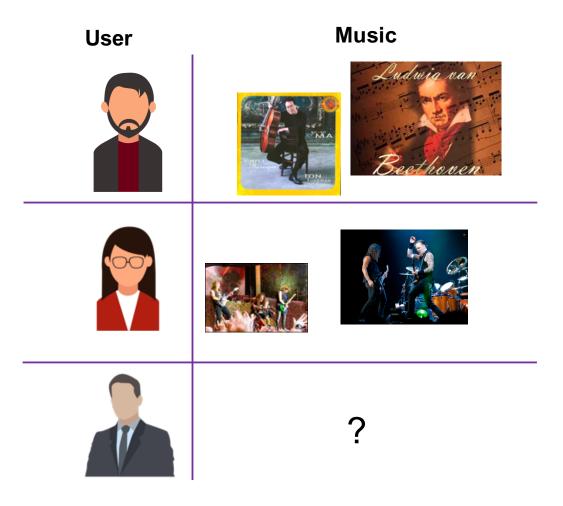
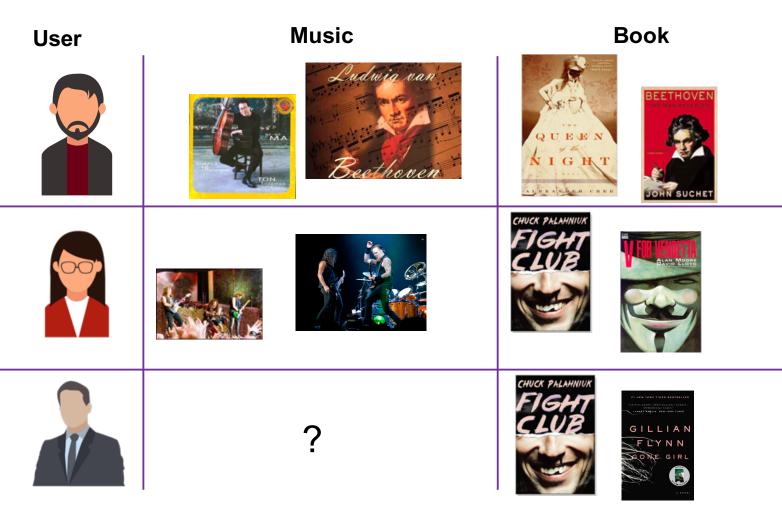


