

Rank-Based Tensor Factorization for Predicting Student Performance

Thanh-Nam Doan, Sherry Sahebi

SUNY, Albany

Partially supported by the National Science Foundation, Grant No. 1755910 EDM 2019

Introduction

- State University of New York
- Motivation: Online learning services are popular nowadays
 - Coursera: 33 million registered users, 2400 courses (June 2018)
 - Udacity: 1.6 million users (2014)
- Predicting students' performance is an essential problem in these systems
 - Early detect high-risk students that may quit or fail classes
 - Class evaluation
 - Course planning activities
 - Learning materials recommendation to students

Introduction

- State University of New York
- Research question: How can we predict students' performance
 - Do not require domain knowledge of the courses
 - Students freely select their own learning trajectory
 - Capture the gradual knowledge gain of students
 - Sometimes forget the concepts
 - Personalized learning rates
- Contributions: We propose Rank-based Tensor Factorization (RBTF) model that considers the above requirements

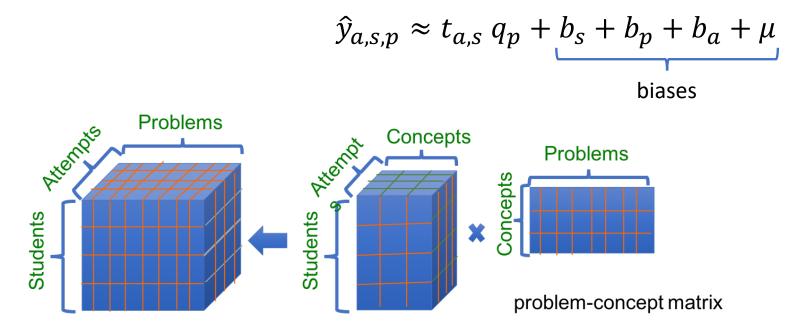
UNIVERSITY ATALBANY State University of New York

Related Works

- Needing a predefined domain model
 - BKT, PFA, FAST, etc
- Recommender Systems inspired
 - Apply recommender system techniques to educational data
 - Do not tailor for education data, or consider the sequence of student activities

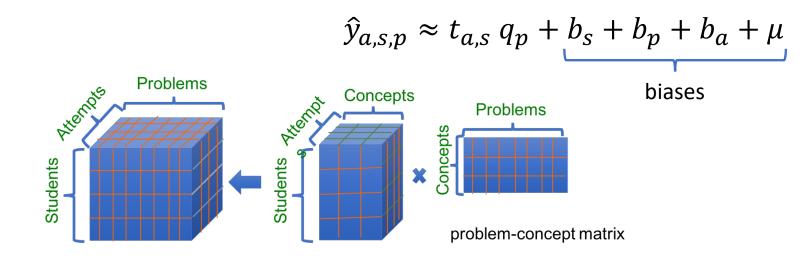
Proposed model: student performance

- State University of New York
- Student score tensor **Y** is factorized into student knowledge in concept $t_{a,s}$ and problem's latent concept vector q_p :



Proposed model: student performance

- State University of New York
- Student score tensor Y is factorized into student knowledge in concept $t_{a,s}$ and problem's latent concept vector q_p :



• Learning parameters is the optimization problem by minimizing L_1

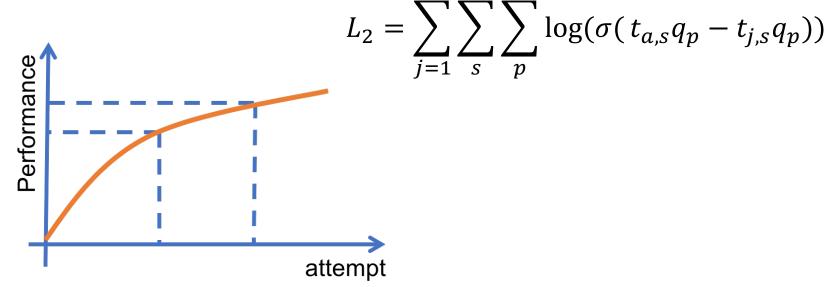
$$L_1 = \sum_{a,s,p} (\hat{y}_{a,s,p} - y_{a,s,p})^2 + regularization$$

