 fall within this time period. The other 6 points
all fall in August, with 5 in August 2009 which corresponds with the outbreak of
H1N1 flu or swine flue. Brazil registered 7569 new cases of H1N1 flu from August
25 to 29, and later confirmed that the country had the highest number of fatalities
from the virus in early September [12].

In Bolivia, the flu season typically spans April to September [6]. Out of the
top 50 anomalies detected for Bolivia, 47 fall within this time period, and the
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Fig. 6 The comparison of period learning by varying SNR under different types of anomalies.

remaining 3 are in October 2005 and 2007 which might signify a slightly longer
flu season in those years.

In the United States, the flu season typically spans fall and winter, and flu
activity peaks between December and February [17]. 43 out of our 50 top anomalies
detected for the US fall within this time period. Another 6 are in September
through November 2009, which coincides with the outbreak of the H1N1 influenza
virus that peaked in October [16]. The remaining anomaly is in early March 2008,
which indicates a slightly longer flu season, as supported by the fact that the peak
flu activity that year was in mid-February.

6.7 Period learning on synthetic data

In Fig. 6, we present AURORA’s performance on period learning with varying
SNR. AURORA shows superiority over alternatives by consistently obtaining all
GT periods. The robustness of AURORA can mostly be attributed to the appli-
cation of the L1-norm fitting function that is robust to anomalies and noise. In
addition, AURORA, detects periods by multivariate analysis and explicitly mod-
els trends unlike the alternatives. NPM achieves 50% accuracy in period detection
across settings as it does not model noise or anomalies which may dominate its
objective and obs.cure true periods. FFT and AUTO have similar performance
as they both employ Fourier Transform. The two methods exhibit different be-
havior under different types of anomalies. Their accuracy is about 70% for point
anomaly and much lower on contextual and mixed (about 20%). This is because
point anomalies distort the general periodicity of the time series to a lesser extent
than the lengthier contextual anomalies.

6.8 Parameter sensitivity analysis

We study the sensitivity of AURORA to parameters {λ1, λ2, λ3} in the synthetic
data. We fix one parameter and vary the other two, and report the AUC for
anomaly detection in Fig. 7. AURORA achieves a stable close-to-optimal perfor-
mance for a wide range of parameters. Its minimum AUC in the studied range is
around 0.85 which is still better than competitors. The performance of AURORA
degrades slightly when the values of parameters approach 1 as large weights on
regularization terms undermine the importance of the data fit cost.
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Fig. 7 Parameter sensitivity of AURORA.

(a) AURORA (Seconds) (b) TwitterR (Hours) (c) Donut (Hours)

Fig. 8 Comparison of CPU running time as a function of the time series length and the number
of samples (univariate time series) between (a) AURORA, (b) TwitterR and (c) Donut. Note,
that AURORA’s time is reported in seconds while those of baselines in hours.

6.9 Scalability

We also measure the CPU running time of the three competing anomaly detection
methods on synthetic data by varying the length of time series and the number of
samples in Fig. 8. We run AURORA on a desktop Dell computer with Intel(R)-
Core(i7) CPUs of 3.20 GHz and 31.2 GB memory using MATLAB R2018b 64-bit
edition without parallel operation. Donut is executed on the same machine with
Python 3.7 without parallel operation. TwitterR is implemented and executed on
Intel(R)- Core(i5) CPUs of 2.7 GHz and 8 GB RAM without parallel operation.
In a dataset with 0.5 million time points and 200 samples AURORA completes in
14 seconds. In contrast, on the same data size TwitterR requires 150 hours (over
6 days) to run, and Donut requires 1500 hours (over 2 months), including training
and testing. Note that since TwitterR and Donut analyze each univariate time
series independently, to obtain these results for the largest data size, we ran only
a single univariate time series and multiplied the running time by the number
of samples: 200. As a result, AURORA is more than 38,000 times faster than
TwitterR and more than 380,000 times faster than Donut. Even if we account for
differences between programming languages and CPUs, AURORA is still orders
of magnitude faster than the baselines.

7 Conclusions

In this paper, we proposed a novel solution for the problem of anomaly detection
in multivariate time series in the presence of seasonality and trends. We introduce
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an efficient and accurate solution, called AURORA, which offers interpretable
summaries of the time series and automatic unsupervised anomaly detection. We
applied AURORA on both synthetic and real-world datasets and demonstrated
its superior performance compared to that of state-of-the-art baselines. AURORA
was able to achieve AUC = 0.95 for anomaly detection even in very high noise
regimes, and 100% accuracy for period learning. In addition, AURORA is orders
of magnitude faster than baselines.
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