State University of New York

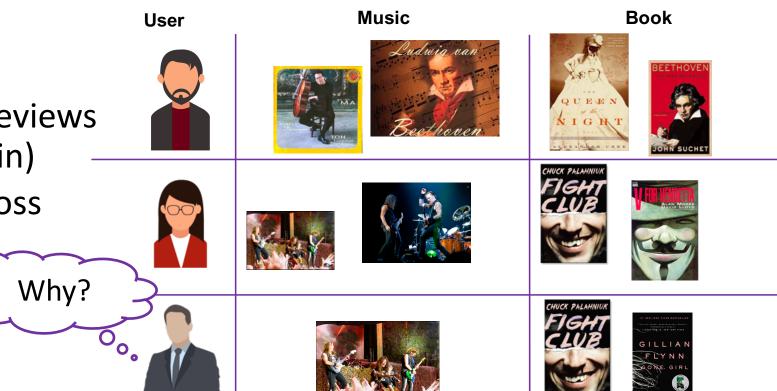

COMPLEXREC 2019 Co-located with RecSys'19, Copenhagen

Review-Based Cross-Domain Collaborative Filtering: a Neural Framework

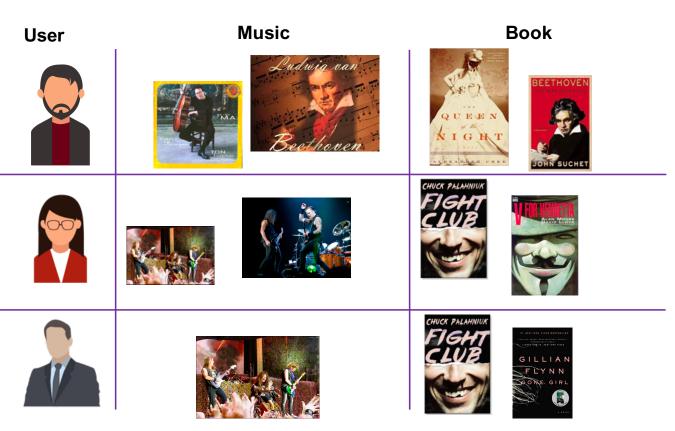
Thanh-Nam Doan, Sherry Sahebi


University at Albany, SUNY Albany, NY

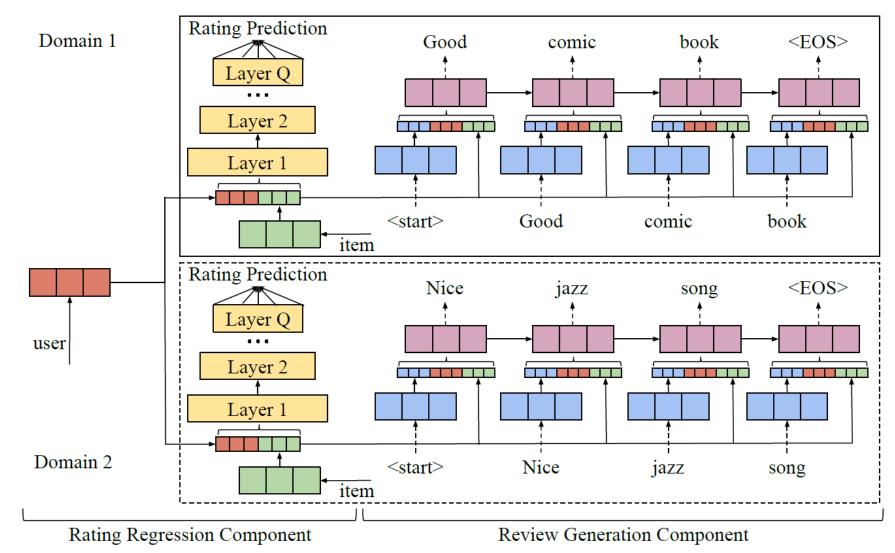
Cold-start scenario


Cross-domain recommenders

- To address problems such as cold-start and sparsity
- Information transfer
- Mostly collaborative filtering


Problem: hard to justify!

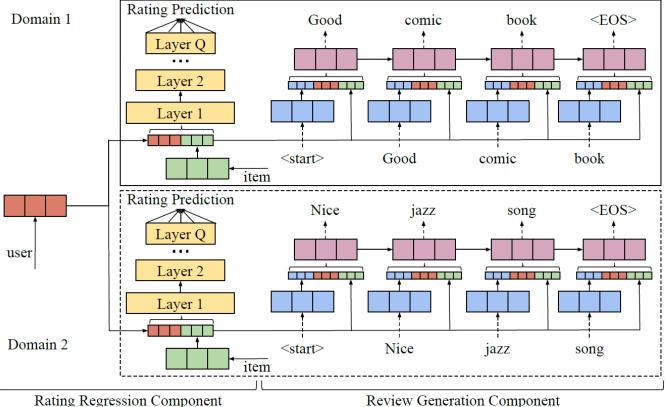
- We propose:
 - using *both* ratings and reviews (hybrid and cross-domain) -
 - to *generate* reviews across domains



Problem: hard to justify!