Proposed model: gradual knowledge gain

- State University of New York
- To capture the gradual learning, we assume that a student knowledge increases over time

$$t_{a,s}q_p - t_{a-1,s}q_p \ge 0$$

 For attempt a of student s, the ranking of s's score at a is higher than the one of s at j with j < a



Proposed model: gradual knowledge gain

State University of New York

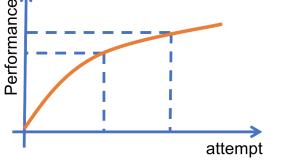
• To capture the gradual learning, we assume that a student knowledge increases over time

$$t_{a,s}q_p - t_{a-1,s}q_p \ge 0$$

- For attempt *a* of student *s*, the ranking of *s*'s score at *a* is higher than the one of *s* at *j* with j < a $L_2 = \sum_{j=1}^{a} \sum_{s} \sum_{p} \log(\sigma(t_{a,s}q_p - t_{j,s}q_p))$
- We embed the gradual knowledge gain into tensor factorization by minimizing *L*

$$L = L_1 - \omega L_2$$

• ω controls the contribution of gradual learning



Dataset & Experiment Setup

- Canvas network data
- 80% data is for training, 20% is for testing

Dataset	#students	#problems	#attempts	Avg. attempts
Course 1	531	91	87	29.92
Course 2	2597	32	30	12.73

Baselines & Metrics

- Baselines
 - Feedback-Driven Tensor Factorization (FDTF): It has "hard" constraint on gradual knowledge gain [Sahebi et al., 2016]
 - SPARse Factor Analysis (SPARFA): It calculates the probability of students' correct response [Lan et al., 2014]
- Metrics
 - Root Mean Squared Error (RMSE)
 - Accuracy

Student Performance Prediction

- State University of New York
- RBTF and FDTF is better than SPARFA → the importance of considering student sequence
- RBTF is better than FDTF → gradual knowledge gains should be model flexibly and allow for occasional forgetting of concepts

Dataset	RMSE			Accuracy		
	RBTF	FDTF	SPARFA	RBTF	FDTF	SPARFA
Course 1	0.12	0.27		92.5%		
Course 2	0.2056	0.2116	0.567	95.24%	92.8%	87.41%

Hyper-parameter Sensitivity Analysis

State University of New York

- Sensitivity to ω :
 - ω controls the trade off between having accurate estimation of student performance and constraint of knowledge increase
 - Larger ω : more emphasis on knowledge increase
 - Tune value of ω from 0 to 1 and measure RMSE of model
- Result:
 - $\omega = 0.5$ has the best performance in both dataset
 - Course 2 is more sensitive due to being more sparse

	ω				
Dataset	0.01	0.25	0.5	0.75	1.0
Course 1	0.191	0.128	0.12	0.137	0.141
Course 2	0.233	0.2064	0.2056	0.2154	0.2224

Hyper-parameter Sensitivity Analysis

State University of New York

- Sensitivity to k:
 - *k* is the number of concepts
 - The larger k, the larger the latent space of students and questions
 - We tune value of k and measure RMSE
- Result
 - Increasing k makes RBTF performs slightly worse
 - RBTF is robust since the the increase in error is mirror

	k			
Dataset	3	5	10	15
Course 1	0.12	0.122	0.127	0.128
Course 2	0.2056	0.206	0.2065	0.2065

Conclusion

- State University of New York
- We proposed a novel rank-based tensor factorization (RBTF)
 - RBTF considers the sequence of student activities
 - RBTF considers the gradual knowledge gains, allowing for occasional forget
 - RBTF does not require the prior knowledge of courses
- We evaluate RBTF on the task of students' performance prediction

UNIVERSITY at Albany

State University of New York

Thank you Q&A

ssahebi@albany.edu