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* Motivation: Online learning services are popular nowadays
e Coursera: 33 million registered users, 2400 courses (June 2018)
» Udacity: 1.6 million users (2014)

* Predicting students’ performance is an essential problem in these
systems
* Early detect high-risk students that may quit or fail classes
* Class evaluation
e Course planning activities
* Learning materials recommendation to students



| UNIVERSITY
Introduction ATALBANY

State University of New York

e Research question: How can we predict students’ performance
* Do not require domain knowledge of the courses
* Students freely select their own learning trajectory

* Capture the gradual knowledge gain of students
* Sometimes forget the concepts
e Personalized learning rates

e Contributions: We propose Rank-based Tensor Factorization (RBTF)
model that considers the above requirements
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* Needing a predefined domain model
* BKT, PFA, FAST, etc

* Recommender Systems - inspired
* Apply recommender system techniques to educational data

* Do not tailor for education data, or consider the sequence of student
activities
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 Student score tensor Y is factorized into student knowledge in
concept ¢, ; and problem’s latent concept vector q,,:

Vasp = tas dp +‘bS + b, + by + U
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 Student score tensor Y is factorized into student knowledge in
concept ¢, ; and problem’s latent concept vector q,,:

ya,s,p ~ ta,s dp +‘bs + bp + ba + ,Ll,
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* Learning parameters is the optimization problem by minimizing L,

A 2 .
L, = Za,s,p(ya,s,p — ya,s,p) +regularization
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* To capture the gradual learning, we assume that a student knowledge
Increases over time
ta,st _ ta—l,sCIp = 0
* For attempt a of student s, the ranking of s’s score at a is higher than
the one of s at j with j < a
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* To capture the gradual learning, we assume that a student knowledge
Increases over time
ta,st _ ta—l,sCIp = 0
* For attempt a of student s, the ranking of s’s score at a is higher than
the one of s at j with j < a

L, = z 2 2 log(a( ta,sqp — tj,s‘]p))
j=1 s p

* We embed the gradual knowledge gain into tensor factorization by
minimizing L r

L = Ll — (,()LZ |
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Dataset & Experiment Setup

e Canvas network data

* 80% data is for training, 20% is for testing
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Dataset |#students|#problems|#attempts|Avg. attempts
Course 1 531 91 87 29.92
Course 2| 2597 32 30 12.73
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 Baselines

* Feedback-Driven Tensor Factorization (FDTF): It has “hard” constraint on
gradual knowledge gain [Sahebi et al., 2016]

» SPARse Factor Analysis (SPARFA): It calculates the probability of students’
correct response [Lan et al., 2014]

* Metrics
* Root Mean Squared Error (RMSE)
* Accuracy



. UNIVERSITY
Student Performance Prediction ATALBANY

State University of New York

* RBTF and FDTF is better than SPARFA =2 the importance of
considering student sequence

* RBTF is better than FDTF = gradual knowledge gains should be
model flexibly and allow for occasional forgetting of concepts

Dataset RMSE Accuracy

RBTF [FDTF |SPARFA|| RBTF [FDTF|SPARFA
Course 1| 0.12 | 0.27 0.59 92.5% |85.2% | 81.7%

Course 2(0.2056(0.2116| 0.567 [/95.24%(92.8% | 87.41%
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* Sensitivity to w:
e w controls the trade off between having accurate estimation of student
performance and constraint of knowledge increase
* Larger w: more emphasis on knowledge increase
* Tune value of w from 0 to 1 and measure RMSE of model

* Result:
 w = (0.5 has the best performance in both dataset
* Course 2 is more sensitive due to being more sparse

w
Dataset 0.01 0.25 0.5 0.75 1.0

Course 1 | 0.191 0.128 0.12 0.137 0.141
Course 2 | 0.233 | 0.2064 | 0.2056 | 0.2154 | 0.2224
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 Sensitivity to k:
* kis the number of concepts
* The larger k, the larger the latent space of students and questions
* We tune value of k and measure RMSE

* Result
* Increasing k makes RBTF performs slightly worse
* RBTF is robust since the the increase in error is mirror

k
Dataset 3 5 10 15

Course 1 0.12 0.122 0.127 0.128
Course 2 | 0.2056 | 0.206 | 0.2065 | 0.2065
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* We proposed a novel rank-based tensor factorization (RBTF)
 RBTF considers the sequence of student activities
* RBTF considers the gradual knowledge gains, allowing for occasional forget
 RBTF does not require the prior knowledge of courses

* We evaluate RBTF on the task of students’ performance prediction
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