- We propose:
 - using *both* ratings and reviews (hybrid and cross-domain)
 - to *generate* reviews across domains
- First step towards crossdomain hybrid recommendation and review generation

Deep Hybrid Cross Domain (DHCD)


Rating Regression Component

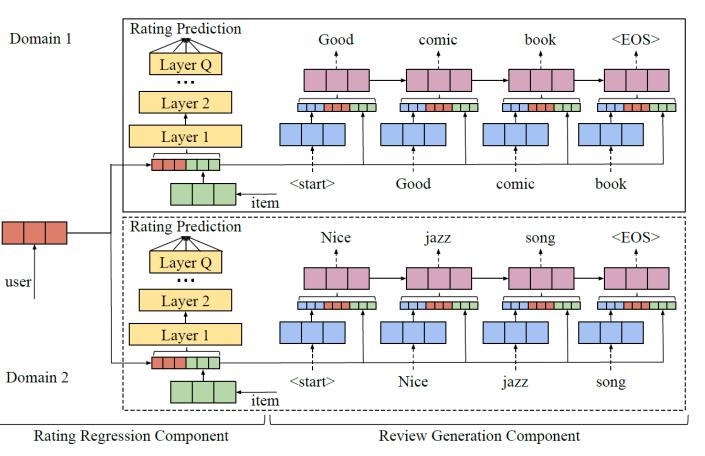
• We concatenate latent representations of user and item

$$x_{ui}^d = [v_u; v_i^d]$$

- We put it through Q layers $\hat{y}_{Q}^{d} = h_{Q}^{d} \left(h_{Q-1}^{d} \left(\dots \left(h_{1}^{d} (x_{ui}^{d}) \right) \right) \right)$
- The prediction is $\hat{r}_{ui}^d = w_v^d \ \hat{y}_o^d + b_v^d$
- The regression loss is

$$L^r = \sum_{d \in D} \sum_{u \in U, i \in I^d} \left(r_{ui}^d - \hat{r}_{ui}^d \right)^2$$

Review Generation Component


 We concatenate latent **Rating Prediction** representations of user and item Domain 1 <EOS> Good comic book Laver O $p(t_i | t_{< i}, \Phi^d) = \delta(\bar{h}_i^d)$. . . Layer 2 Laver Good book <start> comic item • The review generation loss is **Rating Prediction** Nice <EOS> jazz song $L^{s} = -\sum \sum_{i=1}^{J} \sum_{j=1}^{J_{ui}} \log p(t_{j}|t_{< j}, \Phi^{d})$ Layer O ... user Layer 2 É CONTRA CONT $\overline{d \in D} \ u \in U.i \in I^d \ i=1$ Layer 1 Domain 2 Nice <start> jazz song item Rating Regression Component **Review Generation Component**

Joint Model Learning

$$L = \lambda_{r}L^{r} + \lambda_{s}L^{s} + \lambda\left(\left||V_{u}|\right|_{2}^{2} + \left||V_{i}|\right|_{2}^{2} + \left||\Phi|\right|_{2}^{2}\right)$$

Where

- $\frac{\lambda_r}{\lambda_s}$ controls the trade off between RRC and RGC
- λ is to avoid overfitting

The evaluation of DHCD Model

- Performance in rating prediction
 - Cold and hot-start
- Performance in review generation
- Training convergence performance
- Trade-off between review generation and rating prediction

Dataset

- Amazon dataset from 1996 to 2004
- Three categories: Book, Digital Music and Office Products
- First 80% of user ratings for training and last 20% for testing

Dataset	#users	#items	#ratings	Avg. Review Len.
			186,160	
Book + Office Products	4,187	172,484	413,463	146.65
Digital Music + Office Products	186	2,375	4,739	143.53

Experiment Setup - Baselines

Two setups for each algorithm: single and cross-domain (e.g., cdCDL)

	Model		Input		Design		Generate	
	MF-based	NN-based	Ratings	Reviews	Single- domain	Cross- Domain	Reviews	
Matrix Factorization (MF)	\checkmark		\checkmark		\checkmark			
Neural Collaborative Filtering (NCF)		\checkmark	\checkmark		\checkmark			
Collaborative Deep Learning (CDL)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Collaborative Filtering with Generative Concatenative Net- works (CF-GCN)		\checkmark	\checkmark	\checkmark	✓		\checkmark	
Cross-domain neural network (CDN)		\checkmark	\checkmark			\checkmark		
Our Model (DHCD)		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	

Performance in rating prediction

• DHCD outperforms single-domain baselines, in each separate domain

	Book(B) + Digital Music(DM)									
	r@10		r@50		r@100		M	AE	RMSE	
	В	DM	В	DM	В	DM	В	DM	В	DM
MF	0.03	0.031	0.110	0.122	0.159	0.159	0.95	0.98	1.18	1.16
NCF	0.057	0.059	0.233	0.206	0.30	0.292	0.766	0.732	0.98	0.95
CDL	0.055	0.061	0.244	0.242	0.318	0.322	0.771	0.781	0.97	0.92
CF-GCN	0.070	0.068	0.245	0.248	0.301	0.35	0.752	0.745	0.94	0.911
CDN	0.043	0.049	0.219	0.234	0.312	0.339	0.772	0.751	0.991	0.933
DHCD	0.071 *	0.077**	0.25 *	0.257*	0.31	0.342^{*}	0.749 *	0.735 *	0.93 *	0.902 *

Performance in rating prediction

• DHCD outperforms cross-domain baselines in mixed-domains

	Book + Digital Music				Book + Office Products				Digital Music + Office Products						
	r@10	r@50	r@100	MAE	RMSE	r@10	r@50	r@100	MAE	RMSE	r@10	r@50	r@100	MAE	RMSE
cdMF	0.028	0.116	0.158	0.91	1.15	0.046	0.146	0.183	0.895	1.21	0.021	0.083	0.214	1.031	1.327
cdNCF	0.05	0.215	0.301	0.812	0.96	0.056	0.203	0.297	0.824	0.982	0.033	0.102	0.258	0.825	1.211
cdCDL	0.052	0.235	0.318	0.796	0.98	0.061	0.241	0.315	0.771	0.969	0.037	0.11	0.274	0.78	1.19
cdCF-GCN	0.062	0.243	0.325	0.765	0.977	0.07	0.256	0.324	0.772	0.921	0.046	0.135	0.288	0.705	1.107
CDN	0.047	0.226	0.328	0.762	0.974	0.08	0.204	0.296	0.773	0.976	0.041	0.144	0.302	0.754	1.084
DHCD	0.073**	0.252*	0.335*	0.741*	0.914*	0.08*	0.279*	0.356*	0.745*	0.891*	0.05*	0.157*	0.324*	0.698*	1.013*

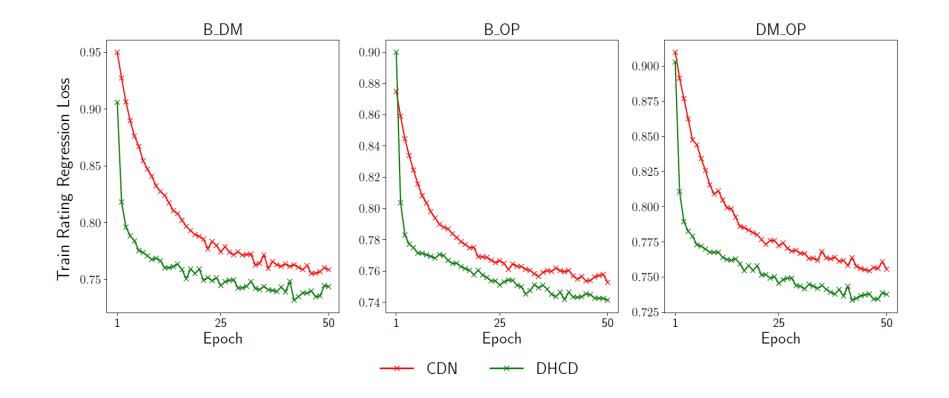
Cold-start Prediction

• DHCD outperforms the best baseline in cold-start setting (users with 5 or less ratings)

		Boo	k +	Boo	ok +	Digital Music +			
		Digital	Music	Office I	Products	Office Products			
		MAE RMSE		MAE	RMSE	MAE	RMSE		
_	CDN	0.767	0.97	0.767	0.986	0.743	1.052		
	DHCD	0.751*	0.94*	0.75*	0.922*	0.725*	1.031*		

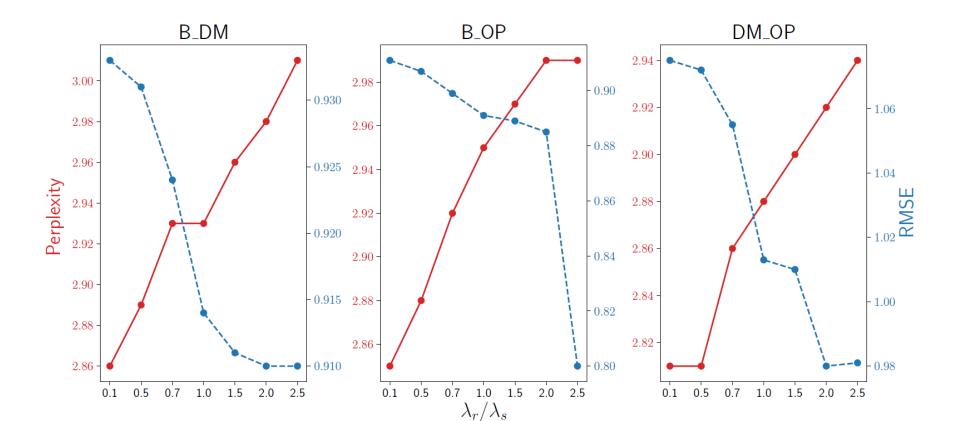
Review Generation Analysis

- Compared to
 - character LSTM, word LSTM, CF-GCN
- DHCD has better perplexity in review generation


	Book +	Book +	Digital Music +
	Digital Music	Office Products	Office Products
C-LSTM	3.10	3.09	3.05
W-LSTM	3.12	3.06	3.02
CF-GCN	3.02	2.99	2.95
DHCD	2.93	2.95	2.88

Examples of Generated Reviews: Digital Music and Book

	Negative Review	Positive Review
Real Review	This album has terrible sound. Its very tinny and distant. Nothing like vol 1. I was very disappointed with it. Lightfoot should re release this after firing his producer as there are several great songs on it.	Another superb album by Herb Alpert and the Tijuana Brass. Their music is so happy and full of fun. Love them.
DHCD	It not good, awful. Just poor quality that means it bring after the purchase. Nothing like before. should not good.	the simplistic. nice jazz of the band, happy with this purchase and enjoy the story , what a sweet voice for me.
CF-GCN	The song is terrible and need to be better, some every dissatisfied and undevelopment. not like it and enjoy song.	tribes followers see the awesome song and the lyrics is as always. great recommendation to buy and enjoy the song.


The Effect of Reviews in Training

- Compare the rating regression *training* loss of CDN and DHCD through epochs
- DHCD has a faster convergence

Trade-off between Rating Prediction and Review Generation

- λ_r/λ_s controls the trade off between rating prediction and review generation tasks
- $\lambda_s = 1$ and use various values of λ_r for training
- Increasing λ_r/λ_s leads to better RMSE but worse perplexity

19

Conclusion

- Deep Hybrid Cross Domain (DHCD)
 - first step towards cross-domain review generation and justification
 - can capture some between-domain relations
 - has better rating prediction than single-domain baselines -> adding crossdomain information helps
 - has better rating prediction and faster convergence than rating-only baselines
 -> adding review data helps
 - has a good performance in cold-start setting
- There is a trade-off between review generation and rating prediction

Thank you!

<u>ssahebi@albany.edu</u> code: <u>https://github.com/ssahebi/Neural_Hybrid_Cross_Domain</u>